/* * Tiny Code Generator for QEMU * * Copyright (c) 2008-2009 Arnaud Patard * Copyright (c) 2009 Aurelien Jarno * Based on i386/tcg-target.c - Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "tcg-be-ldst.h" #ifdef HOST_WORDS_BIGENDIAN # define MIPS_BE 1 #else # define MIPS_BE 0 #endif #define LO_OFF (MIPS_BE * 4) #define HI_OFF (4 - LO_OFF) #ifdef CONFIG_DEBUG_TCG static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", }; #endif #define TCG_TMP0 TCG_REG_AT #define TCG_TMP1 TCG_REG_T9 /* check if we really need so many registers :P */ static const int tcg_target_reg_alloc_order[] = { /* Call saved registers. */ TCG_REG_S0, TCG_REG_S1, TCG_REG_S2, TCG_REG_S3, TCG_REG_S4, TCG_REG_S5, TCG_REG_S6, TCG_REG_S7, TCG_REG_S8, /* Call clobbered registers. */ TCG_REG_T0, TCG_REG_T1, TCG_REG_T2, TCG_REG_T3, TCG_REG_T4, TCG_REG_T5, TCG_REG_T6, TCG_REG_T7, TCG_REG_T8, TCG_REG_T9, TCG_REG_V1, TCG_REG_V0, /* Argument registers, opposite order of allocation. */ TCG_REG_A3, TCG_REG_A2, TCG_REG_A1, TCG_REG_A0, }; static const TCGReg tcg_target_call_iarg_regs[4] = { TCG_REG_A0, TCG_REG_A1, TCG_REG_A2, TCG_REG_A3 }; static const TCGReg tcg_target_call_oarg_regs[2] = { TCG_REG_V0, TCG_REG_V1 }; static tcg_insn_unit *tb_ret_addr; static inline uint32_t reloc_pc16_val(tcg_insn_unit *pc, tcg_insn_unit *target) { /* Let the compiler perform the right-shift as part of the arithmetic. */ ptrdiff_t disp = target - (pc + 1); tcg_debug_assert(disp == (int16_t)disp); return disp & 0xffff; } static inline void reloc_pc16(tcg_insn_unit *pc, tcg_insn_unit *target) { *pc = deposit32(*pc, 0, 16, reloc_pc16_val(pc, target)); } static inline uint32_t reloc_26_val(tcg_insn_unit *pc, tcg_insn_unit *target) { tcg_debug_assert((((uintptr_t)pc ^ (uintptr_t)target) & 0xf0000000) == 0); return ((uintptr_t)target >> 2) & 0x3ffffff; } static inline void reloc_26(tcg_insn_unit *pc, tcg_insn_unit *target) { *pc = deposit32(*pc, 0, 26, reloc_26_val(pc, target)); } static void patch_reloc(tcg_insn_unit *code_ptr, int type, intptr_t value, intptr_t addend) { tcg_debug_assert(type == R_MIPS_PC16); tcg_debug_assert(addend == 0); reloc_pc16(code_ptr, (tcg_insn_unit *)value); } #define TCG_CT_CONST_ZERO 0x100 #define TCG_CT_CONST_U16 0x200 /* Unsigned 16-bit: 0 - 0xffff. */ #define TCG_CT_CONST_S16 0x400 /* Signed 16-bit: -32768 - 32767 */ #define TCG_CT_CONST_P2M1 0x800 /* Power of 2 minus 1. */ #define TCG_CT_CONST_N16 0x1000 /* "Negatable" 16-bit: -32767 - 32767 */ static inline bool is_p2m1(tcg_target_long val) { return val && ((val + 1) & val) == 0; } /* parse target specific constraints */ static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str) { const char *ct_str; ct_str = *pct_str; switch(ct_str[0]) { case 'r': ct->ct |= TCG_CT_REG; tcg_regset_set(ct->u.regs, 0xffffffff); break; case 'L': /* qemu_ld output arg constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set(ct->u.regs, 0xffffffff); tcg_regset_reset_reg(ct->u.regs, TCG_REG_V0); break; case 'l': /* qemu_ld input arg constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set(ct->u.regs, 0xffffffff); tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0); #if defined(CONFIG_SOFTMMU) if (TARGET_LONG_BITS == 64) { tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2); } #endif break; case 'S': /* qemu_st constraint */ ct->ct |= TCG_CT_REG; tcg_regset_set(ct->u.regs, 0xffffffff); tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0); #if defined(CONFIG_SOFTMMU) if (TARGET_LONG_BITS == 32) { tcg_regset_reset_reg(ct->u.regs, TCG_REG_A1); } else { tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2); tcg_regset_reset_reg(ct->u.regs, TCG_REG_A3); } #endif break; case 'I': ct->ct |= TCG_CT_CONST_U16; break; case 'J': ct->ct |= TCG_CT_CONST_S16; break; case 'K': ct->ct |= TCG_CT_CONST_P2M1; break; case 'N': ct->ct |= TCG_CT_CONST_N16; break; case 'Z': /* We are cheating a bit here, using the fact that the register ZERO is also the register number 0. Hence there is no need to check for const_args in each instruction. */ ct->ct |= TCG_CT_CONST_ZERO; break; default: return -1; } ct_str++; *pct_str = ct_str; return 0; } /* test if a constant matches the constraint */ static inline int tcg_target_const_match(tcg_target_long val, TCGType type, const TCGArgConstraint *arg_ct) { int ct; ct = arg_ct->ct; if (ct & TCG_CT_CONST) { return 1; } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) { return 1; } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) { return 1; } else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) { return 1; } else if ((ct & TCG_CT_CONST_N16) && val >= -32767 && val <= 32767) { return 1; } else if ((ct & TCG_CT_CONST_P2M1) && use_mips32r2_instructions && is_p2m1(val)) { return 1; } return 0; } /* instruction opcodes */ typedef enum { OPC_J = 0x02 << 26, OPC_JAL = 0x03 << 26, OPC_BEQ = 0x04 << 26, OPC_BNE = 0x05 << 26, OPC_BLEZ = 0x06 << 26, OPC_BGTZ = 0x07 << 26, OPC_ADDIU = 0x09 << 26, OPC_SLTI = 0x0A << 26, OPC_SLTIU = 0x0B << 26, OPC_ANDI = 0x0C << 26, OPC_ORI = 0x0D << 26, OPC_XORI = 0x0E << 26, OPC_LUI = 0x0F << 26, OPC_LB = 0x20 << 26, OPC_LH = 0x21 << 26, OPC_LW = 0x23 << 26, OPC_LBU = 0x24 << 26, OPC_LHU = 0x25 << 26, OPC_LWU = 0x27 << 26, OPC_SB = 0x28 << 26, OPC_SH = 0x29 << 26, OPC_SW = 0x2B << 26, OPC_SPECIAL = 0x00 << 26, OPC_SLL = OPC_SPECIAL | 0x00, OPC_SRL = OPC_SPECIAL | 0x02, OPC_ROTR = OPC_SPECIAL | (0x01 << 21) | 0x02, OPC_SRA = OPC_SPECIAL | 0x03, OPC_SLLV = OPC_SPECIAL | 0x04, OPC_SRLV = OPC_SPECIAL | 0x06, OPC_ROTRV = OPC_SPECIAL | (0x01 << 6) | 0x06, OPC_SRAV = OPC_SPECIAL | 0x07, OPC_JR_R5 = OPC_SPECIAL | 0x08, OPC_JALR = OPC_SPECIAL | 0x09, OPC_MOVZ = OPC_SPECIAL | 0x0A, OPC_MOVN = OPC_SPECIAL | 0x0B, OPC_MFHI = OPC_SPECIAL | 0x10, OPC_MFLO = OPC_SPECIAL | 0x12, OPC_MULT = OPC_SPECIAL | 0x18, OPC_MUL_R6 = OPC_SPECIAL | (0x02 << 6) | 0x18, OPC_MUH = OPC_SPECIAL | (0x03 << 6) | 0x18, OPC_MULTU = OPC_SPECIAL | 0x19, OPC_MULU = OPC_SPECIAL | (0x02 << 6) | 0x19, OPC_MUHU = OPC_SPECIAL | (0x03 << 6) | 0x19, OPC_DIV = OPC_SPECIAL | 0x1A, OPC_DIV_R6 = OPC_SPECIAL | (0x02 << 6) | 0x1A, OPC_MOD = OPC_SPECIAL | (0x03 << 6) | 0x1A, OPC_DIVU = OPC_SPECIAL | 0x1B, OPC_DIVU_R6 = OPC_SPECIAL | (0x02 << 6) | 0x1B, OPC_MODU = OPC_SPECIAL | (0x03 << 6) | 0x1B, OPC_ADDU = OPC_SPECIAL | 0x21, OPC_SUBU = OPC_SPECIAL | 0x23, OPC_AND = OPC_SPECIAL | 0x24, OPC_OR = OPC_SPECIAL | 0x25, OPC_XOR = OPC_SPECIAL | 0x26, OPC_NOR = OPC_SPECIAL | 0x27, OPC_SLT = OPC_SPECIAL | 0x2A, OPC_SLTU = OPC_SPECIAL | 0x2B, OPC_SELEQZ = OPC_SPECIAL | 0x35, OPC_SELNEZ = OPC_SPECIAL | 0x37, OPC_REGIMM = 0x01 << 26, OPC_BLTZ = OPC_REGIMM | (0x00 << 16), OPC_BGEZ = OPC_REGIMM | (0x01 << 16), OPC_SPECIAL2 = 0x1c << 26, OPC_MUL_R5 = OPC_SPECIAL2 | 0x002, OPC_SPECIAL3 = 0x1f << 26, OPC_EXT = OPC_SPECIAL3 | 0x000, OPC_INS = OPC_SPECIAL3 | 0x004, OPC_WSBH = OPC_SPECIAL3 | 0x0a0, OPC_SEB = OPC_SPECIAL3 | 0x420, OPC_SEH = OPC_SPECIAL3 | 0x620, /* MIPS r6 doesn't have JR, JALR should be used instead */ OPC_JR = use_mips32r6_instructions ? OPC_JALR : OPC_JR_R5, /* * MIPS r6 replaces MUL with an alternative encoding which is * backwards-compatible at the assembly level. */ OPC_MUL = use_mips32r6_instructions ? OPC_MUL_R6 : OPC_MUL_R5, } MIPSInsn; /* * Type reg */ static inline void tcg_out_opc_reg(TCGContext *s, MIPSInsn opc, TCGReg rd, TCGReg rs, TCGReg rt) { int32_t inst; inst = opc; inst |= (rs & 0x1F) << 21; inst |= (rt & 0x1F) << 16; inst |= (rd & 0x1F) << 11; tcg_out32(s, inst); } /* * Type immediate */ static inline void tcg_out_opc_imm(TCGContext *s, MIPSInsn opc, TCGReg rt, TCGReg rs, TCGArg imm) { int32_t inst; inst = opc; inst |= (rs & 0x1F) << 21; inst |= (rt & 0x1F) << 16; inst |= (imm & 0xffff); tcg_out32(s, inst); } /* * Type bitfield */ static inline void tcg_out_opc_bf(TCGContext *s, MIPSInsn opc, TCGReg rt, TCGReg rs, int msb, int lsb) { int32_t inst; inst = opc; inst |= (rs & 0x1F) << 21; inst |= (rt & 0x1F) << 16; inst |= (msb & 0x1F) << 11; inst |= (lsb & 0x1F) << 6; tcg_out32(s, inst); } /* * Type branch */ static inline void tcg_out_opc_br(TCGContext *s, MIPSInsn opc, TCGReg rt, TCGReg rs) { /* We pay attention here to not modify the branch target by reading the existing value and using it again. This ensure that caches and memory are kept coherent during retranslation. */ uint16_t offset = (uint16_t)*s->code_ptr; tcg_out_opc_imm(s, opc, rt, rs, offset); } /* * Type sa */ static inline void tcg_out_opc_sa(TCGContext *s, MIPSInsn opc, TCGReg rd, TCGReg rt, TCGArg sa) { int32_t inst; inst = opc; inst |= (rt & 0x1F) << 16; inst |= (rd & 0x1F) << 11; inst |= (sa & 0x1F) << 6; tcg_out32(s, inst); } /* * Type jump. * Returns true if the branch was in range and the insn was emitted. */ static bool tcg_out_opc_jmp(TCGContext *s, MIPSInsn opc, void *target) { uintptr_t dest = (uintptr_t)target; uintptr_t from = (uintptr_t)s->code_ptr + 4; int32_t inst; /* The pc-region branch happens within the 256MB region of the delay slot (thus the +4). */ if ((from ^ dest) & -(1 << 28)) { return false; } tcg_debug_assert((dest & 3) == 0); inst = opc; inst |= (dest >> 2) & 0x3ffffff; tcg_out32(s, inst); return true; } static inline void tcg_out_nop(TCGContext *s) { tcg_out32(s, 0); } static inline void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) { /* Simple reg-reg move, optimising out the 'do nothing' case */ if (ret != arg) { tcg_out_opc_reg(s, OPC_ADDU, ret, arg, TCG_REG_ZERO); } } static inline void tcg_out_movi(TCGContext *s, TCGType type, TCGReg reg, tcg_target_long arg) { if (arg == (int16_t)arg) { tcg_out_opc_imm(s, OPC_ADDIU, reg, TCG_REG_ZERO, arg); } else if (arg == (uint16_t)arg) { tcg_out_opc_imm(s, OPC_ORI, reg, TCG_REG_ZERO, arg); } else { tcg_out_opc_imm(s, OPC_LUI, reg, TCG_REG_ZERO, arg >> 16); if (arg & 0xffff) { tcg_out_opc_imm(s, OPC_ORI, reg, reg, arg & 0xffff); } } } static inline void tcg_out_bswap16(TCGContext *s, TCGReg ret, TCGReg arg) { if (use_mips32r2_instructions) { tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg); } else { /* ret and arg can't be register at */ if (ret == TCG_TMP0 || arg == TCG_TMP0) { tcg_abort(); } tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8); tcg_out_opc_sa(s, OPC_SLL, ret, arg, 8); tcg_out_opc_imm(s, OPC_ANDI, ret, ret, 0xff00); tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); } } static inline void tcg_out_bswap16s(TCGContext *s, TCGReg ret, TCGReg arg) { if (use_mips32r2_instructions) { tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg); tcg_out_opc_reg(s, OPC_SEH, ret, 0, ret); } else { /* ret and arg can't be register at */ if (ret == TCG_TMP0 || arg == TCG_TMP0) { tcg_abort(); } tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8); tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24); tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16); tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); } } static inline void tcg_out_bswap32(TCGContext *s, TCGReg ret, TCGReg arg) { if (use_mips32r2_instructions) { tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg); tcg_out_opc_sa(s, OPC_ROTR, ret, ret, 16); } else { /* ret and arg must be different and can't be register at */ if (ret == arg || ret == TCG_TMP0 || arg == TCG_TMP0) { tcg_abort(); } tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24); tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 24); tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, arg, 0xff00); tcg_out_opc_sa(s, OPC_SLL, TCG_TMP0, TCG_TMP0, 8); tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8); tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, TCG_TMP0, 0xff00); tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); } } static