/* * Ported from a work by Andreas Grabher for Previous, NeXT Computer Emulator, * derived from NetBSD M68040 FPSP functions, * derived from release 2a of the SoftFloat IEC/IEEE Floating-point Arithmetic * Package. Those parts of the code (and some later contributions) are * provided under that license, as detailed below. * It has subsequently been modified by contributors to the QEMU Project, * so some portions are provided under: * the SoftFloat-2a license * the BSD license * GPL-v2-or-later * * Any future contributions to this file will be taken to be licensed under * the Softfloat-2a license unless specifically indicated otherwise. */ /* Portions of this work are licensed under the terms of the GNU GPL, * version 2 or later. See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "softfloat.h" #include "fpu/softfloat-macros.h" #include "softfloat_fpsp_tables.h" static floatx80 propagateFloatx80NaNOneArg(floatx80 a, float_status *status) { if (floatx80_is_signaling_nan(a, status)) { float_raise(float_flag_invalid, status); } if (status->default_nan_mode) { return floatx80_default_nan(status); } return floatx80_maybe_silence_nan(a, status); } /*---------------------------------------------------------------------------- | Returns the modulo remainder of the extended double-precision floating-point | value `a' with respect to the corresponding value `b'. *----------------------------------------------------------------------------*/ floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status) { flag aSign, zSign; int32_t aExp, bExp, expDiff; uint64_t aSig0, aSig1, bSig; uint64_t qTemp, term0, term1; aSig0 = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); if (aExp == 0x7FFF) { if ((uint64_t) (aSig0 << 1) || ((bExp == 0x7FFF) && (uint64_t) (bSig << 1))) { return propagateFloatx80NaN(a, b, status); } goto invalid; } if (bExp == 0x7FFF) { if ((uint64_t) (bSig << 1)) { return propagateFloatx80NaN(a, b, status); } return a; } if (bExp == 0) { if (bSig == 0) { invalid: float_raise(float_flag_invalid, status); return floatx80_default_nan(status); } normalizeFloatx80Subnormal(bSig, &bExp, &bSig); } if (aExp == 0) { if ((uint64_t) (aSig0 << 1) == 0) { return a; } normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0); } bSig |= LIT64(0x8000000000000000); zSign = aSign; expDiff = aExp - bExp; aSig1 = 0; if (expDiff < 0) { return a; } qTemp = (bSig <= aSig0); if (qTemp) { aSig0 -= bSig; } expDiff -= 64; while (0 < expDiff) { qTemp = estimateDiv128To64(aSig0, aSig1, bSig); qTemp = (2 < qTemp) ? qTemp - 2 : 0; mul64To128(bSig, qTemp, &term0, &term1); sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1); shortShift128Left(aSig0, aSig1, 62, &aSig0, &aSig1); } expDiff += 64; if (0 < expDiff) { qTemp = estimateDiv128To64(aSig0, aSig1, bSig); qTemp = (2 < qTemp) ? qTemp - 2 : 0; qTemp >>= 64 - expDiff; mul64To128(bSig, qTemp << (64 - expDiff), &term0, &term1); sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1); shortShift128Left(0, bSig, 64 - expDiff, &term0, &term1); while (le128(term0, term1, aSig0, aSig1)) { ++qTemp; sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1); } } return normalizeRoundAndPackFloatx80( 80, zSign, bExp + expDiff, aSig0, aSig1, status); } /*---------------------------------------------------------------------------- | Returns the mantissa of the extended double-precision floating-point | value `a'. *----------------------------------------------------------------------------*/ floatx80 floatx80_getman(floatx80 a, float_status *status) { flag aSign; int32_t aExp; uint64_t aSig; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((uint64_t) (aSig << 1)) { return propagateFloatx80NaNOneArg(a , status); } float_raise(float_flag_invalid , status); return floatx80_default_nan(status); } if (aExp == 0) { if (aSig == 0) { return packFloatx80(aSign, 0, 0); } normalizeFloatx80Subnormal(aSig, &aExp, &aSig); } return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign, 0x3FFF, aSig, 0, status); } /*---------------------------------------------------------------------------- | Returns the exponent of the extended double-precision floating-point | value `a' as an extended double-precision value. *----------------------------------------------------------------------------*/ floatx80 floatx80_getexp(floatx80 a, float_status *status) { flag aSign; int32_t aExp; uint64_t aSig; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((uint64_t) (aSig << 1)) { return propagateFloatx80NaNOneArg(a , status); } float_raise(float_flag_invalid , status); return floatx80_default_nan(status); } if (aExp == 0) { if (aSig == 0) { return packFloatx80(aSign, 0, 0); } normalizeFloatx80Subnormal(aSig, &aExp, &aSig); } return int32_to_floatx80(aExp - 0x3FFF, status); } /*---------------------------------------------------------------------------- | Scales extended double-precision floating-point value in operand `a' by | value `b'. The function truncates the value in the second operand 'b' to | an integral value and adds that value to the exponent of the operand 'a'. | The operation performed according to the IEC/IEEE Standard for Binary | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status *status) { flag aSign, bSign; int32_t aExp, bExp, shiftCount; uint64_t aSig, bSig; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); bSig = extractFloatx80Frac(b); bExp = extractFloatx80Exp(b); bSign = extractFloatx80Sign(b); if (bExp == 0x7FFF) { if ((uint64_t) (bSig << 1) || ((aExp == 0x7FFF) && (uint64_t) (aSig << 1))) { return propagateFloatx80NaN(a, b, status); } float_raise(float_flag_invalid , status); return floatx80_default_nan(status); } if (aExp == 0x7FFF) { if ((uint64_t) (aSig << 1)) { return propagateFloatx80NaN(a, b, status); } return packFloatx80(aSign, floatx80_infinity.high, floatx80_infinity.low); } if (aExp == 0) { if (aSig == 0) { return packFloatx80(aSign, 0, 0); } if (bExp < 0x3FFF) { return a; } normalizeFloatx80Subnormal(aSig, &aExp, &aSig); } if (bExp < 0x3FFF) { return a; } if (0x400F < bExp) { aExp = bSign ? -0x6001 : 0xE000; return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign, aExp, aSig, 0, status); } shiftCount = 0x403E - bExp; bSig >>= shiftCount; aExp = bSign ? (aExp - bSig) : (aExp + bSig); return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign, aExp, aSig, 0, status); } floatx80 floatx80_move(floatx80 a, float_status *status) { flag aSign; int32_t aExp; uint64_t aSig; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((uint64_t)(aSig << 1)) { return propagateFloatx80NaNOneArg(a, status); } return a; } if (aExp == 0) { if (aSig == 0) { return a; } normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, aSign, aExp, aSig, 0, status); } return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign, aExp, aSig, 0, status); } /*---------------------------------------------------------------------------- | Algorithms for transcendental functions supported by MC68881 and MC68882 | mathematical coprocessors. The functions are derived from FPSP library. *----------------------------------------------------------------------------*/ #define one_exp 0x3FFF #define one_sig LIT64(0x8000000000000000) /*---------------------------------------------------------------------------- | Function for compactifying extended double-precision floating point values. *----------------------------------------------------------------------------*/ static int32_t floatx80_make_compact(int32_t aExp, uint64_t aSig) { return (aExp << 16) | (aSig >> 48); } /*---------------------------------------------------------------------------- | Log base e of x plus 1 *----------------------------------------------------------------------------*/ floatx80 floatx80_lognp1(floatx80 a, float_status *status) { flag aSign; int32_t aExp; uint64_t aSig, fSig; int8_t user_rnd_mode, user_rnd_prec; int32_t compact, j, k; floatx80 fp0, fp1, fp2, fp3, f, logof2, klog2, saveu; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((uint64_t) (aSig << 1)) { propagateFloatx80NaNOneArg(a, status); } if (aSign) { float_raise(float_flag_invalid, status); return floatx80_default_nan(status); } return packFloatx80(0, floatx80_infinity.high, floatx80_infinity.low); } if (aExp == 0 && aSig == 0) { return packFloatx80(aSign, 0, 0); } if (aSign && aExp >= one_exp) { if (aExp == one_exp && aSig == one_sig) { float_raise(float_flag_divbyzero, status); packFloatx80(aSign, floatx80_infinity.high, floatx80_infinity.low); } float_raise(float_flag_invalid, status); return floatx80_default_nan(status); } if (aExp < 0x3f99 || (aExp == 0x3f99 && aSig == one_sig)) { /* <= min threshold */ float_raise(float_flag_inexact, status); return floatx80_move(a, status); } user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; status->floatx80_rounding_precision = 80; compact = floatx80_make_compact(aExp, aSig); fp0 = a; /* Z */ fp1 = a; fp0 = floatx80_add(fp0, float32_to_floatx80(make_float32(0x3F800000), status), status); /* X = (1+Z) */ aExp = extractFloatx80Exp(fp0); aSig = extractFloatx80Frac(fp0); compact = floatx80_make_compact(aExp, aSig); if (compact < 0x3FFE8000 || compact > 0x3FFFC000) { /* |X| < 1/2 or |X| > 3/2 */ k = aExp - 0x3FFF; fp1 = int32_to_floatx80(k, status); fSig = (aSig & LIT64(0xFE00000000000000)) | LIT64(0x0100000000000000); j = (fSig >> 56) & 0x7E; /* DISPLACEMENT FOR 1/F */ f = packFloatx80(0, 0x3FFF, fSig); /* F */ fp0 = packFloatx80(0, 0x3FFF, aSig); /* Y */ fp0 = floatx80_sub(fp0, f, status); /* Y-F */ lp1cont1: /* LP1CONT1 */ fp0 = floatx80_mul(fp0, log_tbl[j], status); /* FP0 IS U = (Y-F)/F */ logof2 = packFloatx80(0, 0x3FFE, LIT64(0xB17217F7D1CF79AC)); klog2 = floatx80_mul(fp1, logof2, status); /* FP1 IS K*LOG2 */ fp2 = floatx80_mul(fp0, fp0, status); /* FP2 IS V=U*U */ fp3 = fp2; fp1 = fp2; fp1 = floatx80_mul(fp1, float64_to_floatx80( make_float64(0x3FC2499AB5E4040B), status), status); /* V*A6 */ fp2 = floatx80_mul(fp2, float64_to_floatx80( make_float64(0xBFC555B5848CB7DB), status), status); /* V*A5 */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FC99999987D8730), status), status); /* A4+V*A6 */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0xBFCFFFFFFF6F7E97), status), status); /* A3+V*A5 */ fp1 = floatx80_mul(fp1, fp3, status); /* V*(A4+V*A6) */ fp2 = floatx80_mul(fp2, fp3, status); /* V*(A3+V*A5) */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FD55555555555A4), status), status); /* A2+V*(A4+V*A6) */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0xBFE0000000000008), status), status); /* A1+V*(A3+V*A5) */ fp1 = floatx80_mul(fp1, fp3, status); /* V*(A2+V*(A4+V*A6)) */ fp2 = floatx80_mul(fp2, fp3, status); /* V*(A1+V*(A3+V*A5)) */ fp1 = floatx80_mul(fp1, fp0, status); /* U*V*(A2+V*(A4+V*A6)) */ fp0 = floatx80_add(fp0, fp2, status); /* U+V*(A1+V*(A3+V*A5)) */ fp1 = floatx80_add(fp1, log_tbl[j + 1], status); /* LOG(F)+U*V*(A2+V*(A4+V*A6)) */ fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS LOG(F) + LOG(1+U) */ status->float_rounding_mode = user_rnd_mode; status->floatx80_rounding_precision = user_rnd_prec; a = floatx80_add(fp0, klog2, status); float_raise(float_flag_inexact, status); return a; } else if (compact < 0x3FFEF07D || compact > 0x3FFF8841) { /* |X| < 1/16 or |X| > -1/16 */ /* LP1CARE */ fSig = (aSig & LIT64(0xFE00000000000000)) | LIT64(0x0100000000000000); f = packFloatx80(0, 0x3FFF, fSig); /* F */ j = (fSig >> 56) & 0x7E; /* DISPLACEMENT FOR 1/F */ if (compact >= 0x3FFF8000) { /* 1+Z >= 1 */ /* KISZERO */ fp0 = floatx80_sub(float32_to_floatx80(make_float32(0x3F800000), status), f, status); /* 1-F */ fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS Y-F = (1-F)+Z */ fp1 = packFloatx80(0, 0, 0); /* K = 0 */ } else { /* KISNEG */ fp0 = floatx80_sub(float32_to_floatx80(make_float32(0x40000000), status), f, status); /* 2-F */ fp1 = floatx80_add(fp1, fp1, status); /* 2Z */ fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS Y-F = (2-F)+2Z */ fp1 = packFloatx80(1, one_exp, one_sig); /* K = -1 */ } goto lp1cont1; } else { /* LP1ONE16 */ fp1 = floatx80_add(fp1, fp1, status); /* FP1 IS 2Z */ fp0 = floatx80_add(fp0, float32_to_floatx80(make_float32(0x3F800000), status), status); /* FP0 IS 1+X */ /* LP1CONT2 */ fp1 = floatx80_div(fp1, fp0, status); /* U */ saveu = fp1; fp0 = floatx80_mul(fp1, fp1, status); /* FP0 IS V = U*U */ fp1 = floatx80_mul(fp0, fp0, status); /* FP1 IS W = V*V */ fp3 = float64_to_floatx80(make_float64(0x3F175496ADD7DAD6), status); /* B5 */ fp2 = float64_to_floatx80(make_float64(0x3F3C71C2FE80C7E0), status); /* B4 */ fp3 = floatx80_mul(fp3, fp1, status); /* W*B5 */ fp2 = floatx80_mul(fp2, fp1, status); /* W*B4 */ fp3 = floatx80_add(fp3, float64_to_floatx80( make_float64(0x3F624924928BCCFF), status), status); /* B3+W*B5 */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0x3F899999999995EC), status), status); /* B2+W*B4 */ fp1 = floatx80_mul(fp1, fp3, status); /* W*(B3+W*B5) */ fp2 = floatx80_mul(fp2, fp0, status); /* V*(B2+W*B4) */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FB5555555555555), status), status); /* B1+W*(B3+W*B5) */ fp0 = floatx80_mul(fp0, saveu, status); /* FP0 IS U*V */ fp1 = floatx80_add(fp1, fp2, status); /* B1+W*(B3+W*B5) + V*(B2+W*B4) */ fp0 = floatx80_mul(fp0, fp1, status); /* U*V*([B1+W*(B3+W*B5)] + [V*(B2+W*B4)]) */ status->float_rounding_mode = user_rnd_mode; status->floatx80_rounding_precision = user_rnd_prec; a = floatx80_add(fp0, saveu, status); /*if (!floatx80_is_zero(a)) { */ float_raise(float_flag_inexact, status); /*} */ return a; } } /*---------------------------------------------------------------------------- | Log base e *----------------------------------------------------------------------------*/ floatx80 floatx80_logn(floatx80 a, float_status *status) { flag aSign; int32_t aExp; uint64_t aSig, fSig; int8_t user_rnd_mode, user_rnd_prec; int32_t compact, j, k, adjk; floatx80 fp0, fp1, fp2, fp3, f, logof2, klog2, saveu; aSig = extractFloatx80Frac(a); aExp = extractFloatx80Exp(a); aSign = extractFloatx80Sign(a); if (aExp == 0x7FFF) { if ((uint64_t) (aSig << 1)) { propagateFloatx80NaNOneArg(a, status); } if (aSign == 0) { return packFloatx80(0, floatx80_infinity.high, floatx80_infinity.low); } } adjk = 0; if (aExp == 0) { if (aSig == 0) { /* zero */ float_raise(float_flag_divbyzero, status); return packFloatx80(1, floatx80_infinity.high, floatx80_infinity.low); } if ((aSig & one_sig) == 0) { /* denormal */ normalizeFloatx80Subnormal(aSig, &aExp, &aSig); adjk = -100; aExp += 100; a = packFloatx80(aSign, aExp, aSig); } } if (aSign) { float_raise(float_flag_invalid, status); return floatx80_default_nan(status); } user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; status->floatx80_rounding_precision = 80; compact = floatx80_make_compact(aExp, aSig); if (compact < 