/* * Physical memory management * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ /* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "qapi/error.h" #include "exec/exec-all.h" #include "exec/memory.h" #include "exec/address-spaces.h" #include "exec/ioport.h" #include "qapi/visitor.h" #include "qemu/bitops.h" #include "qom/object.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "sysemu/sysemu.h" //#define DEBUG_UNASSIGNED #define RAM_ADDR_INVALID (~(ram_addr_t)0) // Unicorn engine MemoryRegion *memory_map(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms) { MemoryRegion *ram = g_new(MemoryRegion, 1); memory_region_init_ram_nomigrate(uc, ram, NULL, "pc.ram", size, perms, &error_abort); if (ram->ram_block == NULL) { // out of memory return NULL; } memory_region_add_subregion(get_system_memory(uc), begin, ram); if (uc->current_cpu) tlb_flush(uc->current_cpu); return ram; } MemoryRegion *memory_map_ptr(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms, void *ptr) { MemoryRegion *ram = g_new(MemoryRegion, 1); memory_region_init_ram_ptr(uc, ram, NULL, "pc.ram", size, ptr); ram->perms = perms; if (ram->ram_block == NULL) { // out of memory return NULL; } memory_region_add_subregion(get_system_memory(uc), begin, ram); if (uc->current_cpu) tlb_flush(uc->current_cpu); return ram; } static void memory_region_update_container_subregions(MemoryRegion *subregion); static void unicorn_free_memory_region(MemoryRegion *mr) { mr->destructor(mr); mr->ram_block = NULL; g_free((char *)mr->name); mr->name = NULL; Object *obj = OBJECT(mr); obj->ref = 1; obj->free = g_free; object_property_del_child(mr->uc, qdev_get_machine(mr->uc), obj, &error_abort); } void memory_unmap(struct uc_struct *uc, MemoryRegion *mr) { // Make sure all pages associated with the MemoryRegion are flushed // Only need to do this if we are in a running state if (uc->current_cpu) { for (hwaddr addr = mr->addr; addr < mr->end; addr += uc->target_page_size) { tlb_flush_page(uc->current_cpu, (target_ulong)addr); } } memory_region_del_subregion(get_system_memory(uc), mr); for (size_t i = 0; i < uc->mapped_block_count; i++) { if (uc->mapped_blocks[i] == mr) { uc->mapped_block_count--; //shift remainder of array down over deleted pointer memmove(&uc->mapped_blocks[i], &uc->mapped_blocks[i + 1], sizeof(MemoryRegion*) * (uc->mapped_block_count - i)); unicorn_free_memory_region(mr); break; } } } int memory_free(struct uc_struct *uc) { for (size_t i = 0; i < uc->mapped_block_count; i++) { MemoryRegion *mr = uc->mapped_blocks[i]; mr->enabled = false; memory_region_del_subregion(get_system_memory(uc), mr); unicorn_free_memory_region(mr); } return 0; } static void memory_init(struct uc_struct *uc) { } typedef struct AddrRange AddrRange; /* * Note that signed integers are needed for negative offsetting in aliases * (large MemoryRegion::alias_offset). */ struct AddrRange { Int128 start; Int128 size; }; static AddrRange addrrange_make(Int128 start, Int128 size) { AddrRange ar; ar.start = start; ar.size = size; return ar; } static bool addrrange_equal(AddrRange r1, AddrRange r2) { return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); } static Int128 addrrange_end(AddrRange r) { return int128_add(r.start, r.size); } static bool addrrange_contains(AddrRange range, Int128 addr) { return int128_ge(addr, range.start) && int128_lt(addr, addrrange_end(range)); } static bool addrrange_intersects(AddrRange r1, AddrRange r2) { return addrrange_contains(r1, r2.start) || addrrange_contains(r2, r1.start); } static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) { Int128 start = int128_max(r1.start, r2.start); Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); return addrrange_make(start, int128_sub(end, start)); } enum ListenerDirection { Forward, Reverse }; #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, ...) \ do { \ MemoryListener *_listener; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, &uc->memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener, ##__VA_ARGS__); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, &uc->memory_listeners, \ memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener, ##__VA_ARGS__); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, ...) \ do { \ MemoryListener *_listener; \ struct memory_listeners_as *list = &(_as)->listeners; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, list, link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section, ##__VA_ARGS__); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \ link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section, ##__VA_ARGS__); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) /* No need to ref/unref .mr, the FlatRange keeps it alive. */ #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, ...) \ do { \ MemoryRegionSection mrs = section_from_flat_range(fr, \ address_space_to_flatview(as)); \ MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##__VA_ARGS__); \ } while(0); typedef struct FlatRange FlatRange; /* Range of memory in the global map. Addresses are absolute. */ struct FlatRange { MemoryRegion *mr; hwaddr offset_in_region; AddrRange addr; uint8_t dirty_log_mask; bool readonly; bool nonvolatile; }; /* Flattened global view of current active memory hierarchy. Kept in sorted * order. */ struct FlatView { unsigned ref; FlatRange *ranges; unsigned nr; unsigned