inline void tcg_out_ext8s(TCGContext *s, TCGReg ret, TCGReg arg) { if (use_mips32r2_instructions) { tcg_out_opc_reg(s, OPC_SEB, ret, 0, arg); } else { tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24); tcg_out_opc_sa(s, OPC_SRA, ret, ret, 24); } } static inline void tcg_out_ext16s(TCGContext *s, TCGReg ret, TCGReg arg) { if (use_mips32r2_instructions) { tcg_out_opc_reg(s, OPC_SEH, ret, 0, arg); } else { tcg_out_opc_sa(s, OPC_SLL, ret, arg, 16); tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16); } } static void tcg_out_ldst(TCGContext *s, MIPSInsn opc, TCGReg data, TCGReg addr, intptr_t ofs) { int16_t lo = ofs; if (ofs != lo) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - lo); if (addr != TCG_REG_ZERO) { tcg_out_opc_reg(s, OPC_ADDU, TCG_TMP0, TCG_TMP0, addr); } addr = TCG_TMP0; } tcg_out_opc_imm(s, opc, data, addr, lo); } static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, intptr_t arg2) { tcg_out_ldst(s, OPC_LW, arg, arg1, arg2); } static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, intptr_t arg2) { tcg_out_ldst(s, OPC_SW, arg, arg1, arg2); } static inline void tcg_out_addi(TCGContext *s, TCGReg reg, TCGArg val) { if (val == (int16_t)val) { tcg_out_opc_imm(s, OPC_ADDIU, reg, reg, val); } else { tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, val); tcg_out_opc_reg(s, OPC_ADDU, reg, reg, TCG_TMP0); } } /* Bit 0 set if inversion required; bit 1 set if swapping required. */ #define MIPS_CMP_INV 1 #define MIPS_CMP_SWAP 2 static const uint8_t mips_cmp_map[16] = { [TCG_COND_LT] = 0, [TCG_COND_LTU] = 0, [TCG_COND_GE] = MIPS_CMP_INV, [TCG_COND_GEU] = MIPS_CMP_INV, [TCG_COND_LE] = MIPS_CMP_INV | MIPS_CMP_SWAP, [TCG_COND_LEU] = MIPS_CMP_INV | MIPS_CMP_SWAP, [TCG_COND_GT] = MIPS_CMP_SWAP, [TCG_COND_GTU] = MIPS_CMP_SWAP, }; static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg arg1, TCGReg arg2) { MIPSInsn s_opc = OPC_SLTU; int cmp_map; switch (cond) { case TCG_COND_EQ: if (arg2 != 0) { tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2); arg1 = ret; } tcg_out_opc_imm(s, OPC_SLTIU, ret, arg1, 1); break; case TCG_COND_NE: if (arg2 != 0) { tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2); arg1 = ret; } tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, arg1); break; case TCG_COND_LT: case TCG_COND_GE: case TCG_COND_LE: case TCG_COND_GT: s_opc = OPC_SLT; /* FALLTHRU */ case TCG_COND_LTU: case TCG_COND_GEU: case TCG_COND_LEU: case TCG_COND_GTU: cmp_map = mips_cmp_map[cond]; if (cmp_map & MIPS_CMP_SWAP) { TCGReg t = arg1; arg1 = arg2; arg2 = t; } tcg_out_opc_reg(s, s_opc, ret, arg1, arg2); if (cmp_map & MIPS_CMP_INV) { tcg_out_opc_imm(s, OPC_XORI, ret, ret, 1); } break; default: tcg_abort(); break; } } static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGReg arg1, TCGReg arg2, TCGLabel *l) { static const MIPSInsn b_zero[16] = { [TCG_COND_LT] = OPC_BLTZ, [TCG_COND_GT] = OPC_BGTZ, [TCG_COND_LE] = OPC_BLEZ, [TCG_COND_GE] = OPC_BGEZ, }; MIPSInsn s_opc = OPC_SLTU; MIPSInsn b_opc; int cmp_map; switch (cond) { case TCG_COND_EQ: b_opc = OPC_BEQ; break; case TCG_COND_NE: b_opc = OPC_BNE; break; case TCG_COND_LT: case TCG_COND_GT: case TCG_COND_LE: case TCG_COND_GE: if (arg2 == 0) { b_opc = b_zero[cond]; arg2 = arg1; arg1 = 0; break; } s_opc = OPC_SLT; /* FALLTHRU */ case TCG_COND_LTU: case TCG_COND_GTU: case TCG_COND_LEU: case TCG_COND_GEU: cmp_map = mips_cmp_map[cond]; if (cmp_map & MIPS_CMP_SWAP) { TCGReg t = arg1; arg1 = arg2; arg2 = t; } tcg_out_opc_reg(s, s_opc, TCG_TMP0, arg1, arg2); b_opc = (cmp_map & MIPS_CMP_INV ? OPC_BEQ : OPC_BNE); arg1 = TCG_TMP0; arg2 = TCG_REG_ZERO; break; default: tcg_abort(); break; } tcg_out_opc_br(s, b_opc, arg1, arg2); if (l->has_value) { reloc_pc16(s->code_ptr - 1, l->u.value_ptr); } else { tcg_out_reloc(s, s->code_ptr - 1, R_MIPS_PC16, l, 0); } tcg_out_nop(s); } static TCGReg tcg_out_reduce_eq2(TCGContext *s, TCGReg tmp0, TCGReg tmp1, TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh) { /* Merge highpart comparison into AH. */ if (bh != 0) { if (ah != 0) { tcg_out_opc_reg(s, OPC_XOR, tmp0, ah, bh); ah = tmp0; } else { ah = bh; } } /* Merge lowpart comparison into AL. */ if (bl != 0) { if (al != 0) { tcg_out_opc_reg(s, OPC_XOR, tmp1, al, bl); al = tmp1; } else { al = bl; } } /* Merge high and low part comparisons into AL. */ if (ah != 0) { if (al != 0) { tcg_out_opc_reg(s, OPC_OR, tmp0, ah, al); al = tmp0; } else { al = ah; } } return al; } static void tcg_out_setcond2(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh) { TCGReg tmp0 = TCG_TMP0; TCGReg tmp1 = ret; tcg_debug_assert(ret != TCG_TMP0); if (ret == ah || ret == bh) { tcg_debug_assert(ret != TCG_TMP1); tmp1 = TCG_TMP1; } switch (cond) { case TCG_COND_EQ: case TCG_COND_NE: tmp1 = tcg_out_reduce_eq2(s, tmp0, tmp1, al, ah, bl, bh); tcg_out_setcond(s, cond, ret, tmp1, TCG_REG_ZERO); break; default: tcg_out_setcond(s, TCG_COND_EQ, tmp0, ah, bh); tcg_out_setcond(s, tcg_unsigned_cond(cond), tmp1, al, bl); tcg_out_opc_reg(s, OPC_AND, tmp1, tmp1, tmp0); tcg_out_setcond(s, tcg_high_cond(cond), tmp0, ah, bh); tcg_out_opc_reg(s, OPC_OR, ret, tmp1, tmp0); break; } } static void tcg_out_brcond2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh, TCGLabel *l) { TCGCond b_cond = TCG_COND_NE; TCGReg tmp = TCG_TMP1; /* With branches, we emit between 4 and 9 insns with 2 or 3 branches. With setcond, we emit between 3 and 10 insns and only 1 branch, which ought to get better branch prediction. */ switch (cond) { case TCG_COND_EQ: case TCG_COND_NE: b_cond = cond; tmp = tcg_out_reduce_eq2(s, TCG_TMP0, TCG_TMP1, al, ah, bl, bh); break; default: /* Minimize code size by preferring a compare not requiring INV. */ if (mips_cmp_map[cond] & MIPS_CMP_INV) { cond = tcg_invert_cond(cond); b_cond = TCG_COND_EQ; } tcg_out_setcond2(s, cond, tmp, al, ah, bl, bh); break; } tcg_out_brcond(s, b_cond, tmp, TCG_REG_ZERO, l); } static