/* * internal execution defines for qemu * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef _EXEC_ALL_H_ #define _EXEC_ALL_H_ #include "qemu-common.h" /* allow to see translation results - the slowdown should be negligible, so we leave it */ #define DEBUG_DISAS /* Page tracking code uses ram addresses in system mode, and virtual addresses in userspace mode. Define tb_page_addr_t to be an appropriate type. */ #if defined(CONFIG_USER_ONLY) typedef abi_ulong tb_page_addr_t; #else typedef ram_addr_t tb_page_addr_t; #endif /* is_jmp field values */ #define DISAS_NEXT 0 /* next instruction can be analyzed */ #define DISAS_JUMP 1 /* only pc was modified dynamically */ #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP 3 /* only pc was modified statically */ struct TranslationBlock; typedef struct TranslationBlock TranslationBlock; /* XXX: make safe guess about sizes */ #define MAX_OP_PER_INSTR 266 #if HOST_LONG_BITS == 32 #define MAX_OPC_PARAM_PER_ARG 2 #else #define MAX_OPC_PARAM_PER_ARG 1 #endif #define MAX_OPC_PARAM_IARGS 5 #define MAX_OPC_PARAM_OARGS 1 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) /* A Call op needs up to 4 + 2N parameters on 32-bit archs, * and up to 4 + N parameters on 64-bit archs * (N = number of input arguments + output arguments). */ #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) #include "qemu/log.h" void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb); void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, target_ulong *data); bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc); void QEMU_NORETURN cpu_resume_from_signal(CPUState *cpu, void *puc); void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr); TranslationBlock *tb_gen_code(CPUState *cpu, target_ulong pc, target_ulong cs_base, int flags, int cflags); void cpu_exec_init(CPUState *env, void *opaque); void QEMU_NORETURN cpu_loop_exit(CPUState *cpu); void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); #if !defined(CONFIG_USER_ONLY) /** * cpu_address_space_init: * @cpu: CPU to add this address space to * @as: address space to add * @asidx: integer index of this address space * * Add the specified address space to the CPU's cpu_ases list. * The address space added with @asidx 0 is the one used for the * convenience pointer cpu->as. * The target-specific code which registers ASes is responsible * for defining what semantics address space 0, 1, 2, etc have. * * Before the first call to this function, the caller must set * cpu->num_ases to the total number of address spaces it needs * to support. * * Note that with KVM only one address space is supported. */ void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx); /** * cpu_get_address_space: * @cpu: CPU to get address space from * @asidx: index identifying which address space to get * * Return the requested address space of this CPU. @asidx * specifies which address space to read. */ AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); /* cputlb.c */ /** * tlb_flush_page: * @cpu: CPU whose TLB should be flushed * @addr: virtual address of page to be flushed * * Flush one page from the TLB of the specified CPU, for all * MMU indexes. */ void tlb_flush_page(CPUState *cpu, target_ulong addr); /** * tlb_flush: * @cpu: CPU whose TLB should be flushed * @flush_global: ignored * * Flush the entire TLB for the specified CPU. * The flush_global flag is in theory an indicator of whether the whole * TLB should be flushed, or only those entries not marked global. * In practice QEMU does not implement any global/not global flag for * TLB entries, and the argument is ignored. */ void tlb_flush(CPUState *cpu, int flush_global); /** * tlb_flush_page_by_mmuidx: * @cpu: CPU whose TLB should be flushed * @addr: virtual address of page to be flushed * @...: list of MMU indexes to flush, terminated by a negative value * * Flush one page from the TLB of the specified CPU, for the specified * MMU indexes. */ void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...); /** * tlb_flush_by_mmuidx: * @cpu: CPU whose TLB should be flushed * @...: list of MMU indexes to flush, terminated by a negative value * * Flush all entries from the TLB of the specified CPU, for the specified * MMU indexes. */ void tlb_flush_by_mmuidx(CPUState *cpu, ...); /** * tlb_set_page_with_attrs: * @cpu: CPU to add this TLB entry for * @vaddr: virtual address of page to add entry for * @paddr: physical address of the page * @attrs: memory transaction