nr_allocated; struct AddressSpaceDispatch *dispatch; MemoryRegion *root; }; typedef struct AddressSpaceOps AddressSpaceOps; #define FOR_EACH_FLAT_RANGE(var, view) \ for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) static inline MemoryRegionSection section_from_flat_range(FlatRange *fr, FlatView *fv) { MemoryRegionSection s = {0}; s.mr = fr->mr; s.fv = fv; s.offset_within_region = fr->offset_in_region; s.size = fr->addr.size; s.offset_within_address_space = int128_get64(fr->addr.start); s.readonly = fr->readonly; s.nonvolatile = fr->nonvolatile; return s; } static bool flatrange_equal(FlatRange *a, FlatRange *b) { return a->mr == b->mr && addrrange_equal(a->addr, b->addr) && a->offset_in_region == b->offset_in_region && a->readonly == b->readonly && a->nonvolatile == b->nonvolatile; } static FlatView *flatview_new(MemoryRegion *mr_root) { FlatView *view; view = g_new0(FlatView, 1); view->ref = 1; view->root = mr_root; memory_region_ref(mr_root); return view; } /* Insert a range into a given position. Caller is responsible for maintaining * sorting order. */ static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) { if (view->nr == view->nr_allocated) { view->nr_allocated = MAX(2 * view->nr, 10); view->ranges = g_realloc(view->ranges, view->nr_allocated * sizeof(*view->ranges)); } memmove(view->ranges + pos + 1, view->ranges + pos, (view->nr - pos) * sizeof(FlatRange)); view->ranges[pos] = *range; memory_region_ref(range->mr); ++view->nr; } static void flatview_destroy(FlatView *view) { int i; if (view->dispatch) { address_space_dispatch_free(view->dispatch); } for (i = 0; i < view->nr; i++) { memory_region_unref(view->ranges[i].mr); } g_free(view->ranges); memory_region_unref(view->root); g_free(view); } static void flatview_ref(FlatView *view) { atomic_inc(&view->ref); } static void flatview_unref(FlatView *view) { if (atomic_fetch_dec(&view->ref) == 1) { flatview_destroy(view); } } void unicorn_free_empty_flat_view(struct uc_struct *uc) { if (!uc->empty_view) { return; } flatview_destroy(uc->empty_view); } FlatView *address_space_to_flatview(AddressSpace *as) { // Unicorn: atomic_read used instead of atomic_rcu_read return atomic_read(&as->current_map); } AddressSpaceDispatch *flatview_to_dispatch(FlatView *fv) { return fv->dispatch; } AddressSpaceDispatch *address_space_to_dispatch(AddressSpace *as) { return flatview_to_dispatch(address_space_to_flatview(as)); } static bool can_merge(FlatRange *r1, FlatRange *r2) { return int128_eq(addrrange_end(r1->addr), r2->addr.start) && r1->mr == r2->mr && int128_eq(int128_add(int128_make64(r1->offset_in_region), r1->addr.size), int128_make64(r2->offset_in_region)) && r1->dirty_log_mask == r2->dirty_log_mask && r1->readonly == r2->readonly && r1->nonvolatile == r2->nonvolatile; } /* Attempt to simplify a view by merging adjacent ranges */ static void flatview_simplify(FlatView *view) { unsigned i, j, k; i = 0; while (i < view->nr) { j = i + 1; while (j < view->nr && can_merge(&view->ranges[j-1], &view->ranges[j])) { int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); ++j; } ++i; for (k = i; k < j; k++) { memory_region_unref(view->ranges[k].mr); } memmove(&view->ranges[i], &view->ranges[j], (view->nr - j) * sizeof(view->ranges[j])); view->nr -= j - i; } } static bool memory_region_big_endian(MemoryRegion *mr) { #ifdef TARGET_WORDS_BIGENDIAN return mr->ops->endianness != DEVICE_LITTLE_ENDIAN; #else return mr->ops->endianness == DEVICE_BIG_ENDIAN; #endif } static bool memory_region_wrong_endianness(MemoryRegion *mr) { #ifdef TARGET_WORDS_BIGENDIAN return mr->ops->endianness == DEVICE_LITTLE_ENDIAN; #else return mr->ops->endianness == DEVICE_BIG_ENDIAN; #endif } static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size) { if (memory_region_wrong_endianness(mr)) { switch (size) { case 1: break; case 2: *data = bswap16(*data); break; case 4: *data = bswap32(*data); break; case 8: *data = bswap64(*data); break; default: abort(); } } } static inline void memory_region_shift_read_access(uint64_t *value, signed shift, uint64_t mask, uint64_t tmp) { if (shift >= 0) { *value |= (tmp & mask) << shift; } else { *value |= (tmp & mask) >> -shift; } } static inline uint64_t memory_region_shift_write_access(uint64_t *value, signed shift, uint64_t mask) { uint64_t tmp; if (shift >= 0) { tmp = (*value >> shift) & mask; } else { tmp = (*value << -shift) & mask; } return tmp; } static MemTxResult memory_region_read_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp; // UNICORN: Commented out //if (mr->flush_coalesced_mmio) { // qemu_flush_coalesced_mmio_buffer(); //} tmp = mr->ops->read(mr->uc, mr->opaque, addr, size); memory_region_shift_read_access(value, shift, mask, tmp); return MEMTX_OK; } static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = 0; MemTxResult r; // UNICORN: commented out //if (mr->flush_coalesced_mmio) { // qemu_flush_coalesced_mmio_buffer(); //} r = mr->ops->read_with_attrs(mr->uc, mr->opaque, addr, &tmp, size, attrs); // UNICORN: Commented out //trace_memory_region_ops_read(mr, addr, tmp, size); memory_region_shift_read_access(value, shift, mask, tmp); return r; } static MemTxResult memory_region_write_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); mr->ops->write(mr->uc, mr->opaque, addr, tmp, size); return MEMTX_OK; } static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); // UNICORN: Commented out //if (mr->flush_coalesced_mmio) { // qemu_flush_coalesced_mmio_buffer(); //} //trace_memory_region_ops_write(mr, addr, tmp, size); return mr->ops->write_with_attrs(mr->uc, mr->opaque, addr, tmp, size, attrs); } static MemTxResult access_with_adjusted_size(hwaddr addr, uint64_t *value, unsigned size, unsigned access_size_min, unsigned access_size_max, MemTxResult (*access_fn) (MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs), MemoryRegion *mr, MemTxAttrs attrs) { uint64_t access_mask; unsigned access_size; unsigned i; MemTxResult r = MEMTX_OK; if (!access_size_min) { access_size_min = 1; } if (!access_size_max) { access_size_max = 4; } /* FIXME: support unaligned access? */ access_size = MAX(MIN(size, access_size_max), access_size_min); access_mask = MAKE_64BIT_MASK(0, access_size * 8); if (memory_region_big_endian(mr)) { for (i = 0; i < size; i += access_size) { r |= access_fn(mr, addr + i, value, access_size, (size - access_size - i) * 8, access_mask, attrs); } } else { for (i = 0; i < size; i += access_size) { r |= access_fn(mr, addr + i, value, access_size, i * 8, access_mask, attrs); } } return r; } static AddressSpace *memory_region_to_address_space(MemoryRegion *mr) { AddressSpace *as; while (mr->container) { mr = mr->container; } QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) { if (mr == as->root) { return as; } } return NULL; } /* Render a memory region into the global view. Ranges in @view obscure * ranges in @mr. */ static void render_memory_region(FlatView *view, MemoryRegion *mr, Int128 base, AddrRange clip, bool readonly, bool nonvolatile) { MemoryRegion *subregion; unsigned i; hwaddr offset_in_region; Int128 remain; Int128 now; FlatRange fr; AddrRange tmp; if (!mr->enabled) { return; } int128_addto(&base, int128_make64(mr->addr)); readonly |= mr->readonly; nonvolatile |= mr->nonvolatile; tmp = addrrange_make(base, mr->size); if (!addrrange_intersects(tmp, clip)) { return; } clip = addrrange_intersection(tmp, clip); if (mr->alias) { int128_subfrom(&base, int128_make64(mr->alias->addr)); int128_subfrom(&base, int128_make64(mr->alias_offset)); render_memory_region(view, mr->alias, base, clip, readonly, nonvolatile); return; } /* Render subregions in priority order. */ QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { render_memory_region(view, subregion, base, clip, readonly, nonvolatile); } if (!mr->terminates) { return; } offset_in_region = int128_get64(int128_sub(clip.start, base)); base = clip.start; remain = clip.size; fr.mr = mr; fr.dirty_log_mask = mr->dirty_log_mask; fr.readonly = readonly; fr.nonvolatile = nonvolatile; /* Render the region itself into any gaps left by the current view. */ for (i = 0; i < view->nr && int128_nz(remain); ++i) { if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { continue; } if (int128_lt(base, view->ranges[i].addr.start)) { now = int128_min(remain, int128_sub(view->ranges[i].addr.start, base)); fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, now); flatview_insert(view, i, &fr); ++i; int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } now = int128_sub(int128_min(int128_add(base, remain), addrrange_end(view->ranges[i].addr)), base); int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } if (int128_nz(remain)) { fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, remain); flatview_insert(view, i, &fr); } } static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr) { while (mr->enabled) { if (mr->alias) { if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) { /* The alias is included in its entirety. Use it as * the "real" root, so that we can share more FlatViews. */ mr = mr->alias; continue; } } else if (!mr->terminates) { unsigned int found = 0; MemoryRegion *child, *next = NULL; QTAILQ_FOREACH(child, &mr->subregions, subregions_link) { if (child->enabled) { if (++found > 1) { next = NULL; break; } if (!child->addr && int128_ge(mr->size, child->size)) { /* A child is included in its entirety. If it's the only * enabled one, use it in the hope of finding an alias down the * way. This will also let us share FlatViews. */ next = child; } } } if (next) { mr = next; continue; } } break; } return mr; } /* Render a memory topology into a list of disjoint absolute ranges. */ static FlatView *generate_memory_topology(struct uc_struct *uc, MemoryRegion *mr) { int i; FlatView *view; view = flatview_new(mr); if (mr) { render_memory_region(view, mr, int128_zero(), addrrange_make(int128_zero(), int128_2_64()), false, false); } flatview_simplify(view); view->dispatch = address_space_dispatch_new(uc, view); for (i = 0; i < view->nr; i++) { MemoryRegionSection mrs = section_from_flat_range(&view->ranges[i], view); flatview_add_to_dispatch(view, &mrs); } address_space_dispatch_compact(view->dispatch); g_hash_table_replace(uc->flat_views, mr, view); return view; } static FlatView *address_space_get_flatview(AddressSpace *as) { FlatView *view; view = as->current_map; flatview_ref(view); return view; } static void address_space_update_topology_pass(AddressSpace *as, const FlatView *old_view, const FlatView *new_view, bool adding) { unsigned iold, inew; FlatRange *frold, *frnew; /* Generate a symmetric difference of the old and new memory maps. * Kill ranges in the old map, and instantiate ranges in the new map. */ iold = inew = 0; while (iold < old_view->nr || inew < new_view->nr) { if (iold < old_view->nr) { frold = &old_view->ranges[iold]; } else { frold = NULL; } if (inew < new_view->nr) { frnew = &new_view->ranges[inew]; } else { frnew = NULL; } if (frold && (!frnew || int128_lt(frold->addr.start, frnew->addr.start) || (int128_eq(frold->addr.start, frnew->addr.start) && !flatrange_equal(frold, frnew)))) { /* In old but not in new, or in both but attributes changed. */ if (!adding) { MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del); } ++iold; } else if (frold && frnew && flatrange_equal(frold, frnew)) { /* In both and unchanged (except logging may have changed) */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop); if (frnew->dirty_log_mask & ~frold->dirty_log_mask) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start, frold->dirty_log_mask, frnew->dirty_log_mask); } if (frold->dirty_log_mask & ~frnew->dirty_log_mask) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop, frold->dirty_log_mask, frnew->dirty_log_mask); } } ++iold; ++inew; } else { /* In new */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add); } ++inew; } } } static void flatviews_init(struct uc_struct *uc) { if (uc->flat_views) { return; } uc->flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, (GDestroyNotify) flatview_unref); if (!uc->empty_view) { uc->empty_view = generate_memory_topology(uc, NULL); /* We keep it alive forever in the global variable. */ flatview_ref(uc->empty_view); } else { g_hash_table_replace(uc->flat_views, NULL, uc->empty_view); flatview_ref(uc->empty_view); } } static void flatviews_reset(struct uc_struct *uc) { AddressSpace *as; if (uc->flat_views) { g_hash_table_unref(uc->flat_views); uc->flat_views = NULL; } flatviews_init(uc); /* Render unique FVs */ QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); if (g_hash_table_lookup(uc->flat_views, physmr)) { continue; } generate_memory_topology(uc, physmr); } } static void address_space_set_flatview(AddressSpace *as) { FlatView *old_view = address_space_to_flatview(as); MemoryRegion *physmr = memory_region_get_flatview_root(as->root); FlatView *new_view = g_hash_table_lookup(as->uc->flat_views, physmr); assert(new_view); if (old_view == new_view) { return; } if (old_view) { flatview_ref(old_view); } flatview_ref(new_view); if (!QTAILQ_EMPTY(&as->listeners)) { FlatView tmpview = {0}; FlatView *old_view2 = old_view; if (!old_view2) { old_view2 = &tmpview; } address_space_update_topology_pass(as, old_view2, new_view, false); address_space_update_topology_pass(as, old_view2, new_view, true); } /* Writes are protected by the BQL. */ atomic_set(&as->current_map, new_view); if (old_view) { flatview_unref(old_view); } /* Note that all the old MemoryRegions are still alive up to this * point. This relieves most MemoryListeners from the need to * ref/unref the MemoryRegions they get---unless they use them * outside the iothread mutex, in which case precise reference * counting is necessary. */ if (old_view) { flatview_unref(old_view); } } static void address_space_update_topology(AddressSpace *as) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); struct uc_struct *uc = as->uc; flatviews_init(uc); if (!g_hash_table_lookup(uc->flat_views, physmr)) { generate_memory_topology(uc, physmr); } address_space_set_flatview(as); } void memory_region_transaction_begin(struct uc_struct *uc) { ++uc->memory_region_transaction_depth; } static void memory_region_clear_pending(struct uc_struct *uc) { uc->memory_region_update_pending = false; } void memory_region_transaction_commit(struct uc_struct *uc) { AddressSpace *as; assert(uc->memory_region_transaction_depth); --uc->memory_region_transaction_depth; if (!uc->memory_region_transaction_depth) { if (uc->memory_region_update_pending) { flatviews_reset(uc); MEMORY_LISTENER_CALL_GLOBAL(begin, Forward); QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) { address_space_set_flatview(as); } MEMORY_LISTENER_CALL_GLOBAL(commit, Forward); } memory_region_clear_pending(uc); } } static void memory_region_destructor_none(MemoryRegion *mr) { } static void memory_region_destructor_ram(MemoryRegion *mr) { qemu_ram_free(mr->uc, memory_region_get_ram_addr(mr)); } static bool memory_region_need_escape(char c) { return c == '/' || c == '[' || c == '\\' || c == ']'; } static char *memory_region_escape_name(const char *name) { const char *p; char *escaped, *q; uint8_t c; size_t bytes = 0; for (p = name; *p; p++) { bytes += memory_region_need_escape(*p) ? 4 : 1; } if (bytes == p - name) { return g_memdup(name, bytes + 1); } escaped = g_malloc(bytes + 1); for (p = name, q = escaped; *p; p++) { c = *p; if (unlikely(memory_region_need_escape(c))) { *q++ = '\\'; *q++ = 'x'; *q++ = "0123456789abcdef"[c >> 4]; c = "0123456789abcdef"[c & 15]; } *q++ = c; } *q = 0; return escaped; } void memory_region_init(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size) { object_initialize(uc, mr, sizeof(*mr), TYPE_MEMORY_REGION); mr->uc = uc; mr->size = int128_make64(size); if (size == UINT64_MAX) { mr->size = int128_2_64(); } mr->name = g_strdup(name); mr->owner = owner; mr->ram_block = NULL; if (name) { char *escaped_name = memory_region_escape_name(name); char *name_array = g_strdup_printf("%s[*]", escaped_name); if (!owner) { owner = qdev_get_machine(uc); uc->owner = owner; } object_property_add_child(uc, owner, name_array, OBJECT(mr), &error_abort); object_unref(uc, OBJECT(mr)); g_free(name_array); g_free(escaped_name); } } static void memory_region_get_addr(struct uc_struct *uc, Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(uc, obj); uint64_t value = mr->addr; visit_type_uint64(v, name, &value, errp); } static void memory_region_get_container(struct uc_struct *uc, Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(uc, obj); gchar *path = (gchar *)""; if (mr->container) { path = object_get_canonical_path(OBJECT(mr->container)); } visit_type_str(v, name, &path, errp); if (mr->container) { g_free(path); } } static Object *memory_region_resolve_container(struct uc_struct *uc, Object *obj, void *opaque, const char *part) { MemoryRegion *mr = MEMORY_REGION(uc, obj); return OBJECT(mr->container); } static void memory_region_get_priority(struct uc_struct *uc, Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(uc, obj); int32_t value = mr->priority; visit_type_int32(v, name, &value, errp); } static void memory_region_get_size(struct uc_struct *uc, Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(uc, obj); uint64_t value = memory_region_size(mr); visit_type_uint64(v, name, &value, errp); } static void memory_region_initfn(struct uc_struct *uc, Object *obj, void *opaque) { MemoryRegion *mr = MEMORY_REGION(uc, obj); ObjectProperty *op; mr->ops = &unassigned_mem_ops; mr->enabled = true; mr->romd_mode = true; mr->global_locking = true; mr->destructor = memory_region_destructor_none; QTAILQ_INIT(&mr->subregions); op = object_property_add(mr->uc, OBJECT(mr), "container", "link<" TYPE_MEMORY_REGION ">", memory_region_get_container, NULL, /* memory_region_set_container */ NULL, NULL, &error_abort); op->resolve = memory_region_resolve_container; object_property_add(mr->uc, OBJECT(mr), "addr", "uint64", memory_region_get_addr, NULL, /* memory_region_set_addr */ NULL, NULL, &error_abort); object_property_add(mr->uc, OBJECT(mr), "priority", "uint32", memory_region_get_priority, NULL, /* memory_region_set_priority */ NULL, NULL, &error_abort); object_property_add(mr->uc, OBJECT(mr), "size", "uint64", memory_region_get_size, NULL, /* memory_region_set_size, */ NULL, NULL, &error_abort); } static uint64_t unassigned_mem_read(struct uc_struct* uc, hwaddr addr, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); #endif if (uc->current_cpu != NULL) { bool is_exec = uc->current_cpu->mem_io_access_type == MMU_INST_FETCH; cpu_unassigned_access(uc->current_cpu, addr, false, is_exec, 0, size); } return 0; } static void unassigned_mem_write(struct uc_struct* uc, hwaddr addr, uint64_t val, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); #endif if (uc->current_cpu != NULL) { cpu_unassigned_access(uc->current_cpu, addr, true, false, 0, size); } } static bool unassigned_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write) { return false; } const MemoryRegionOps unassigned_mem_ops = { NULL, NULL, NULL, NULL, DEVICE_NATIVE_ENDIAN, {0,0,false,unassigned_mem_accepts}, }; static uint64_t memory_region_ram_device_read(struct uc_struct *uc, void *opaque, hwaddr addr, unsigned size) { MemoryRegion *mr = opaque; uint64_t data = (uint64_t)~0; switch (size) { case 1: data = *(uint8_t *)(mr->ram_block->host + addr); break; case 2: data = *(uint16_t *)(mr->ram_block->host + addr); break; case 4: data = *(uint32_t *)(mr->ram_block->host + addr); break; case 8: data = *(uint64_t *)(mr->ram_block->host + addr); break; } // Unicorn: commented out //trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size); return data; } static void memory_region_ram_device_write(struct uc_struct *uc, void *opaque, hwaddr addr, uint64_t data, unsigned size) { MemoryRegion *mr = opaque; // Unicorn: commented out //trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size); switch (size) { case 1: *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data; break; case 2: *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data; break; case 4: *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data; break; case 8: *(uint64_t *)(mr->ram_block->host + addr) = data; break; } } static const MemoryRegionOps ram_device_mem_ops = { memory_region_ram_device_read, memory_region_ram_device_write, NULL, NULL, DEVICE_HOST_ENDIAN, // valid { 1, 8, true, }, // impl { 1, 8, true, }, }; bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, unsigned size, bool is_write) { int access_size_min, access_size_max; int access_size, i; if (!mr->ops->valid.unaligned && (addr & (size - 1))) { return false; } if (!mr->ops->valid.accepts) { return true; } access_size_min = mr->ops->valid.min_access_size; if (!mr->ops->valid.min_access_size) { access_size_min = 1; } access_size_max = mr->ops->valid.max_access_size; if (!mr->ops->valid.max_access_size) { access_size_max = 4; } access_size = MAX(MIN(size, access_size_max), access_size_min); for (i = 0; i < size; i += access_size) { if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size, is_write)) { return false; } } return true; } static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size, MemTxAttrs attrs) { *pval = 0; if (mr->ops->read) { return access_with_adjusted_size(addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_accessor, mr, attrs); } else { return access_with_adjusted_size(addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_with_attrs_accessor, mr, attrs); } } MemTxResult