void tcg_out_movcond(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, TCGReg c2, TCGReg v1, TCGReg v2) { bool eqz = false; /* If one of the values is zero, put it last to match SEL*Z instructions */ if (use_mips32r6_instructions && v1 == 0) { v1 = v2; v2 = 0; cond = tcg_invert_cond(cond); } switch (cond) { case TCG_COND_EQ: eqz = true; /* FALLTHRU */ case TCG_COND_NE: if (c2 != 0) { tcg_out_opc_reg(s, OPC_XOR, TCG_TMP0, c1, c2); c1 = TCG_TMP0; } break; default: /* Minimize code size by preferring a compare not requiring INV. */ if (mips_cmp_map[cond] & MIPS_CMP_INV) { cond = tcg_invert_cond(cond); eqz = true; } tcg_out_setcond(s, cond, TCG_TMP0, c1, c2); c1 = TCG_TMP0; break; } if (use_mips32r6_instructions) { MIPSInsn m_opc_t = eqz ? OPC_SELEQZ : OPC_SELNEZ; MIPSInsn m_opc_f = eqz ? OPC_SELNEZ : OPC_SELEQZ; if (v2 != 0) { tcg_out_opc_reg(s, m_opc_f, TCG_TMP1, v2, c1); } tcg_out_opc_reg(s, m_opc_t, ret, v1, c1); if (v2 != 0) { tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP1); } } else { MIPSInsn m_opc = eqz ? OPC_MOVZ : OPC_MOVN; tcg_out_opc_reg(s, m_opc, ret, v1, c1); /* This should be guaranteed via constraints */ tcg_debug_assert(v2 == ret); } } static void tcg_out_call_int(TCGContext *s, tcg_insn_unit *arg, bool tail) { /* Note that the ABI requires the called function's address to be loaded into T9, even if a direct branch is in range. */ tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T9, (uintptr_t)arg); /* But do try a direct branch, allowing the cpu better insn prefetch. */ if (tail) { if (!tcg_out_opc_jmp(s, OPC_J, arg)) { tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_T9, 0); } } else { if (!tcg_out_opc_jmp(s, OPC_JAL, arg)) { tcg_out_opc_reg(s, OPC_JALR, TCG_REG_RA, TCG_REG_T9, 0); } } } static void tcg_out_call(TCGContext *s, tcg_insn_unit *arg) { tcg_out_call_int(s, arg, false); tcg_out_nop(s); } #if defined(CONFIG_SOFTMMU) static void * const qemu_ld_helpers[16] = { [MO_UB] = helper_ret_ldub_mmu, [MO_SB] = helper_ret_ldsb_mmu, [MO_LEUW] = helper_le_lduw_mmu, [MO_LESW] = helper_le_ldsw_mmu, [MO_LEUL] = helper_le_ldul_mmu, [MO_LEQ] = helper_le_ldq_mmu, [MO_BEUW] = helper_be_lduw_mmu, [MO_BESW] = helper_be_ldsw_mmu, [MO_BEUL] = helper_be_ldul_mmu, [MO_BEQ] = helper_be_ldq_mmu, }; static void * const qemu_st_helpers[16] = { [MO_UB] = helper_ret_stb_mmu, [MO_LEUW] = helper_le_stw_mmu, [MO_LEUL] = helper_le_stl_mmu, [MO_LEQ] = helper_le_stq_mmu, [MO_BEUW] = helper_be_stw_mmu, [MO_BEUL] = helper_be_stl_mmu, [MO_BEQ] = helper_be_stq_mmu, }; /* Helper routines for marshalling helper function arguments into * the correct registers and stack. * I is where we want to put this argument, and is updated and returned * for the next call. ARG is the argument itself. * * We provide routines for arguments which are: immediate, 32 bit * value in register, 16 and 8 bit values in register (which must be zero * extended before use) and 64 bit value in a lo:hi register pair. */ static int tcg_out_call_iarg_reg(TCGContext *s, int i, TCGReg arg) { if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) { tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[i], arg); } else { tcg_out_st(s, TCG_TYPE_REG, arg, TCG_REG_SP, 4 * i); } return i + 1; } static int tcg_out_call_iarg_reg8(TCGContext *s, int i, TCGReg arg) { TCGReg tmp = TCG_TMP0; if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) { tmp = tcg_target_call_iarg_regs[i]; } tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xff); return tcg_out_call_iarg_reg(s, i, tmp); } static int tcg_out_call_iarg_reg16(TCGContext *s, int i, TCGReg arg) { TCGReg tmp = TCG_TMP0; if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) { tmp = tcg_target_call_iarg_regs[i]; } tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xffff); return tcg_out_call_iarg_reg(s, i, tmp); } static int tcg_out_call_iarg_imm(TCGContext *s, int i, TCGArg arg) { TCGReg tmp = TCG_TMP0; if (arg == 0) { tmp = TCG_REG_ZERO; } else { if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) { tmp = tcg_target_call_iarg_regs[i]; } tcg_out_movi(s, TCG_TYPE_REG, tmp, arg); } return tcg_out_call_iarg_reg(s, i, tmp); } static int tcg_out_call_iarg_reg2(TCGContext *s, int i, TCGReg al, TCGReg ah) { i = (i + 1) & ~1; i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? ah : al)); i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? al : ah)); return i; } /* Perform the tlb comparison operation. The complete host address is placed in BASE. Clobbers AT, T0, A0. */ static void tcg_out_tlb_load(TCGContext *s, TCGReg base, TCGReg addrl, TCGReg addrh, TCGMemOpIdx oi, tcg_insn_unit *label_ptr[2], bool is_load) { TCGMemOp s_bits = get_memop(oi) & MO_SIZE; int mem_index = get_mmuidx(oi); int cmp_off = (is_load ? offsetof(CPUArchState, tlb_table[mem_index][0].addr_read) : offsetof(CPUArchState, tlb_table[mem_index][0].addr_write)); int add_off = offsetof(CPUArchState, tlb_table[mem_index][0].addend); tcg_out_opc_sa(s, OPC_SRL, TCG_REG_A0, addrl, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); tcg_out_opc_imm(s, OPC_ANDI, TCG_REG_A0, TCG_REG_A0, (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS); tcg_out_opc_reg(s, OPC_ADDU, TCG_REG_A0, TCG_REG_A0, TCG_AREG0); /* Compensate for very large offsets. */ if (add_off >= 0x8000) { /* Most target env are smaller than 32k; none are larger than 64k. Simplify the logic here merely to offset by 0x7ff0, giving us a range just shy of 64k. Check this assumption. */ QEMU_BUILD_BUG_ON(offsetof(CPUArchState, tlb_table[NB_MMU_MODES - 1][1]) > 0x7ff0 + 0x7fff); tcg_out_opc_imm(s, OPC_ADDIU, TCG_REG_A0, TCG_REG_A0, 0x7ff0); cmp_off -= 0x7ff0; add_off -= 0x7ff0; } /* Load the (low half) tlb comparator. */ tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, TCG_REG_A0, cmp_off + (TARGET_LONG_BITS == 64 ? LO_OFF : 0)); /* Mask the page bits, keeping the alignment bits to compare against. In between on 32-bit targets, load the tlb addend for the fast path. */ tcg_out_movi(s, TCG_TYPE_I32, TCG_TMP1, TARGET_PAGE_MASK | ((1 << s_bits) - 1)); if (TARGET_LONG_BITS == 32) { tcg_out_opc_imm(s, OPC_LW, TCG_REG_A0, TCG_REG_A0, add_off); } tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, addrl); label_ptr[0] = s->code_ptr; tcg_out_opc_br(s, OPC_BNE, TCG_TMP1, TCG_TMP0); /* Load and test the high half tlb comparator. */ if (TARGET_LONG_BITS == 64) { /* delay slot */ tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, TCG_REG_A0, cmp_off + HI_OFF); /* Load the tlb addend for the fast path. We can't do it earlier with 64-bit targets or we'll clobber a0 before reading the high half tlb comparator. */ tcg_out_opc_imm(s, OPC_LW, TCG_REG_A0, TCG_REG_A0, add_off); label_ptr[1] = s->code_ptr; tcg_out_opc_br(s, OPC_BNE, addrh, TCG_TMP0); } /* delay slot */ tcg_out_opc_reg(s, OPC_ADDU, base, TCG_REG_A0, addrl); } static void add_qemu_ldst_label(TCGContext *s, int is_ld, TCGMemOpIdx oi, TCGReg datalo, TCGReg datahi, TCGReg addrlo, TCGReg addrhi, void *raddr, tcg_insn_unit *label_ptr[2]) { TCGLabelQemuLdst *label = new_ldst_label(s); label->is_ld = is_ld; label->oi = oi; label->datalo_reg = datalo; label->datahi_reg = datahi; label->addrlo_reg = addrlo; label->addrhi_reg = addrhi; label->raddr = raddr; label->label_ptr[0] = label_ptr[0]; if (TARGET_LONG_BITS == 64) { label->label_ptr[1] = label_ptr[1]; } } static void tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) { TCGMemOpIdx oi = lb->oi; TCGMemOp opc = get_memop(oi); TCGReg v0; int i; /* resolve label address */ reloc_pc16(l->label_ptr[0], s->code_ptr); if (TARGET_LONG_BITS == 64) { reloc_pc16(l->label_ptr[1], s->code_ptr); } i = 1; if (TARGET_LONG_BITS == 64) { i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg); } else { i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg); } i = tcg_out_call_iarg_imm(s, i, oi); i = tcg_out_call_iarg_imm(s, i, (intptr_t)l->raddr); tcg_out_call_int(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SSIZE)], false); /* delay slot */ tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0); v0 = l->datalo_reg; if ((opc & MO_SIZE) == MO_64) { /* We eliminated V0 from the possible output registers, so it cannot be clobbered here. So we must move V1 first. */ if (MIPS_BE) { tcg_out_mov(s, TCG_TYPE_I32, v0, TCG_REG_V1); v0 = l->datahi_reg; } else { tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_V1); } } reloc_pc16(s->code_ptr, l->raddr); tcg_out_opc_br(s, OPC_BEQ, TCG_REG_ZERO, TCG_REG_ZERO); /* delay slot */ tcg_out_mov(s, TCG_TYPE_REG, v0, TCG_REG_V0); } static void tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) { TCGMemOpIdx oi = lb->oi; TCGMemOp opc = get_memop(oi); TCGMemOp s_bits = opc & MO_SIZE; int i; /* resolve label address */ reloc_pc16(l->label_ptr[0], s->code_ptr); if (TARGET_LONG_BITS == 64) { reloc_pc16(l->label_ptr[1], s->code_ptr); } i = 1; if (TARGET_LONG_BITS == 64) { i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg); } else { i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg); } switch (s_bits) { case MO_8: i = tcg_out_call_iarg_reg8(s, i, l->datalo_reg); break; case MO_16: i = tcg_out_call_iarg_reg16(s, i, l->datalo_reg); break; case MO_32: i = tcg_out_call_iarg_reg(s, i, l->datalo_reg); break; case MO_64: i = tcg_out_call_iarg_reg2(s, i, l->datalo_reg, l->datahi_reg); break; default: tcg_abort(); } i = tcg_out_call_iarg_imm(s, i, oi); /* Tail call to the store helper. Thus force the return address computation to take place in the return address register. */ tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_RA, (intptr_t)l->raddr); i = tcg_out_call_iarg_reg(s, i, TCG_REG_RA); tcg_out_call_int(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)], true); /* delay slot */ tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0); } #endif static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, TCGReg base, TCGMemOp opc) { switch (opc & (MO_SSIZE | MO_BSWAP)) { case MO_UB: tcg_out_opc_imm(s, OPC_LBU, datalo, base, 0); break; case MO_SB: tcg_out_opc_imm(s, OPC_LB, datalo, base, 0); break; case MO_UW | MO_BSWAP: tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0); tcg_out_bswap16(s, datalo, TCG_TMP1); break; case MO_UW: tcg_out_opc_imm(s, OPC_LHU, datalo, base, 0); break; case MO_SW | MO_BSWAP: tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0); tcg_out_bswap16s(s, datalo, TCG_TMP1); break; case MO_SW: tcg_out_opc_imm(s, OPC_LH, datalo, base, 0); break; case MO_UL | MO_BSWAP: tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, 0); tcg_out_bswap32(s, datalo, TCG_TMP1); break; case MO_UL: tcg_out_opc_imm(s, OPC_LW, datalo, base, 0); break; case MO_Q | MO_BSWAP: tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, HI_OFF); tcg_out_bswap32(s, datalo, TCG_TMP1); tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, LO_OFF); tcg_out_bswap32(s, datahi, TCG_TMP1); break; case MO_Q: tcg_out_opc_imm(s, OPC_LW, datalo, base, LO_OFF); tcg_out_opc_imm(s, OPC_LW, datahi, base, HI_OFF); break; default: tcg_abort(); } } static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64) { TCGReg addr_regl, addr_regh QEMU_UNUSED_VAR; TCGReg data_regl, data_regh; TCGMemOpIdx oi; TCGMemOp opc; #if defined(CONFIG_SOFTMMU) tcg_insn_unit *label_ptr[2]; #endif /* Note that we've eliminated V0 from the output registers, so we won't overwrite the base register during loading. */ TCGReg base = TCG_REG_V0; data_regl = *args++; data_regh = (is_64 ? *args++ : 0); addr_regl = *args++; addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0); oi = *args++; opc = get_memop(oi); #if defined(CONFIG_SOFTMMU) tcg_out_tlb_load(s, base, addr_regl, addr_regh, oi, label_ptr, 1); tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc); add_qemu_ldst_label(s, 1, oi, data_regl, data_regh, addr_regl, addr_regh, s->code_ptr, label_ptr); #else if (GUEST_BASE == 0 && data_regl != addr_regl) { base = addr_regl; } else if (GUEST_BASE == (int16_t)GUEST_BASE) { tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, GUEST_BASE); } else { tcg_out_movi(s, TCG_TYPE_PTR, base, GUEST_BASE); tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl); } tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc); #endif } static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, TCGReg base, TCGMemOp opc) { switch (opc & (MO_SIZE | MO_BSWAP)) { case MO_8: tcg_out_opc_imm(s, OPC_SB, datalo, base, 0); break; case MO_16 | MO_BSWAP: tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, datalo, 0xffff); tcg_out_bswap16(s, TCG_TMP1, TCG_TMP1); datalo = TCG_TMP1; /* FALLTHRU */ case MO_16: tcg_out_opc_imm(s, OPC_SH, datalo, base, 0); break; case MO_32 | MO_BSWAP: tcg_out_bswap32(s, TCG_TMP1, datalo); datalo = TCG_TMP1; /* FALLTHRU */ case MO_32: tcg_out_opc_imm(s, OPC_SW, datalo, base, 0); break; case MO_64 | MO_BSWAP: tcg_out_bswap32(s, TCG_TMP1, datalo); tcg_out_opc_imm(s, OPC_SW, TCG_TMP1, base, HI_OFF); tcg_out_bswap32(s, TCG_TMP1, datahi); tcg_out_opc_imm(s, OPC_SW, TCG_TMP1, base, LO_OFF); break; case MO_64: tcg_out_opc_imm(s, OPC_SW, datalo, base, LO_OFF); tcg_out_opc_imm(s, OPC_SW, datahi, base, HI_OFF); break; default: tcg_abort(); } } static void tcg_out_addsub2(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al, TCGReg ah, TCGArg bl, TCGArg bh, bool cbl, bool cbh, bool is_sub) { TCGReg th = TCG_TMP1; /* If we have a negative constant such that negating it would make the high part zero, we can (usually) eliminate one insn. */ if (cbl && cbh && bh == -1 && bl != 0) { bl = -bl; bh = 0; is_sub = !is_sub; } /* By operating on the high part first, we get to use the final carry operation to move back from the temporary. */ if (!cbh) { tcg_out_opc_reg(s, (is_sub ? OPC_SUBU : OPC_ADDU), th, ah, bh); } else if (bh != 0 || ah == rl) { tcg_out_opc_imm(s, OPC_ADDIU, th, ah, (is_sub ? -bh : bh)); } else { th = ah; } /* Note that tcg optimization should eliminate the bl == 0 case. */ if (is_sub) { if (cbl) { tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, al, bl); tcg_out_opc_imm(s, OPC_ADDIU, rl, al, -bl); } else { tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, al, bl); tcg_out_opc_reg(s, OPC_SUBU, rl, al, bl); } tcg_out_opc_reg(s, OPC_SUBU, rh, th, TCG_TMP0); } else { if (cbl) { tcg_out_opc_imm(s, OPC_ADDIU, rl, al, bl); tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, rl, bl); } else if (rl == al && rl == bl) { tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, al, 31); tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl); } else { tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl); tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, rl, (rl == bl ? al : bl)); } tcg_out_opc_reg(s, OPC_ADDU, rh, th, TCG_TMP0); } } static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64) { TCGReg addr_regl, addr_regh QEMU_UNUSED_VAR; TCGReg data_regl, data_regh, base; TCGMemOpIdx oi; TCGMemOp opc; #if defined(CONFIG_SOFTMMU) tcg_insn_unit *label_ptr[2]; #endif data_regl = *args++; data_regh = (is_64 ? *args++ : 0); addr_regl = *args++; addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0); oi = *args++; opc = get_memop(oi); #if defined(CONFIG_SOFTMMU) /* Note that we eliminated the helper's address argument, so we can reuse that for the base. */ base = (TARGET_LONG_BITS == 32 ? TCG_REG_A1 : TCG_REG_A2); tcg_out_tlb_load(s, base, addr_regl, addr_regh, oi, label_ptr, 0); tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc); add_qemu_ldst_label(s, 0, oi, data_regl, data_regh, addr_regl, addr_regh, s->code_ptr, label_ptr); #else if (GUEST_BASE == 0) { base = addr_regl; } else { base = TCG_REG_A0; if (GUEST_BASE == (int16_t)GUEST_BASE) { tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, GUEST_BASE); } else { tcg_out_movi(s, TCG_TYPE_PTR, base, GUEST_BASE); tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl); } } tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc); #endif } static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, const int *const_args) { MIPSInsn i1, i2; TCGArg a0, a1, a2; int c2; a0 = args[0]; a1 = args[1]; a2 = args[2]; c2 = const_args[2]; switch (opc) { case INDEX_op_exit_tb: { TCGReg b0 = TCG_REG_ZERO; if (a0 & ~0xffff) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_V0, a0 & ~0xffff); b0 = TCG_REG_V0; } if (!tcg_out_opc_jmp(s, OPC_J, tb_ret_addr)) { tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)tb_ret_addr); tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0); } tcg_out_opc_imm(s, OPC_ORI, TCG_REG_V0, b0, a0 & 0xffff); } break; case INDEX_op_goto_tb: if (s->tb_jmp_insn_offset) { /* direct jump method */ s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s); /* Avoid clobbering the address during retranslation. */ tcg_out32(s, OPC_J | (*(uint32_t *)s->code_ptr & 0x3ffffff)); } else { /* indirect jump method */ tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP0, TCG_REG_ZERO, (uintptr_t)(s->tb_jmp_target_addr + a0)); tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0); } tcg_out_nop(s); s->tb_jmp_reset_offset[a0] = tcg_current_code_size(s); break; case INDEX_op_br: tcg_out_brcond(s, TCG_COND_EQ, TCG_REG_ZERO, TCG_REG_ZERO, arg_label(s, a0)); break; case INDEX_op_ld8u_i32: i1 = OPC_LBU; goto do_ldst; case INDEX_op_ld8s_i32: i1 = OPC_LB; goto do_ldst; case INDEX_op_ld16u_i32: i1 = OPC_LHU; goto do_ldst; case INDEX_op_ld16s_i32: i1 = OPC_LH; goto do_ldst; case INDEX_op_ld_i32: i1 = OPC_LW; goto do_ldst; case INDEX_op_st8_i32: i1 = OPC_SB; goto do_ldst; case INDEX_op_st16_i32: i1 = OPC_SH; goto do_ldst; case INDEX_op_st_i32: i1 = OPC_SW; do_ldst: tcg_out_ldst(s, i1, a0, a1, a2); break; case INDEX_op_add_i32: i1 = OPC_ADDU, i2 = OPC_ADDIU; goto do_binary; case INDEX_op_or_i32: i1 = OPC_OR, i2 = OPC_ORI; goto do_binary; case INDEX_op_xor_i32: i1 = OPC_XOR, i2 = OPC_XORI; do_binary: if (c2) { tcg_out_opc_imm(s, i2, a0, a1, a2); break; } do_binaryv: tcg_out_opc_reg(s, i1, a0, a1, a2); break; case INDEX_op_sub_i32: if (c2) { tcg_out_opc_imm(s, OPC_ADDIU, a0, a1, -a2); break; } i1 = OPC_SUBU; goto do_binary; case INDEX_op_and_i32: if (c2 && a2 != (uint16_t)a2) { int msb = ctz32(~a2) - 1; tcg_debug_assert(use_mips32r2_instructions); tcg_debug_assert(is_p2m1(a2)); tcg_out_opc_bf(s, OPC_EXT, a0, a1, msb, 0); break; } i1 = OPC_AND, i2 = OPC_ANDI; goto do_binary; case INDEX_op_nor_i32: i1 = OPC_NOR; goto do_binaryv; case INDEX_op_mul_i32: if (use_mips32_instructions) { tcg_out_opc_reg(s, OPC_MUL, a0, a1, a2); break; } i1 = OPC_MULT, i2 = OPC_MFLO; goto do_hilo1; case INDEX_op_mulsh_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_MUH, a0, a1, a2); break; } i1 = OPC_MULT, i2 = OPC_MFHI; goto do_hilo1; case INDEX_op_muluh_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_MUHU, a0, a1, a2); break; } i1 = OPC_MULTU, i2 = OPC_MFHI; goto do_hilo1; case INDEX_op_div_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_DIV_R6, a0, a1, a2); break; } i1 = OPC_DIV, i2 = OPC_MFLO; goto do_hilo1; case INDEX_op_divu_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_DIVU_R6, a0, a1, a2); break; } i1 = OPC_DIVU, i2 = OPC_MFLO; goto do_hilo1; case INDEX_op_rem_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_MOD, a0, a1, a2); break; } i1 = OPC_DIV, i2 = OPC_MFHI; goto do_hilo1; case INDEX_op_remu_i32: if (use_mips32r6_instructions) { tcg_out_opc_reg(s, OPC_MODU, a0, a1, a2); break; } i1 = OPC_DIVU, i2 = OPC_MFHI; do_hilo1: tcg_out_opc_reg(s, i1, 0, a1, a2); tcg_out_opc_reg(s, i2, a0, 0, 0); break; case INDEX_op_muls2_i32: i1 = OPC_MULT; goto do_hilo2; case INDEX_op_mulu2_i32: i1 = OPC_MULTU; do_hilo2: tcg_out_opc_reg(s, i1, 0, a2, args[3]); tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0); tcg_out_opc_reg(s, OPC_MFHI, a1, 0, 0); break; case INDEX_op_not_i32: i1 = OPC_NOR; goto do_unary; case INDEX_op_bswap16_i32: i1 = OPC_WSBH; goto do_unary; case INDEX_op_ext8s_i32: i1 = OPC_SEB; goto do_unary; case INDEX_op_ext16s_i32: i1 = OPC_SEH; do_unary: tcg_out_opc_reg(s, i1, a0, TCG_REG_ZERO, a1); break; case INDEX_op_sar_i32: i1 = OPC_SRAV, i2 = OPC_SRA; goto do_shift; case INDEX_op_shl_i32: i1 = OPC_SLLV, i2 = OPC_SLL; goto do_shift; case INDEX_op_shr_i32: i1 = OPC_SRLV, i2 = OPC_SRL; goto do_shift; case INDEX_op_rotr_i32: i1 = OPC_ROTRV, i2 = OPC_ROTR; do_shift: if (c2) { tcg_out_opc_sa(s, i2, a0, a1, a2); } else { tcg_out_opc_reg(s, i1, a0, a2, a1); } break; case INDEX_op_rotl_i32: if (c2) { tcg_out_opc_sa(s, OPC_ROTR, a0, a1, 32 - a2); } else { tcg_out_opc_reg(s, OPC_SUBU, TCG_TMP0, TCG_REG_ZERO, a2); tcg_out_opc_reg(s, OPC_ROTRV, a0, TCG_TMP0, a1); } break; case INDEX_op_bswap32_i32: tcg_out_opc_reg(s, OPC_WSBH, a0, 0, a1); tcg_out_opc_sa(s, OPC_ROTR, a0, a0, 16); break; case INDEX_op_deposit_i32: tcg_out_opc_bf(s, OPC_INS, a0, a2, args[3] + args[4] - 1, args[3]); break; case INDEX_op_brcond_i32: tcg_out_brcond(s, a2, a0, a1, arg_label(s, args[3])); break; case INDEX_op_brcond2_i32: tcg_out_brcond2(s, args[4], a0, a1, a2, args[3], arg_label(s, args[5])); break; case INDEX_op_movcond_i32: tcg_out_movcond(s, args[5], a0, a1, a2, args[3], args[4]); break; case INDEX_op_setcond_i32: tcg_out_setcond(s, args[3], a0, a1, a2); break; case INDEX_op_setcond2_i32: tcg_out_setcond2(s, args[5], a0, a1, a2, args[3], args[4]); break; case INDEX_op_qemu_ld_i32: tcg_out_qemu_ld(s, args, false); break; case INDEX_op_qemu_ld_i64: tcg_out_qemu_ld(s, args, true); break; case INDEX_op_qemu_st_i32: tcg_out_qemu_st(s, args, false); break; case INDEX_op_qemu_st_i64: tcg_out_qemu_st(s, args, true); break; case INDEX_op_add2_i32: tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], const_args[4], const_args[5], false); break; case INDEX_op_sub2_i32: tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], const_args[4], const_args[5], true); break; case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */ case INDEX_op_call: /* Always emitted via tcg_out_call. */ default: tcg_abort(); } } static const TCGTargetOpDef mips_op_defs[] = { { INDEX_op_exit_tb, { } }, { INDEX_op_goto_tb, { } }, { INDEX_op_br, { } }, { INDEX_op_ld8u_i32, { "r", "r" } }, { INDEX_op_ld8s_i32, { "r", "r" } }, { INDEX_op_ld16u_i32, { "r", "r" } }, { INDEX_op_ld16s_i32, { "r", "r" } }, { INDEX_op_ld_i32, { "r", "r" } }, { INDEX_op_st8_i32, { "rZ", "r" } }, { INDEX_op_st16_i32, { "rZ", "r" } }, { INDEX_op_st_i32, { "rZ", "r" } }, { INDEX_op_add_i32, { "r", "rZ", "rJ" } }, { INDEX_op_mul_i32, { "r", "rZ", "rZ" } }, #if !use_mips32r6_instructions { INDEX_op_muls2_i32, { "r", "r", "rZ", "rZ" } }, { INDEX_op_mulu2_i32, { "r", "r", "rZ", "rZ" } }, #endif { INDEX_op_mulsh_i32, { "r", "rZ", "rZ" } }, { INDEX_op_muluh_i32, { "r", "rZ", "rZ" } }, { INDEX_op_div_i32, { "r", "rZ", "rZ" } }, { INDEX_op_divu_i32, { "r", "rZ", "rZ" } }, { INDEX_op_rem_i32, { "r", "rZ", "rZ" } }, { INDEX_op_remu_i32, { "r", "rZ", "rZ" } }, { INDEX_op_sub_i32, { "r", "rZ", "rN" } }, { INDEX_op_and_i32, { "r", "rZ", "rIK" } }, { INDEX_op_nor_i32, { "r", "rZ", "rZ" } }, { INDEX_op_not_i32, { "r", "rZ" } }, { INDEX_op_or_i32, { "r", "rZ", "rIZ" } }, { INDEX_op_xor_i32, { "r", "rZ", "rIZ" } }, { INDEX_op_shl_i32, { "r", "rZ", "ri" } }, { INDEX_op_shr_i32, { "r", "rZ", "ri" } }, { INDEX_op_sar_i32, { "r", "rZ", "ri" } }, { INDEX_op_rotr_i32, { "r", "rZ", "ri" } }, { INDEX_op_rotl_i32, { "r", "rZ", "ri" } }, { INDEX_op_bswap16_i32, { "r", "r" } }, { INDEX_op_bswap32_i32, { "r", "r" } }, { INDEX_op_ext8s_i32, { "r", "rZ" } }, { INDEX_op_ext16s_i32, { "r", "rZ" } }, { INDEX_op_deposit_i32, { "r", "0", "rZ" } }, { INDEX_op_brcond_i32, { "rZ", "rZ" } }, #if