attributes * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits) * @mmu_idx: MMU index to insert TLB entry for * @size: size of the page in bytes * * Add an entry to this CPU's TLB (a mapping from virtual address * @vaddr to physical address @paddr) with the specified memory * transaction attributes. This is generally called by the target CPU * specific code after it has been called through the tlb_fill() * entry point and performed a successful page table walk to find * the physical address and attributes for the virtual address * which provoked the TLB miss. * * At most one entry for a given virtual address is permitted. Only a * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only * used by tlb_flush_page. */ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, hwaddr paddr, MemTxAttrs attrs, int prot, int mmu_idx, target_ulong size); /* tlb_set_page: * * This function is equivalent to calling tlb_set_page_with_attrs() * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided * as a convenience for CPUs which don't use memory transaction attributes. */ void tlb_set_page(CPUState *cpu, target_ulong vaddr, hwaddr paddr, int prot, int mmu_idx, target_ulong size); void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr); #else static inline void tlb_flush_page(CPUState *cpu, target_ulong addr) { } static inline void tlb_flush(CPUState *cpu, int flush_global) { } static inline void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...) { } static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...) { } #endif #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ #define CODE_GEN_PHYS_HASH_BITS 15 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) /* Estimated block size for TB allocation. */ /* ??? The following is based on a 2015 survey of x86_64 host output. Better would seem to be some sort of dynamically sized TB array, adapting to the block sizes actually being produced. */ #if defined(CONFIG_SOFTMMU) #define CODE_GEN_AVG_BLOCK_SIZE 400 #else #define CODE_GEN_AVG_BLOCK_SIZE 150 #endif #if defined(__arm__) || defined(_ARCH_PPC) \ || defined(__x86_64__) || defined(__i386__) \ || defined(__sparc__) || defined(__aarch64__) \ || defined(__s390x__) || defined(__mips__) \ || defined(CONFIG_TCG_INTERPRETER) #define USE_DIRECT_JUMP #endif struct TranslationBlock { target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ target_ulong cs_base; /* CS base for this block */ uint64_t flags; /* flags defining in which context the code was generated */ uint16_t size; /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ uint16_t icount; uint32_t cflags; /* compile flags */ #define CF_COUNT_MASK 0x7fff #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ #define CF_NOCACHE 0x10000 /* To be freed after execution */ #define CF_USE_ICOUNT 0x20000 void *tc_ptr; /* pointer to the translated code */ uint8_t *tc_search; /* pointer to search data */ /* next matching tb for physical address. */ struct TranslationBlock *phys_hash_next; /* first and second physical page containing code. The lower bit of the pointer tells the index in page_next[] */ struct TranslationBlock *page_next[2]; tb_page_addr_t page_addr[2]; /* the following data are used to directly call another TB from the code of this one. */ uint16_t tb_next_offset[2]; /* offset of original jump target */ #ifdef USE_DIRECT_JUMP uint16_t tb_jmp_offset[2]; /* offset of jump instruction */ #else uintptr_t tb_next[2]; /* address of jump generated code */ #endif /* list of TBs jumping to this one. This is a circular list using the two least significant bits of the pointers to tell what is the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = jmp_first */ struct TranslationBlock *jmp_next[2]; struct TranslationBlock *jmp_first; }; typedef struct TBContext TBContext; struct TBContext { TranslationBlock *tbs; TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; int nb_tbs; /* statistics */ int tb_flush_count; int tb_phys_invalidate_count; int tb_invalidated_flag; }; void tb_free(struct uc_struct *uc, TranslationBlock *tb); void tb_flush(CPUState *cpu); void tb_phys_invalidate(struct uc_struct *uc, TranslationBlock *tb, tb_page_addr_t page_addr); #if defined(USE_DIRECT_JUMP) #if defined(CONFIG_TCG_INTERPRETER) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { /* patch the branch destination */ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); /* no need to flush icache explicitly */ } #elif