memory_region_dispatch_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); MemTxResult r; if (!memory_region_access_valid(mr, addr, size, false)) { *pval = unassigned_mem_read(mr->uc, addr, size); return MEMTX_DECODE_ERROR; } r = memory_region_dispatch_read1(mr, addr, pval, size, attrs); adjust_endianness(mr, pval, size); return r; } MemTxResult memory_region_dispatch_write(MemoryRegion *mr, hwaddr addr, uint64_t data, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); if (!memory_region_access_valid(mr, addr, size, true)) { unassigned_mem_write(mr->uc, addr, data, size); return MEMTX_DECODE_ERROR; } adjust_endianness(mr, &data, size); if (mr->ops->write) { return access_with_adjusted_size(addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_accessor, mr, attrs); } else { return access_with_adjusted_size(addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_with_attrs_accessor, mr, attrs); } } void memory_region_init_io(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size) { memory_region_init(uc, mr, owner, name, size); mr->ops = ops ? ops : &unassigned_mem_ops; mr->opaque = opaque; mr->terminates = true; } void memory_region_init_ram_nomigrate(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint32_t perms, Error **errp) { Error *err = NULL; memory_region_init(uc, mr, owner, name, size); mr->ram = true; if (!(perms & UC_PROT_WRITE)) { mr->readonly = true; } mr->perms = perms; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc(size, mr, &err); mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0; if (err) { mr->size = int128_zero(); object_unparent(uc, OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_ram_ptr(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr) { memory_region_init(uc, mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0; /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ assert(ptr != NULL); mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal); } void memory_region_init_resizeable_ram(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint64_t max_size, void (*resized)(const char*, uint64_t length, void *host), Error **errp) { Error *err = NULL; memory_region_init(uc, mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized, mr, &err); mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0; if (err) { mr->size = int128_zero(); object_unparent(uc, OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_rom_nomigrate(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, Error **errp) { Error *err = NULL; memory_region_init(uc, mr, owner, name, size); mr->ram = true; mr->readonly = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc(size, mr, &err); mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0; if (err) { mr->size = int128_zero(); object_unparent(uc, OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_ram_device_ptr(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr) { memory_region_init(uc, mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->ram_device = true; mr->ops = &ram_device_mem_ops; mr->opaque = mr; mr->destructor = memory_region_destructor_ram; mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0; /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ assert(ptr != NULL); mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal); } void memory_region_init_alias(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, MemoryRegion *orig, hwaddr offset, uint64_t size) { memory_region_init(uc, mr, owner, name, size); mr->alias = orig; mr->alias_offset = offset; } static void memory_region_finalize(struct uc_struct *uc, Object *obj, void *opaque) { MemoryRegion *mr = MEMORY_REGION(uc, obj); assert(!mr->container); /* We know the region is not visible in any address space (it * does not have a container and cannot be a root either because * it has no references, so we can blindly clear mr->enabled. * memory_region_set_enabled instead could trigger a transaction * and cause an infinite loop. */ mr->enabled = false; memory_region_transaction_begin(uc); while (!QTAILQ_EMPTY(&mr->subregions)) { MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions); memory_region_del_subregion(mr, subregion); } memory_region_transaction_commit(uc); mr->destructor(mr); g_free((char *)mr->name); } void memory_region_ref(MemoryRegion *mr) { /* MMIO callbacks most likely will access data that belongs * to the owner, hence the need to ref/unref the owner whenever * the memory region is in use. * * The memory region is a child of its owner. As long as the * owner doesn't call unparent itself on the memory region, * ref-ing the owner will also keep the memory region alive. * Memory regions without an owner are supposed to never go away; * we do not ref/unref them because it slows down DMA sensibly. */ if (mr && mr->owner) { object_ref(mr->owner); } } void memory_region_unref(MemoryRegion *mr) { if (mr && mr->owner) { object_unref(mr->uc, mr->owner); } } uint64_t memory_region_size(MemoryRegion *mr) { if (int128_eq(mr->size, int128_2_64())) { return UINT64_MAX; } return int128_get64(mr->size); } const char *memory_region_name(const MemoryRegion *mr) { if (!mr->name) { ((MemoryRegion *)mr)->name = object_get_canonical_path_component(OBJECT(mr)); } return mr->name; } bool memory_region_is_ram_device(MemoryRegion *mr) { return mr->ram_device; } uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr) { return