use_mips32r6_instructions { INDEX_op_movcond_i32, { "r", "rZ", "rZ", "rZ", "rZ" } }, #else { INDEX_op_movcond_i32, { "r", "rZ", "rZ", "rZ", "0" } }, #endif { INDEX_op_setcond_i32, { "r", "rZ", "rZ" } }, { INDEX_op_setcond2_i32, { "r", "rZ", "rZ", "rZ", "rZ" } }, { INDEX_op_add2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } }, { INDEX_op_sub2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } }, { INDEX_op_brcond2_i32, { "rZ", "rZ", "rZ", "rZ" } }, #if TARGET_LONG_BITS == 32 { INDEX_op_qemu_ld_i32, { "L", "lZ" } }, { INDEX_op_qemu_st_i32, { "SZ", "SZ" } }, { INDEX_op_qemu_ld_i64, { "L", "L", "lZ" } }, { INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ" } }, #else { INDEX_op_qemu_ld_i32, { "L", "lZ", "lZ" } }, { INDEX_op_qemu_st_i32, { "SZ", "SZ", "SZ" } }, { INDEX_op_qemu_ld_i64, { "L", "L", "lZ", "lZ" } }, { INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ", "SZ" } }, #endif { -1 }, }; static int tcg_target_callee_save_regs[] = { TCG_REG_S0, /* used for the global env (TCG_AREG0) */ TCG_REG_S1, TCG_REG_S2, TCG_REG_S3, TCG_REG_S4, TCG_REG_S5, TCG_REG_S6, TCG_REG_S7, TCG_REG_S8, TCG_REG_RA, /* should be last for ABI compliance */ }; /* The Linux kernel doesn't provide any information about the available instruction set. Probe it using a signal handler. */ #include #ifndef use_movnz_instructions bool use_movnz_instructions = false; #endif #ifndef use_mips32_instructions bool use_mips32_instructions = false; #endif #ifndef use_mips32r2_instructions bool use_mips32r2_instructions = false; #endif static volatile sig_atomic_t got_sigill; static void sigill_handler(int signo, siginfo_t *si, void *data) { /* Skip the faulty instruction */ ucontext_t *uc = (ucontext_t *)data; uc->uc_mcontext.pc += 4; got_sigill = 1; } static void tcg_target_detect_isa(void) { struct sigaction sa_old, sa_new; memset(&sa_new, 0, sizeof(sa_new)); sa_new.sa_flags = SA_SIGINFO; sa_new.sa_sigaction = sigill_handler; sigaction(SIGILL, &sa_new, &sa_old); /* Probe for movn/movz, necessary to implement movcond. */ #ifndef use_movnz_instructions got_sigill = 0; asm volatile(".set push\n" ".set mips32\n" "movn $zero, $zero, $zero\n" "movz $zero, $zero, $zero\n" ".set pop\n" : : : ); use_movnz_instructions = !got_sigill; #endif /* Probe for MIPS32 instructions. As no subsetting is allowed by the specification, it is only necessary to probe for one of the instructions. */ #ifndef use_mips32_instructions got_sigill = 0; asm volatile(".set push\n" ".set mips32\n" "mul $zero, $zero\n" ".set pop\n" : : : ); use_mips32_instructions = !got_sigill; #endif /* Probe for MIPS32r2 instructions if MIPS32 instructions are available. As no subsetting is allowed by the specification, it is only necessary to probe for one of the instructions. */ #ifndef use_mips32r2_instructions if (use_mips32_instructions) { got_sigill = 0; asm volatile(".set push\n" ".set mips32r2\n" "seb $zero, $zero\n" ".set pop\n" : : : ); use_mips32r2_instructions = !got_sigill; } #endif sigaction(SIGILL, &sa_old, NULL); } /* Generate global QEMU prologue and epilogue code */ static void tcg_target_qemu_prologue(TCGContext *s) { int i, frame_size; /* reserve some stack space, also for TCG temps. */ frame_size = ARRAY_SIZE(tcg_target_callee_save_regs) * 4 + TCG_STATIC_CALL_ARGS_SIZE + CPU_TEMP_BUF_NLONGS * sizeof(long); frame_size = (frame_size + TCG_TARGET_STACK_ALIGN - 1) & ~(TCG_TARGET_STACK_ALIGN - 1); tcg_set_frame(s, TCG_REG_SP, ARRAY_SIZE(tcg_target_callee_save_regs) * 4 + TCG_STATIC_CALL_ARGS_SIZE, CPU_TEMP_BUF_NLONGS * sizeof(long)); /* TB prologue */ tcg_out_addi(s, TCG_REG_SP, -frame_size); for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) { tcg_out_st(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i], TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4); } /* Call generated code */ tcg_out_opc_reg(s, OPC_JR, 0, tcg_target_call_iarg_regs[1], 0); tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); tb_ret_addr = s->code_ptr; /* TB epilogue */ for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) { tcg_out_ld(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i], TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4); } tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0); tcg_out_addi(s, TCG_REG_SP, frame_size); } static void tcg_target_init(TCGContext *s) { tcg_target_detect_isa(); tcg_regset_set(s->tcg_target_available_regs[TCG_TYPE_I32], 0xffffffff); tcg_regset_set(s->tcg_target_call_clobber_regs, (1 << TCG_REG_V0) | (1 << TCG_REG_V1) | (1 << TCG_REG_A0) | (1 << TCG_REG_A1) | (1 << TCG_REG_A2) | (1 << TCG_REG_A3) | (1 << TCG_REG_T0) | (1 << TCG_REG_T1) | (1 << TCG_REG_T2) | (1 << TCG_REG_T3) | (1 << TCG_REG_T4) | (1 << TCG_REG_T5) | (1 << TCG_REG_T6) | (1 << TCG_REG_T7) | (1 << TCG_REG_T8) | (1 << TCG_REG_T9)); tcg_regset_clear(s->reserved_regs); tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO); /* zero register */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_K0); /* kernel use only */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_K1); /* kernel use only */ tcg_regset_set_reg(s->reserved_regs, TCG_TMP0); /* internal use */ tcg_regset_set_reg(s->reserved_regs, TCG_TMP1); /* internal use */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_RA); /* return address */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); /* stack pointer */ tcg_regset_set_reg(s->reserved_regs, TCG_REG_GP); /* global pointer */ tcg_add_target_add_op_defs(s, mips_op_defs); } void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { atomic_set((uint32_t *)jmp_addr, deposit32(OPC_J, 0, 26, addr >> 2)); flush_icache_range(jmp_addr, jmp_addr + 4); }