defined(_ARCH_PPC) void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); #define tb_set_jmp_target1 ppc_tb_set_jmp_target #elif defined(__i386__) || defined(__x86_64__) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { /* patch the branch destination */ stl_le_p((void*)jmp_addr, addr - (jmp_addr + 4)); /* no need to flush icache explicitly */ } #elif defined(__s390x__) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { /* patch the branch destination */ intptr_t disp = addr - (jmp_addr - 2); stl_be_p((void*)jmp_addr, disp / 2); /* no need to flush icache explicitly */ } #elif defined(__aarch64__) void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr); #define tb_set_jmp_target1 aarch64_tb_set_jmp_target #elif defined(__arm__) static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr) { #if !QEMU_GNUC_PREREQ(4, 1) register unsigned long _beg __asm ("a1"); register unsigned long _end __asm ("a2"); register unsigned long _flg __asm ("a3"); #endif /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ *(uint32_t *)jmp_addr = (*(uint32_t *)jmp_addr & ~0xffffff) | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); #if QEMU_GNUC_PREREQ(4, 1) __builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); #else /* flush icache */ _beg = jmp_addr; _end = jmp_addr + 4; _flg = 0; __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); #endif } #elif defined(__sparc__) || defined(__mips__) void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr); #else #error tb_set_jmp_target1 is missing #endif static inline void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { uint16_t offset = tb->tb_jmp_offset[n]; tb_set_jmp_target1((uintptr_t)((char*)tb->tc_ptr + offset), addr); } #else /* set the jump target */ static inline void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) { tb->tb_next[n] = addr; } #endif static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { /* NOTE: this test is only needed for thread safety */ if (!tb->jmp_next[n]) { qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, "Linking TBs %p [" TARGET_FMT_lx "] index %d -> %p [" TARGET_FMT_lx "]\n", tb->tc_ptr, tb->pc, n, tb_next->tc_ptr, tb_next->pc); /* patch the native jump address */ tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr); /* add in TB jmp circular list */ tb->jmp_next[n] = tb_next->jmp_first; tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n)); } } /* GETRA is the true target of the return instruction that we'll execute, defined here for simplicity of defining the follow-up macros. */ #if defined(CONFIG_TCG_INTERPRETER) extern uintptr_t tci_tb_ptr; # define GETRA() tci_tb_ptr #elif defined(_MSC_VER) #include # define GETRA() (uintptr_t)_ReturnAddress() #else # define GETRA() \ ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0))) #endif /* The true return address will often point to a host insn that is part of the next translated guest insn. Adjust the address backward to point to the middle of the call insn. Subtracting one would do the job except for several compressed mode architectures (arm, mips) which set the low bit to indicate the compressed mode; subtracting two works around that. It is also the case that there are no host isas that contain a call insn smaller than 4 bytes, so we don't worry about special-casing this. */ #if defined(CONFIG_TCG_INTERPRETER) # define GETPC_ADJ 0 #else # define GETPC_ADJ 2 #endif #define GETPC() (GETRA() - GETPC_ADJ) #if !defined(CONFIG_USER_ONLY) void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)); struct MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs); void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx, uintptr_t retaddr); #endif #if defined(CONFIG_USER_ONLY) void mmap_lock(void); void mmap_unlock(void); static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) { return addr; } #else static inline void mmap_lock(void) {} static inline void mmap_unlock(void) {} /* cputlb.c */ tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); #endif /* vl.c */ extern int singlestep; /* cpu-exec.c */ extern volatile sig_atomic_t exit_request; /** * cpu_can_do_io: * @cpu: The CPU for which to check IO. * * Deterministic execution requires that IO only be performed on the last * instruction of a TB so that interrupts take effect immediately. * * Returns: %true if memory-mapped IO is safe, %false otherwise. */ static inline bool cpu_can_do_io(CPUState *cpu) { return true; } // Unicorn: Used for freeing void phys_mem_clean(AddressSpace *as); #endif