mr->dirty_log_mask; } bool memory_region_is_logging(MemoryRegion *mr, uint8_t client) { return memory_region_get_dirty_log_mask(mr) & (1 << client); } void memory_region_set_readonly(MemoryRegion *mr, bool readonly) { if (mr->readonly != readonly) { memory_region_transaction_begin(mr->uc); mr->readonly = readonly; if (readonly) { mr->perms &= ~UC_PROT_WRITE; } else { mr->perms |= UC_PROT_WRITE; } mr->uc->memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(mr->uc); } } void memory_region_clear_global_locking(MemoryRegion *mr) { mr->global_locking = false; } void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile) { if (mr->nonvolatile != nonvolatile) { memory_region_transaction_begin(mr->uc); mr->nonvolatile = nonvolatile; mr->uc->memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(mr->uc); } } void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode) { if (mr->romd_mode != romd_mode) { memory_region_transaction_begin(mr->uc); mr->romd_mode = romd_mode; mr->uc->memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(mr->uc); } } int memory_region_get_fd(MemoryRegion *mr) { int fd; // Unicorn: commented out //rcu_read_lock(); while (mr->alias) { mr = mr->alias; } fd = mr->ram_block->fd; //rcu_read_unlock(); return fd; } void *memory_region_get_ram_ptr(MemoryRegion *mr) { void *ptr; uint64_t offset = 0; // Unicorn: commented out // rcu_read_lock(); while (mr->alias) { offset += mr->alias_offset; mr = mr->alias; } assert(mr->ram_block); ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, offset); // Unicorn: commented out //rcu_read_unlock(); return ptr; } MemoryRegion *memory_region_from_host(struct uc_struct *uc, void *ptr, ram_addr_t *offset) { RAMBlock *block; block = qemu_ram_block_from_host(uc, ptr, false, offset); if (!block) { return NULL; } return block->mr; } ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) { return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID; } static void memory_region_update_container_subregions(MemoryRegion *subregion) { MemoryRegion *mr = subregion->container; MemoryRegion *other; memory_region_transaction_begin(mr->uc); memory_region_ref(subregion); QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->priority >= other->priority) { QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); goto done; } } QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); done: mr->uc->memory_region_update_pending |= mr->enabled && subregion->enabled; memory_region_transaction_commit(mr->uc); } static void memory_region_add_subregion_common(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { assert(!subregion->container); subregion->container = mr; subregion->addr = offset; subregion->end = offset + int128_get64(subregion->size); memory_region_update_container_subregions(subregion); } void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { subregion->priority = 0; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_add_subregion_overlap(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion, int priority) { subregion->priority = priority; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion) { memory_region_transaction_begin(mr->uc); assert(subregion->container == mr); subregion->container = NULL; QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); memory_region_unref(subregion); mr->uc->memory_region_update_pending |= mr->enabled && subregion->enabled; memory_region_transaction_commit(mr->uc); } void memory_region_set_enabled(MemoryRegion *mr, bool enabled) { if (enabled == mr->enabled) { return; } memory_region_transaction_begin(mr->uc); mr->enabled = enabled; mr->uc->memory_region_update_pending = true; memory_region_transaction_commit(mr->uc); } void memory_region_set_size(MemoryRegion *mr, uint64_t size) { Int128 s = int128_make64(size); if (size == UINT64_MAX) { s = int128_2_64(); } if (int128_eq(s, mr->size)) { return; } memory_region_transaction_begin(mr->uc); mr->size = s; mr->uc->memory_region_update_pending = true; memory_region_transaction_commit(mr->uc); } static void memory_region_readd_subregion(MemoryRegion *mr) { MemoryRegion *container = mr->container; if (container) { memory_region_transaction_begin(mr->uc); memory_region_ref(mr); memory_region_del_subregion(container, mr); mr->container = container; memory_region_update_container_subregions(mr); memory_region_unref(mr); memory_region_transaction_commit(mr->uc); } } void memory_region_set_address(MemoryRegion *mr, hwaddr addr) { if (addr != mr->addr) { mr->addr = addr; memory_region_readd_subregion(mr); } } void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset) { assert(mr->alias); if (offset == mr->alias_offset) { return; } memory_region_transaction_begin(mr->uc); mr->alias_offset = offset; mr->uc->memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(mr->uc); } uint64_t memory_region_get_alignment(const MemoryRegion *mr) { return mr->align; } static int cmp_flatrange_addr(const void *addr_, const void *fr_) { const AddrRange *addr = addr_; const FlatRange *fr = fr_; if (int128_le(addrrange_end(*addr), fr->addr.start)) { return -1; } else if (int128_ge(addr->start, addrrange_end(fr->addr))) { return 1; } return 0; } static FlatRange *flatview_lookup(FlatView *view, AddrRange addr) { return bsearch(&addr, view->ranges, view->nr, sizeof(FlatRange), cmp_flatrange_addr); } bool memory_region_is_mapped(MemoryRegion *mr) { return mr->container ? true : false; } /* Same as memory_region_find, but it does not add a reference to the * returned region. It must be called from an RCU critical section. */ static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret = {}; MemoryRegion *root; AddressSpace *as; AddrRange range; FlatView *view; FlatRange *fr; addr += mr->addr; for (root = mr; root->container; ) { root = root->container; addr += root->addr; } as = memory_region_to_address_space(root); if (!as) { return ret; } range = addrrange_make(int128_make64(addr), int128_make64(size)); view = address_space_to_flatview(as); fr = flatview_lookup(view, range); if (!fr) { return ret; } while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) { --fr; } ret.mr = fr->mr; ret.fv = view; range = addrrange_intersection(range, fr->addr); ret.offset_within_region = fr->offset_in_region; ret.offset_within_region += int128_get64(int128_sub(range.start, fr->addr.start)); ret.size = range.size; ret.offset_within_address_space = int128_get64(range.start); ret.readonly = fr->readonly; ret.nonvolatile = fr->nonvolatile; return ret; } MemoryRegionSection memory_region_find(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret; // Unicorn: commented out //rcu_read_lock(); ret = memory_region_find_rcu(mr, addr, size); if (ret.mr) { memory_region_ref(ret.mr); } // Unicorn: commented out //rcu_read_unlock(); return ret; } bool memory_region_present(MemoryRegion *container, hwaddr addr) { MemoryRegion *mr; // Unicorn: commented out //rcu_read_lock(); mr = memory_region_find_rcu(container, addr, 1).mr; // Unicorn: commented out //rcu_read_unlock(); return mr && mr != container; } static QEMU_UNUSED_FUNC void listener_add_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; if (listener->begin) { listener->begin(listener); } if (as->uc->global_dirty_log) { if (listener->log_global_start) { listener->log_global_start(listener); } } view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { MemoryRegionSection section = MemoryRegionSection_make( fr->mr, view, fr->offset_in_region, fr->addr.size, int128_get64(fr->addr.start), fr->readonly); if (fr->dirty_log_mask && listener->log_start) { listener->log_start(listener, §ion, 0, fr->dirty_log_mask); } if (listener->region_add) { listener->region_add(listener, §ion); } } flatview_unref(view); } void memory_listener_register(struct uc_struct* uc, MemoryListener *listener, AddressSpace *as) { MemoryListener *other = NULL; listener->address_space = as; if (QTAILQ_EMPTY(&uc->memory_listeners) || listener->priority >= QTAILQ_LAST(&uc->memory_listeners, memory_listeners)->priority) { QTAILQ_INSERT_TAIL(&uc->memory_listeners, listener, link); } else { QTAILQ_FOREACH(other, &uc->memory_listeners, link) { if (listener->priority < other->priority) { break; } } QTAILQ_INSERT_BEFORE(other, listener, link); } if (QTAILQ_EMPTY(&as->listeners) || listener->priority >= QTAILQ_LAST(&as->listeners, memory_listeners)->priority) { QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as); } else { QTAILQ_FOREACH(other, &as->listeners, link_as) { if (listener->priority < other->priority) { break; } } QTAILQ_INSERT_BEFORE(other, listener, link_as); } // Unicorn: TODO: Handle leaks that occur when this is uncommented //listener_add_address_space(listener, as); } void memory_listener_unregister(struct uc_struct *uc, MemoryListener *listener) { QTAILQ_REMOVE(&uc->memory_listeners, listener, link); QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as); } void address_space_init(struct uc_struct *uc, AddressSpace *as, MemoryRegion *root, const char *name) { if (QTAILQ_EMPTY(&uc->address_spaces)) { memory_init(uc); } memory_region_ref(root); as->uc = uc; as->root = root; as->current_map = NULL; QTAILQ_INIT(&as->listeners); QTAILQ_INSERT_TAIL(&uc->address_spaces, as, address_spaces_link); as->name = g_strdup(name ? name : "anonymous"); address_space_update_topology(as); } static void do_address_space_destroy(AddressSpace *as) { // TODO(danghvu): why assert fail here? //QTAILQ_FOREACH(listener, &as->uc->memory_listeners, link) { // assert(QTAILQ_EMPTY(&as->listeners)); //} flatview_unref(as->current_map); g_free(as->name); // Unicorn: commented out //g_free(as->ioeventfds); memory_region_unref(as->root); } void address_space_destroy(AddressSpace *as) { MemoryRegion *root = as->root; /* Flush out anything from MemoryListeners listening in on this */ memory_region_transaction_begin(as->uc); as->root = NULL; memory_region_transaction_commit(as->uc); QTAILQ_REMOVE(&as->uc->address_spaces, as, address_spaces_link); /* At this point, as->dispatch and as->current_map are dummy * entries that the guest should never use. Wait for the old * values to expire before freeing the data. */ as->root = root; do_address_space_destroy(as); // Unicorn: Commented out and call it directly // call_rcu(as, do_address_space_destroy, rcu); } typedef struct MemoryRegionList MemoryRegionList; struct MemoryRegionList { const MemoryRegion *mr; QTAILQ_ENTRY(MemoryRegionList) queue; }; typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead; static const TypeInfo memory_region_info = { TYPE_MEMORY_REGION, TYPE_OBJECT, 0, sizeof(MemoryRegion), NULL, memory_region_initfn, NULL, memory_region_finalize, }; void memory_register_types(struct uc_struct *uc) { type_register_static(uc, &memory_region_info); }