0x3FFEF07D || compact > 0x3FFF8841) { /* |X| < 15/16 or |X| > 17/16 */ k = aExp - 0x3FFF; k += adjk; fp1 = int32_to_floatx80(k, status); fSig = (aSig & LIT64(0xFE00000000000000)) | LIT64(0x0100000000000000); j = (fSig >> 56) & 0x7E; /* DISPLACEMENT FOR 1/F */ f = packFloatx80(0, 0x3FFF, fSig); /* F */ fp0 = packFloatx80(0, 0x3FFF, aSig); /* Y */ fp0 = floatx80_sub(fp0, f, status); /* Y-F */ /* LP1CONT1 */ fp0 = floatx80_mul(fp0, log_tbl[j], status); /* FP0 IS U = (Y-F)/F */ logof2 = packFloatx80(0, 0x3FFE, LIT64(0xB17217F7D1CF79AC)); klog2 = floatx80_mul(fp1, logof2, status); /* FP1 IS K*LOG2 */ fp2 = floatx80_mul(fp0, fp0, status); /* FP2 IS V=U*U */ fp3 = fp2; fp1 = fp2; fp1 = floatx80_mul(fp1, float64_to_floatx80( make_float64(0x3FC2499AB5E4040B), status), status); /* V*A6 */ fp2 = floatx80_mul(fp2, float64_to_floatx80( make_float64(0xBFC555B5848CB7DB), status), status); /* V*A5 */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FC99999987D8730), status), status); /* A4+V*A6 */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0xBFCFFFFFFF6F7E97), status), status); /* A3+V*A5 */ fp1 = floatx80_mul(fp1, fp3, status); /* V*(A4+V*A6) */ fp2 = floatx80_mul(fp2, fp3, status); /* V*(A3+V*A5) */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FD55555555555A4), status), status); /* A2+V*(A4+V*A6) */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0xBFE0000000000008), status), status); /* A1+V*(A3+V*A5) */ fp1 = floatx80_mul(fp1, fp3, status); /* V*(A2+V*(A4+V*A6)) */ fp2 = floatx80_mul(fp2, fp3, status); /* V*(A1+V*(A3+V*A5)) */ fp1 = floatx80_mul(fp1, fp0, status); /* U*V*(A2+V*(A4+V*A6)) */ fp0 = floatx80_add(fp0, fp2, status); /* U+V*(A1+V*(A3+V*A5)) */ fp1 = floatx80_add(fp1, log_tbl[j + 1], status); /* LOG(F)+U*V*(A2+V*(A4+V*A6)) */ fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS LOG(F) + LOG(1+U) */ status->float_rounding_mode = user_rnd_mode; status->floatx80_rounding_precision = user_rnd_prec; a = floatx80_add(fp0, klog2, status); float_raise(float_flag_inexact, status); return a; } else { /* |X-1| >= 1/16 */ fp0 = a; fp1 = a; fp1 = floatx80_sub(fp1, float32_to_floatx80(make_float32(0x3F800000), status), status); /* FP1 IS X-1 */ fp0 = floatx80_add(fp0, float32_to_floatx80(make_float32(0x3F800000), status), status); /* FP0 IS X+1 */ fp1 = floatx80_add(fp1, fp1, status); /* FP1 IS 2(X-1) */ /* LP1CONT2 */ fp1 = floatx80_div(fp1, fp0, status); /* U */ saveu = fp1; fp0 = floatx80_mul(fp1, fp1, status); /* FP0 IS V = U*U */ fp1 = floatx80_mul(fp0, fp0, status); /* FP1 IS W = V*V */ fp3 = float64_to_floatx80(make_float64(0x3F175496ADD7DAD6), status); /* B5 */ fp2 = float64_to_floatx80(make_float64(0x3F3C71C2FE80C7E0), status); /* B4 */ fp3 = floatx80_mul(fp3, fp1, status); /* W*B5 */ fp2 = floatx80_mul(fp2, fp1, status); /* W*B4 */ fp3 = floatx80_add(fp3, float64_to_floatx80( make_float64(0x3F624924928BCCFF), status), status); /* B3+W*B5 */ fp2 = floatx80_add(fp2, float64_to_floatx80( make_float64(0x3F899999999995EC), status), status); /* B2+W*B4 */ fp1 = floatx80_mul(fp1, fp3, status); /* W*(B3+W*B5) */ fp2 = floatx80_mul(fp2, fp0, status); /* V*(B2+W*B4) */ fp1 = floatx80_add(fp1, float64_to_floatx80( make_float64(0x3FB5555555555555), status), status); /* B1+W*(B3+W*B5) */ fp0 = floatx80_mul(fp0, saveu, status); /* FP0 IS U*V */ fp1 = floatx80_add(fp1, fp2, status); /* B1+W*(B3+W*B5) + V*(B2+W*B4) */ fp0 = floatx80_mul(fp0, fp1, status); /* U*V*([B1+W*(B3+W*B5)] + [V*(B2+W*B4)]) */ status->float_rounding_mode = user_rnd_mode; status->floatx80_rounding_precision = user_rnd_prec; a = floatx80_add(fp0, saveu, status); /*if (!floatx80_is_zero(a)) { */ float_raise(float_flag_inexact, status); /*} */ return a; } }