/* * Software MMU support * * Generate helpers used by TCG for qemu_ld/st ops and code load * functions. * * Included from target op helpers and exec.c. * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */ #if DATA_SIZE == 8 #define SUFFIX q #define LSUFFIX q #define SDATA_TYPE int64_t #define DATA_TYPE uint64_t #elif DATA_SIZE == 4 #define SUFFIX l #define LSUFFIX l #define SDATA_TYPE int32_t #define DATA_TYPE uint32_t #elif DATA_SIZE == 2 #define SUFFIX w #define LSUFFIX uw #define SDATA_TYPE int16_t #define DATA_TYPE uint16_t #elif DATA_SIZE == 1 #define SUFFIX b #define LSUFFIX ub #define SDATA_TYPE int8_t #define DATA_TYPE uint8_t #else #error unsupported data size #endif /* For the benefit of TCG generated code, we want to avoid the complication of ABI-specific return type promotion and always return a value extended to the register size of the host. This is tcg_target_long, except in the case of a 32-bit host and 64-bit data, and for that we always have uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 # define WORD_TYPE DATA_TYPE # define USUFFIX SUFFIX #else # define WORD_TYPE tcg_target_ulong # define USUFFIX glue(u, SUFFIX) # define SSUFFIX glue(s, SUFFIX) #endif #ifdef SOFTMMU_CODE_ACCESS #define READ_ACCESS_TYPE MMU_INST_FETCH #define ADDR_READ addr_code #else #define READ_ACCESS_TYPE MMU_DATA_LOAD #define ADDR_READ addr_read #endif #if DATA_SIZE == 8 # define BSWAP(X) bswap64(X) #elif DATA_SIZE == 4 # define BSWAP(X) bswap32(X) #elif DATA_SIZE == 2 # define BSWAP(X) bswap16(X) #else # define BSWAP(X) (X) #endif #if DATA_SIZE == 1 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name helper_le_ld_name # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name helper_le_lds_name # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name helper_le_st_name #else # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) #endif #ifndef SOFTMMU_CODE_ACCESS static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, size_t mmu_idx, size_t index, target_ulong addr, uintptr_t retaddr) { CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, DATA_SIZE); } #endif WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->ADDR_READ; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; int error_code; struct hook *hook; bool handled; HOOK_FOREACH_VAR_DECLARE; struct uc_struct *uc = env->uc; MemoryRegion *mr = memory_mapping(uc, addr); // memory might be still unmapped while reading or fetching if (mr == NULL) { handled = false; #if defined(SOFTMMU_CODE_ACCESS) error_code = UC_ERR_FETCH_UNMAPPED; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data))) break; } #else error_code = UC_ERR_READ_UNMAPPED; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data))) break; } #endif if (handled) { env->invalid_error = UC_ERR_OK; mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time? } else { env->invalid_addr = addr; env->invalid_error = error_code; // printf("***** Invalid fetch (unmapped memory) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } #if defined(SOFTMMU_CODE_ACCESS) // Unicorn: callback on fetch from NX if (mr != NULL && !(mr->perms & UC_PROT_EXEC)) { // non-executable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_PROT, addr, DATA_SIZE, 0, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_FETCH_PROT; // printf("***** Invalid fetch (non-executable) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } #endif // Unicorn: callback on memory read // NOTE: this happens before the actual read, so we cannot tell // the callback if read access is succesful, or not. // See UC_HOOK_MEM_READ_AFTER & UC_MEM_READ_AFTER if you only care // about successful read if (READ_ACCESS_TYPE == MMU_DATA_LOAD) { HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ, addr, DATA_SIZE, 0, hook->user_data); } } // Unicorn: callback on non-readable memory if (READ_ACCESS_TYPE == MMU_DATA_LOAD && mr != NULL && !(mr->perms & UC_PROT_READ)) { //non-readable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_PROT, addr, DATA_SIZE, 0, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_READ_PROT; // printf("***** Invalid memory read (non-readable) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = entry->ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; if (iotlbentry->addr == 0) { env->invalid_addr = addr; env->invalid_error = UC_ERR_READ_UNMAPPED; // printf("Invalid memory read at " TARGET_FMT_lx "\n", addr); cpu_exit(env->uc->current_cpu); return 0; } else { env->invalid_error = UC_ERR_OK; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr); res = TGT_LE(res); goto _out; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; res1 = helper_le_ld_name(env, addr1, oi, retaddr); res2 = helper_le_ld_name(env, addr2, oi, retaddr); shift = (addr & (DATA_SIZE - 1)) * 8; /* Little-endian combine. */ res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); goto _out; } haddr = (uintptr_t)(addr + entry->addend); #if DATA_SIZE == 1 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); #else res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); #endif _out: // Unicorn: callback on successful read if (READ_ACCESS_TYPE == MMU_DATA_LOAD) { HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_AFTER) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ_AFTER, addr, DATA_SIZE, res, hook->user_data); } } return res; } #if DATA_SIZE > 1 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->ADDR_READ; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; int error_code; struct hook *hook; bool handled; HOOK_FOREACH_VAR_DECLARE; struct uc_struct *uc = env->uc; MemoryRegion *mr = memory_mapping(uc, addr); // memory can be unmapped while reading or fetching if (mr == NULL) { handled = false; #if defined(SOFTMMU_CODE_ACCESS) error_code = UC_ERR_FETCH_UNMAPPED; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data))) break; } #else error_code = UC_ERR_READ_UNMAPPED; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data))) break; } #endif if (handled) { env->invalid_error = UC_ERR_OK; mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time? } else { env->invalid_addr = addr; env->invalid_error = error_code; // printf("***** Invalid fetch (unmapped memory) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } #if defined(SOFTMMU_CODE_ACCESS) // Unicorn: callback on fetch from NX if (mr != NULL && !(mr->perms & UC_PROT_EXEC)) { // non-executable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_PROT, addr, DATA_SIZE, 0, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_FETCH_PROT; // printf("***** Invalid fetch (non-executable) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } #endif // Unicorn: callback on memory read // NOTE: this happens before the actual read, so we cannot tell // the callback if read access is succesful, or not. // See UC_HOOK_MEM_READ_AFTER & UC_MEM_READ_AFTER if you only care // about successful read if (READ_ACCESS_TYPE == MMU_DATA_LOAD) { HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ, addr, DATA_SIZE, 0, hook->user_data); } } // Unicorn: callback on non-readable memory if (READ_ACCESS_TYPE == MMU_DATA_LOAD && mr != NULL && !(mr->perms & UC_PROT_READ)) { //non-readable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_PROT, addr, DATA_SIZE, 0, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_READ_PROT; // printf("***** Invalid memory read (non-readable) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return 0; } } if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = entry->ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; if (iotlbentry->addr == 0) { env->invalid_addr = addr; env->invalid_error = UC_ERR_READ_UNMAPPED; // printf("Invalid memory read at " TARGET_FMT_lx "\n", addr); cpu_exit(env->uc->current_cpu); return 0; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr); res = TGT_BE(res); goto _out; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; res1 = helper_be_ld_name(env, addr1, oi, retaddr); res2 = helper_be_ld_name(env, addr2, oi, retaddr); shift = (addr & (DATA_SIZE - 1)) * 8; /* Big-endian combine. */ res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); goto _out; } haddr = (uintptr_t)(addr + entry->addend); res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); _out: // Unicorn: callback on successful read if (READ_ACCESS_TYPE == MMU_DATA_LOAD) { HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_AFTER) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ_AFTER, addr, DATA_SIZE, res, hook->user_data); } } return res; } #endif /* DATA_SIZE > 1 */ #ifndef SOFTMMU_CODE_ACCESS /* Provide signed versions of the load routines as well. We can of course avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); } # if DATA_SIZE > 1 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); } # endif #endif static inline void glue(io_write, SUFFIX)(CPUArchState *env, size_t mmu_idx, size_t index, DATA_TYPE val, target_ulong addr, uintptr_t retaddr) { CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, DATA_SIZE); } void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->addr_write; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; struct hook *hook; bool handled; HOOK_FOREACH_VAR_DECLARE; struct uc_struct *uc = env->uc; MemoryRegion *mr = memory_mapping(uc, addr); // Unicorn: callback on memory write HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(uc, UC_MEM_WRITE, addr, DATA_SIZE, val, hook->user_data); } // Unicorn: callback on invalid memory if (mr == NULL) { handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_UNMAPPED, addr, DATA_SIZE, val, hook->user_data))) break; } if (!handled) { // save error & quit env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_UNMAPPED; // printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return; } else { env->invalid_error = UC_ERR_OK; mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time? } } // Unicorn: callback on non-writable memory if (mr != NULL && !