/* * m68k FPU helpers * * Copyright (c) 2006-2007 CodeSourcery * Written by Paul Brook * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "softfloat.h" /* Undefined offsets may be different on various FPU. * On 68040 they return 0.0 (floatx80_zero) */ static const floatx80 fpu_rom[128] = { make_floatx80_init(0x4000, 0xc90fdaa22168c235ULL), /* Pi */ {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, make_floatx80_init(0x3ffd, 0x9a209a84fbcff798ULL), /* Log10(2) */ make_floatx80_init(0x4000, 0xadf85458a2bb4a9aULL), /* e */ make_floatx80_init(0x3fff, 0xb8aa3b295c17f0bcULL), /* Log2(e) */ make_floatx80_init(0x3ffd, 0xde5bd8a937287195ULL), /* Log10(e) */ make_floatx80_init(0x0000, 0x0000000000000000ULL), /* Zero */ {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, make_floatx80_init(0x3ffe, 0xb17217f7d1cf79acULL), /* ln(2) */ make_floatx80_init(0x4000, 0x935d8dddaaa8ac17ULL), /* ln(10) */ make_floatx80_init(0x3fff, 0x8000000000000000ULL), /* 10^0 */ make_floatx80_init(0x4002, 0xa000000000000000ULL), /* 10^1 */ make_floatx80_init(0x4005, 0xc800000000000000ULL), /* 10^2 */ make_floatx80_init(0x400c, 0x9c40000000000000ULL), /* 10^4 */ make_floatx80_init(0x4019, 0xbebc200000000000ULL), /* 10^8 */ make_floatx80_init(0x4034, 0x8e1bc9bf04000000ULL), /* 10^16 */ make_floatx80_init(0x4069, 0x9dc5ada82b70b59eULL), /* 10^32 */ make_floatx80_init(0x40d3, 0xc2781f49ffcfa6d5ULL), /* 10^64 */ make_floatx80_init(0x41a8, 0x93ba47c980e98ce0ULL), /* 10^128 */ make_floatx80_init(0x4351, 0xaa7eebfb9df9de8eULL), /* 10^256 */ make_floatx80_init(0x46a3, 0xe319a0aea60e91c7ULL), /* 10^512 */ make_floatx80_init(0x4d48, 0xc976758681750c17ULL), /* 10^1024 */ make_floatx80_init(0x5a92, 0x9e8b3b5dc53d5de5ULL), /* 10^2048 */ make_floatx80_init(0x7525, 0xc46052028a20979bULL), /* 10^4096 */ }; int32_t HELPER(reds32)(CPUM68KState *env, FPReg *val) { return floatx80_to_int32(val->d, &env->fp_status); } float32 HELPER(redf32)(CPUM68KState *env, FPReg *val) { return floatx80_to_float32(val->d, &env->fp_status); } void HELPER(exts32)(CPUM68KState *env, FPReg *res, int32_t val) { res->d = int32_to_floatx80(val, &env->fp_status); } void HELPER(extf32)(CPUM68KState *env, FPReg *res, float32 val) { res->d = float32_to_floatx80(val, &env->fp_status); } void HELPER(extf64)(CPUM68KState *env, FPReg *res, float64 val) { res->d = float64_to_floatx80(val, &env->fp_status); } float64 HELPER(redf64)(CPUM68KState *env, FPReg *val) { return floatx80_to_float64(val->d, &env->fp_status); } void HELPER(firound)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_round_to_int(val->d, &env->fp_status); } static void m68k_restore_precision_mode(CPUM68KState *env) { switch (env->fpcr & FPCR_PREC_MASK) { case FPCR_PREC_X: /* extended */ set_floatx80_rounding_precision(80, &env->fp_status); break; case FPCR_PREC_S: /* single */ set_floatx80_rounding_precision(32, &env->fp_status); break; case FPCR_PREC_D: /* double */ set_floatx80_rounding_precision(64, &env->fp_status); break; case FPCR_PREC_U: /* undefined */ default: break; } } static void cf_restore_precision_mode(CPUM68KState *env) { if (env->fpcr & FPCR_PREC_S) { /* single */ set_floatx80_rounding_precision(32, &env->fp_status); } else { /* double */ set_floatx80_rounding_precision(64, &env->fp_status); } } static void restore_rounding_mode(CPUM68KState *env) { switch (env->fpcr & FPCR_RND_MASK) { case FPCR_RND_N: /* round to nearest */ set_float_rounding_mode(float_round_nearest_even, &env->fp_status); break; case FPCR_RND_Z: /* round to zero */ set_float_rounding_mode(float_round_to_zero, &env->fp_status); break; case FPCR_RND_M: /* round toward minus infinity */ set_float_rounding_mode(float_round_down, &env->fp_status); break; case FPCR_RND_P: /* round toward positive infinity */ set_float_rounding_mode(float_round_up, &env->fp_status); break; } } void cpu_m68k_set_fpcr(CPUM68KState *env, uint32_t val) { env->fpcr = val & 0xffff; if (m68k_feature(env, M68K_FEATURE_CF_FPU)) { cf_restore_precision_mode(env); } else { m68k_restore_precision_mode(env); } restore_rounding_mode(env); } void HELPER(fitrunc)(CPUM68KState *env, FPReg *res, FPReg *val) { int rounding_mode = get_float_rounding_mode(&env->fp_status); set_float_rounding_mode(float_round_to_zero, &env->fp_status); res->d = floatx80_round_to_int(val->d, &env->fp_status); set_float_rounding_mode(rounding_mode, &env->fp_status); } void HELPER(set_fpcr)(CPUM68KState *env, uint32_t val) { cpu_m68k_set_fpcr(env, val); } #define PREC_BEGIN(prec) \ do { \ int old; \ old = get_floatx80_rounding_precision(&env->fp_status); \ set_floatx80_rounding_precision(prec, &env->fp_status) \ #define PREC_END() \ set_floatx80_rounding_precision(old, &env->fp_status); \ } while (0) void HELPER(fsround)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(32); res->d = floatx80_round(val->d, &env->fp_status); PREC_END(); } void HELPER(fdround)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(64); res->d = floatx80_round(val->d, &env->fp_status); PREC_END(); } void HELPER(fsqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_sqrt(val->d, &env->fp_status); } void HELPER(fssqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(32); res->d = floatx80_sqrt(val->d, &env->fp_status); PREC_END(); } void HELPER(fdsqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(64); res->d = floatx80_sqrt(val->d, &env->fp_status); PREC_END(); } void HELPER(fabs)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status); } void HELPER(fsabs)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(32); res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status); PREC_END(); } void HELPER(fdabs)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(64); res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status); PREC_END(); } void HELPER(fneg)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status); } void HELPER(fsneg)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(32); res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status); PREC_END(); } void HELPER(fdneg)(CPUM68KState *env, FPReg *res, FPReg *val) { PREC_BEGIN(64); res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status); PREC_END(); } void HELPER(fadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_add(val0->d, val1->d, &env->fp_status); } void HELPER(fsadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(32); res->d = floatx80_add(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fdadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(64); res->d = floatx80_add(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); } void HELPER(fssub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(32); res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fdsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(64); res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); } void HELPER(fsmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(32); res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fdmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(64); res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fsglmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { int rounding_mode = get_float_rounding_mode(&env->fp_status); floatx80 a, b; PREC_BEGIN(32); set_float_rounding_mode(float_round_to_zero, &env->fp_status); a = floatx80_round(val0->d, &env->fp_status); b = floatx80_round(val1->d, &env->fp_status); set_float_rounding_mode(rounding_mode, &env->fp_status); res->d = floatx80_mul(a, b, &env->fp_status); PREC_END(); } void HELPER(fdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_div(val1->d, val0->d, &env->fp_status); } void HELPER(fsdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(32); res->d = floatx80_div(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fddiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { PREC_BEGIN(64); res->d = floatx80_div(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fsgldiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { int rounding_mode = get_float_rounding_mode(&env->fp_status); floatx80 a, b; PREC_BEGIN(32); set_float_rounding_mode(float_round_to_zero, &env->fp_status); a = floatx80_round(val1->d, &env->fp_status); b = floatx80_round(val0->d, &env->fp_status); set_float_rounding_mode(rounding_mode, &env->fp_status); res->d = floatx80_div(a, b, &env->fp_status); PREC_END(); } static int float_comp_to_cc(int float_compare) { switch (float_compare) { case float_relation_equal: return FPSR_CC_Z; case float_relation_less: return FPSR_CC_N; case float_relation_unordered: return FPSR_CC_A; case float_relation_greater: return 0; default: g_assert_not_reached(); } } void HELPER(fcmp)(CPUM68KState *env, FPReg *val0, FPReg *val1) { int float_compare; float_compare = floatx80_compare(val1->d, val0->d, &env->fp_status); env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | float_comp_to_cc(float_compare); } void HELPER(ftst)(CPUM68KState *env, FPReg *val) { uint32_t cc = 0; if (floatx80_is_neg(val->d)) { cc |= FPSR_CC_N; } if (floatx80_is_any_nan(val->d)) { cc |= FPSR_CC_A; } else if (floatx80_is_infinity(val->d)) { cc |= FPSR_CC_I; } else if (floatx80_is_zero(val->d)) { cc |= FPSR_CC_Z; } env->fpsr = (env->fpsr & ~FPSR_CC_MASK) | cc; } void HELPER(fconst)(CPUM68KState *env, FPReg *val, uint32_t offset) { val->d = fpu_rom[offset]; } typedef int (*float_access)(CPUM68KState *env, uint32_t addr, FPReg *fp, uintptr_t ra); static uint32_t fmovem_predec(CPUM68KState *env, uint32_t addr, uint32_t mask, float_access access) { uintptr_t ra = GETPC(); int i, size; for (i = 7; i >= 0; i--, mask <<= 1) { if (mask & 0x80) { size = access(env, addr, &env->fregs[i], ra); if ((mask & 0xff) != 0x80) { addr -= size; } } } return addr; } static uint32_t fmovem_postinc(CPUM68KState *env, uint32_t addr, uint32_t mask, float_access access) { uintptr_t ra = GETPC(); int i, size; for (i = 0; i < 8; i++, mask <<= 1) { if (mask & 0x80) { size = access(env, addr, &env->fregs[i], ra); addr += size; } } return addr; } static int cpu_ld_floatx80_ra(CPUM68KState *env, uint32_t addr, FPReg *fp, uintptr_t ra) { uint32_t high; uint64_t low; high = cpu_ldl_data_ra(env, addr, ra); low = cpu_ldq_data_ra(env, addr + 4, ra); fp->l.upper = high >> 16; fp->l.lower = low; return 12; } static int cpu_st_floatx80_ra(CPUM68KState *env, uint32_t addr, FPReg *fp, uintptr_t ra) { cpu_stl_data_ra(env, addr, fp->l.upper << 16, ra); cpu_stq_data_ra(env, addr + 4, fp->l.lower, ra); return 12; } static int cpu_ld_float64_ra(CPUM68KState *env, uint32_t addr, FPReg *fp, uintptr_t ra) { uint64_t val; val = cpu_ldq_data_ra(env, addr, ra); fp->d = float64_to_floatx80(*(float64 *)&val, &env->fp_status); return 8; } static int cpu_st_float64_ra(CPUM68KState *env, uint32_t addr, FPReg *fp, uintptr_t ra) { float64 val; val = floatx80_to_float64(fp->d, &env->fp_status); cpu_stq_data_ra(env, addr, *(uint64_t *)&val, ra); return 8; } uint32_t HELPER(fmovemx_st_predec)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_predec(env, addr, mask, cpu_st_floatx80_ra); } uint32_t HELPER(fmovemx_st_postinc)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_postinc(env, addr, mask, cpu_st_floatx80_ra); } uint32_t HELPER(fmovemx_ld_postinc)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_postinc(env, addr, mask, cpu_ld_floatx80_ra); } uint32_t HELPER(fmovemd_st_predec)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_predec(env, addr, mask, cpu_st_float64_ra); } uint32_t HELPER(fmovemd_st_postinc)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_postinc(env, addr, mask, cpu_st_float64_ra); } uint32_t HELPER(fmovemd_ld_postinc)(CPUM68KState *env, uint32_t addr, uint32_t mask) { return fmovem_postinc(env, addr, mask, cpu_ld_float64_ra); } static void make_quotient(CPUM68KState *env, floatx80 val) { int32_t quotient; int sign; if (floatx80_is_any_nan(val)) { return; } quotient = floatx80_to_int32(val, &env->fp_status); sign = quotient < 0; if (sign) { quotient = -quotient; } quotient = (sign << 7) | (quotient & 0x7f); env->fpsr = (env->fpsr & ~FPSR_QT_MASK) | (quotient << FPSR_QT_SHIFT); } void HELPER(fmod)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_mod(val1->d, val0->d, &env->fp_status); make_quotient(env, res->d); } void HELPER(frem)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_rem(val1->d, val0->d, &env->fp_status); make_quotient(env, res->d); } void HELPER(fgetexp)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_getexp(val->d, &env->fp_status); } void HELPER(fgetman)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_getman(val->d, &env->fp_status); } void HELPER(fscale)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { res->d = floatx80_scale(val1->d, val0->d, &env->fp_status); } void HELPER(flognp1)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_lognp1(val->d, &env->fp_status); } void HELPER(flogn)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_logn(val->d, &env->fp_status); } void HELPER(flog10)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_log10(val->d, &env->fp_status); } void HELPER(flog2)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_log2(val->d, &env->fp_status); } void HELPER(fetox)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_etox(val->d, &env->fp_status); } void HELPER(ftwotox)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_twotox(val->d, &env->fp_status); } void HELPER(ftentox)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_tentox(val->d, &env->fp_status); } void HELPER(ftan)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_tan(val->d, &env->fp_status); } void HELPER(fsin)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_sin(val->d, &env->fp_status); } void HELPER(fcos)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_cos(val->d, &env->fp_status); } void HELPER(fsincos)(CPUM68KState *env, FPReg *res0, FPReg *res1, FPReg *val) { floatx80 a = val->d; /* If res0 and res1 specify the same floating-point data register, * the sine result is stored in the register, and the cosine * result is discarded. */ res1->d = floatx80_cos(a, &env->fp_status); res0->d = floatx80_sin(a, &env->fp_status); } void HELPER(fatan)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_atan(val->d, &env->fp_status); } void HELPER(fasin)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_asin(val->d, &env->fp_status); } void HELPER(facos)(CPUM68KState *env, FPReg *res, FPReg *val) { res->d = floatx80_acos(val->d, &env->fp_status); }