/* * x86 SVM helpers * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "exec/cpu-all.h" #include "exec/helper-proto.h" #include "exec/cpu_ldst.h" /* Secure Virtual Machine helpers */ #if defined(CONFIG_USER_ONLY) void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) { } void helper_vmmcall(CPUX86State *env) { } void helper_vmload(CPUX86State *env, int aflag) { } void helper_vmsave(CPUX86State *env, int aflag) { } void helper_stgi(CPUX86State *env) { } void helper_clgi(CPUX86State *env) { } void helper_skinit(CPUX86State *env) { } void helper_invlpga(CPUX86State *env, int aflag) { } void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) { } void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1) { } void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, uint64_t param) { } void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, uint64_t param) { } void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, uint32_t next_eip_addend) { } #else static inline void svm_save_seg(CPUX86State *env, hwaddr addr, const SegmentCache *sc) { CPUState *cs = CPU(x86_env_get_cpu(env)); stw_phys(cs->as, addr + offsetof(struct vmcb_seg, selector), sc->selector); stq_phys(cs->as, addr + offsetof(struct vmcb_seg, base), sc->base); stl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit), sc->limit); stw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib), ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00)); } static inline void svm_load_seg(CPUX86State *env, hwaddr addr, SegmentCache *sc) { CPUState *cs = CPU(x86_env_get_cpu(env)); unsigned int flags; sc->selector = lduw_phys(cs->as, addr + offsetof(struct vmcb_seg, selector)); sc->base = ldq_phys(cs->as, addr + offsetof(struct vmcb_seg, base)); sc->limit = ldl_phys(cs->as, addr + offsetof(struct vmcb_seg, limit)); flags = lduw_phys(cs->as, addr + offsetof(struct vmcb_seg, attrib)); sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); } static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr, int seg_reg) { SegmentCache sc1, *sc = &sc1; svm_load_seg(env, addr, sc); cpu_x86_load_seg_cache(env, seg_reg, sc->selector, sc->base, sc->limit, sc->flags); } void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) { CPUState *cs = CPU(x86_env_get_cpu(env)); target_ulong addr; uint32_t event_inj; uint32_t int_ctl; cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); env->vm_vmcb = addr; /* save the current CPU state in the hsave page */ stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base); stl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rflags), cpu_compute_eflags(env)); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rip), env->eip + next_eip_addend); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); stq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); /* load the interception bitmaps so we do not need to access the vmcb in svm mode */ env->intercept = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept)); env->intercept_cr_read = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read)); env->intercept_cr_write = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write)); env->intercept_dr_read = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read)); env->intercept_dr_write = lduw_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write)); env->intercept_exceptions = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions )); /* enable intercepts */ env->hflags |= HF_SVMI_MASK; env->tsc_offset = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset)); env->gdt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit)); /* clear exit_info_2 so we behave like the real hardware */ stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); cpu_x86_update_cr0(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr0))); cpu_x86_update_cr4(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr3))); env->cr[2] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr2)); int_ctl = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); if (int_ctl & V_INTR_MASKING_MASK) { env->v_tpr = int_ctl & V_TPR_MASK; env->hflags2 |= HF2_VINTR_MASK; if (env->eflags & IF_MASK) { env->hflags2 |= HF2_HIF_MASK; } } cpu_load_efer(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.efer))); env->eflags = 0; cpu_load_eflags(env, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es), R_ES); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), R_CS); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), R_SS); svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), R_DS); env->eip = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rip)); env->regs[R_ESP] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rsp)); env->regs[R_EAX] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rax)); env->dr[7] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr7)); env->dr[6] = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr6)); /* FIXME: guest state consistency checks */ switch (ldub_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { case TLB_CONTROL_DO_NOTHING: break; case TLB_CONTROL_FLUSH_ALL_ASID: /* FIXME: this is not 100% correct but should work for now */ tlb_flush(cs, 1); break; } env->hflags2 |= HF2_GIF_MASK; if (int_ctl & V_IRQ_MASK) { CPUState *cs = CPU(x86_env_get_cpu(env)); cs->interrupt_request |= CPU_INTERRUPT_VIRQ; } /* maybe we need to inject an event */ event_inj = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); if (event_inj & SVM_EVTINJ_VALID) { uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; uint32_t event_inj_err = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); /* FIXME: need to implement valid_err */ switch (event_inj & SVM_EVTINJ_TYPE_MASK) { case SVM_EVTINJ_TYPE_INTR: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); /* XXX: is it always correct? */ do_interrupt_x86_hardirq(env, vector, 1); break; case SVM_EVTINJ_TYPE_NMI: cs->exception_index = EXCP02_NMI; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_EXEPT: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); cpu_loop_exit(cs); break; case SVM_EVTINJ_TYPE_SOFT: cs->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 1; env->exception_next_eip = env->eip; qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); cpu_loop_exit(cs); break; } qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, env->error_code); } } void helper_vmmcall(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0); raise_exception(env, EXCP06_ILLOP); } void helper_vmload(CPUX86State *env, int aflag) { CPUState *cs = CPU(x86_env_get_cpu(env)); target_ulong addr; cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", addr, ldq_phys(cs->as, addr + offsetof(struct vmcb, save.fs.base)), env->segs[R_FS].base); svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS); svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS); svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr); svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 env->kernelgsbase = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.kernel_gs_base)); env->lstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar)); env->cstar = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar)); env->fmask = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask)); #endif env->star = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.star)); env->sysenter_cs = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_cs)); env->sysenter_esp = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_esp)); env->sysenter_eip = ldq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_eip)); } void helper_vmsave(CPUX86State *env, int aflag) { CPUState *cs = CPU(x86_env_get_cpu(env)); target_ulong addr; cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", addr, ldq_phys(cs->as, addr + offsetof(struct vmcb, save.fs.base)), env->segs[R_FS].base); svm_save_seg(env, addr + offsetof(struct vmcb, save.fs), &env->segs[R_FS]); svm_save_seg(env, addr + offsetof(struct vmcb, save.gs), &env->segs[R_GS]); svm_save_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr); svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 stq_phys(cs->as, addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase); stq_phys(cs->as, addr + offsetof(struct vmcb, save.lstar), env->lstar); stq_phys(cs->as, addr + offsetof(struct vmcb, save.cstar), env->cstar); stq_phys(cs->as, addr + offsetof(struct vmcb, save.sfmask), env->fmask); #endif stq_phys(cs->as, addr + offsetof(struct vmcb, save.star), env->star); stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs); stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp); stq_phys(cs->as, addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip); } void helper_stgi(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0); env->hflags2 |= HF2_GIF_MASK; } void helper_clgi(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0); env->hflags2 &= ~HF2_GIF_MASK; } void helper_skinit(CPUX86State *env) { cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0); /* XXX: not implemented */ raise_exception(env, EXCP06_ILLOP); } void helper_invlpga(CPUX86State *env, int aflag) { X86CPU *cpu = x86_env_get_cpu(env); target_ulong addr; cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0); if (aflag == 2) { addr = env->regs[R_EAX]; } else { addr = (uint32_t)env->regs[R_EAX]; } /* XXX: could use the ASID to see if it is needed to do the flush */ tlb_flush_page(CPU(cpu), addr); } void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, uint64_t param) { CPUState *cs = CPU(x86_env_get_cpu(env)); if (likely(!(env->hflags & HF_SVMI_MASK))) { return; } if( (int32_t)type >= SVM_EXIT_READ_CR0 && type <= SVM_EXIT_READ_CR0 + 8 ) { if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { helper_vmexit(env, type, param); } } else if( type >= SVM_EXIT_WRITE_CR0 && type <= SVM_EXIT_WRITE_CR0 + 8 ) { if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { helper_vmexit(env, type, param); } } else if( type >= SVM_EXIT_READ_DR0 && type <= SVM_EXIT_READ_DR0 + 7 ) { if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { helper_vmexit(env, type, param); } } else if( type >= SVM_EXIT_WRITE_DR0 && type <= SVM_EXIT_WRITE_DR0 + 7 ) { if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { helper_vmexit(env, type, param); } } else if( type >= SVM_EXIT_EXCP_BASE && type <= SVM_EXIT_EXCP_BASE + 31 ) { if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { helper_vmexit(env, type, param); } } else if( type == SVM_EXIT_MSR ) { if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa)); uint32_t t0, t1; uint32_t ecx = (uint32_t)env->regs[R_ECX]; if( (int32_t)ecx >= 0 && ecx <= 0x1fff ) { t0 = (env->regs[R_ECX] * 2) % 8; t1 = (env->regs[R_ECX] * 2) / 8; } else if( ecx >= 0xc0000000 && ecx <= 0xc0001fff ) { t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2; t1 = (t0 / 8); t0 %= 8; } else if( ecx >= 0xc0010000 && ecx <= 0xc0011fff ) { t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2; t1 = (t0 / 8); t0 %= 8; } else { helper_vmexit(env, type, param); t0 = 0; t1 = 0; } if (ldub_phys(cs->as, addr + t1) & ((1 << param) << t0)) { helper_vmexit(env, type, param); } } } else { if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { helper_vmexit(env, type, param); } } } void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, uint64_t param) { helper_svm_check_intercept_param(env, type, param); } void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, uint32_t next_eip_addend) { CPUState *cs = CPU(x86_env_get_cpu(env)); if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa)); uint16_t mask = (1 << ((param >> 4) & 7)) - 1; if (lduw_phys(cs->as, addr + port / 8) & (mask << (port & 7))) { /* next env->eip */ stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), env->eip + next_eip_addend); helper_vmexit(env, SVM_EXIT_IOIO, param | (port << 16)); } } } /* Note: currently only 32 bits of exit_code are used */ void helper_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) { CPUState *cs = CPU(x86_env_get_cpu(env)); uint32_t int_ctl; qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n", exit_code, exit_info_1, ldq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)), env->eip); if (env->hflags & HF_INHIBIT_IRQ_MASK) { stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK); env->hflags &= ~HF_INHIBIT_IRQ_MASK; } else { stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); } /* Save the VM state in the vmcb */ svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base); stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); int_ctl = ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK); int_ctl |= env->v_tpr & V_TPR_MASK; if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { int_ctl |= V_IRQ_MASK; } stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rflags), cpu_compute_eflags(env)); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); stb_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK); /* Reload the host state from vm_hsave */ env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); env->hflags &= ~HF_SVMI_MASK; env->intercept = 0; env->intercept_exceptions = 0; cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; env->tsc_offset = 0; env->gdt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = ldl_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit)); cpu_x86_update_cr0(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK); cpu_x86_update_cr4(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.cr3))); /* we need to set the efer after the crs so the hidden flags get set properly */ cpu_load_efer(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.efer))); env->eflags = 0; cpu_load_eflags(env, ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK | VM_MASK)); svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es), R_ES); svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs), R_CS); svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss), R_SS); svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds), R_DS); env->eip = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rip)); env->regs[R_ESP] = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rsp)); env->regs[R_EAX] = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.rax)); env->dr[6] = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr6)); env->dr[7] = ldq_phys(cs->as, env->vm_hsave + offsetof(struct vmcb, save.dr7)); /* other setups */ stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code); stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1); stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj))); stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), ldl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err))); stl_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); env->hflags2 &= ~HF2_GIF_MASK; /* FIXME: Resets the current ASID register to zero (host ASID). */ /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ /* Clears the TSC_OFFSET inside the processor. */ /* If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown. */ /* Disables all breakpoints in the host DR7 register. */ /* Checks the reloaded host state for consistency. */ /* If the host's rIP reloaded by #VMEXIT is outside the limit of the host's code segment or non-canonical (in the case of long mode), a #GP fault is delivered inside the host. */ /* remove any pending exception */ cs->exception_index = -1; env->error_code = 0; env->old_exception = -1; cpu_loop_exit(cs); } void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) { helper_vmexit(env, exit_code, exit_info_1); } #endif