(mr->perms & UC_PROT_WRITE)) { //non-writable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_PROT, addr, DATA_SIZE, val, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_PROT; // printf("***** Invalid memory write (ro) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return; } } if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = entry->addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; if (iotlbentry->addr == 0) { env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_UNMAPPED; // printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr); cpu_exit(env->uc->current_cpu); return; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_LE(val); glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; target_ulong page2; CPUTLBEntry *entry2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; entry2 = tlb_entry(env, mmu_idx, page2); if (!tlb_hit_page(entry2->addr_write, page2) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple. */ /* This loop must go in the forward direction to avoid issues with self-modifying code in Windows 64-bit. */ for (i = 0; i < DATA_SIZE; ++i) { /* Little-endian extract. */ uint8_t val8 = (uint8_t)(val >> (i * 8)); glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr); if (env->invalid_error != UC_ERR_OK) break; } return; } haddr = (uintptr_t)(addr + entry->addend); #if DATA_SIZE == 1 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); #else glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); #endif } #if DATA_SIZE > 1 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->addr_write; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; struct hook *hook; bool handled; HOOK_FOREACH_VAR_DECLARE; struct uc_struct *uc = env->uc; MemoryRegion *mr = memory_mapping(uc, addr); // Unicorn: callback on memory write HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; ((uc_cb_hookmem_t)hook->callback)(uc, UC_MEM_WRITE, addr, DATA_SIZE, val, hook->user_data); } // Unicorn: callback on invalid memory if (mr == NULL) { handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_UNMAPPED) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_UNMAPPED, addr, DATA_SIZE, val, hook->user_data))) break; } if (!handled) { // save error & quit env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_UNMAPPED; // printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return; } else { env->invalid_error = UC_ERR_OK; mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time? } } // Unicorn: callback on non-writable memory if (mr != NULL && !(mr->perms & UC_PROT_WRITE)) { //non-writable handled = false; HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_PROT) { if (!HOOK_BOUND_CHECK(hook, addr)) continue; if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_PROT, addr, DATA_SIZE, val, hook->user_data))) break; } if (handled) { env->invalid_error = UC_ERR_OK; } else { env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_PROT; // printf("***** Invalid memory write (ro) at " TARGET_FMT_lx "\n", addr); cpu_exit(uc->current_cpu); return; } } if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = entry->addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; if (iotlbentry->addr == 0) { env->invalid_addr = addr; env->invalid_error = UC_ERR_WRITE_UNMAPPED; // printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr); cpu_exit(env->uc->current_cpu); return; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_BE(val); glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; target_ulong page2; CPUTLBEntry *entry2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; entry2 = tlb_entry(env, mmu_idx, page2); if (!tlb_hit_page(entry2->addr_write, page2) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple */ /* This loop must go in the forward direction to avoid issues with self-modifying code. */ for (i = 0; i < DATA_SIZE; ++i) { /* Big-endian extract. */ uint8_t val8 = (uint8_t)(val >> (((DATA_SIZE - 1) * 8) - (i * 8))); glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr); if (env->invalid_error != UC_ERR_OK) break; } return; } haddr = (uintptr_t)(addr + entry->addend); glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); } #endif /* DATA_SIZE > 1 */ #endif /* !defined(SOFTMMU_CODE_ACCESS) */ #undef READ_ACCESS_TYPE #undef DATA_TYPE #undef SUFFIX #undef LSUFFIX #undef DATA_SIZE #undef ADDR_READ #undef WORD_TYPE #undef SDATA_TYPE #undef USUFFIX #undef SSUFFIX #undef BSWAP #undef helper_le_ld_name #undef helper_be_ld_name #undef helper_le_lds_name #undef helper_be_lds_name #undef helper_le_st_name #undef helper_be_st_name