/* * Physical memory management API * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #ifndef MEMORY_H #define MEMORY_H #ifndef CONFIG_USER_ONLY #include "unicorn/platform.h" #include "exec/cpu-common.h" #include "exec/hwaddr.h" #include "exec/memattrs.h" #include "qemu/queue.h" #include "qemu/int128.h" #include "qapi/error.h" #include "qom/object.h" #include "qemu/typedefs.h" #define RAM_ADDR_INVALID (~(ram_addr_t)0) #define MAX_PHYS_ADDR_SPACE_BITS 62 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) #define TYPE_MEMORY_REGION "qemu:memory-region" #define MEMORY_REGION(uc, obj) \ OBJECT_CHECK(uc, MemoryRegion, (obj), TYPE_MEMORY_REGION) typedef struct MemoryRegionOps MemoryRegionOps; typedef struct MemoryRegionMmio MemoryRegionMmio; struct MemoryRegionMmio { CPUReadMemoryFunc *read[3]; CPUWriteMemoryFunc *write[3]; }; typedef struct IOMMUTLBEntry IOMMUTLBEntry; /* See address_space_translate: bit 0 is read, bit 1 is write. */ typedef enum { IOMMU_NONE = 0, IOMMU_RO = 1, IOMMU_WO = 2, IOMMU_RW = 3, } IOMMUAccessFlags; struct IOMMUTLBEntry { AddressSpace *target_as; hwaddr iova; hwaddr translated_addr; hwaddr addr_mask; /* 0xfff = 4k translation */ IOMMUAccessFlags perm; }; /* New-style MMIO accessors can indicate that the transaction failed. * A zero (MEMTX_OK) response means success; anything else is a failure * of some kind. The memory subsystem will bitwise-OR together results * if it is synthesizing an operation from multiple smaller accesses. */ #define MEMTX_OK 0 #define MEMTX_ERROR (1U << 0) /* device returned an error */ #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */ typedef uint32_t MemTxResult; /* * Memory region callbacks */ struct MemoryRegionOps { /* Read from the memory region. @addr is relative to @mr; @size is * in bytes. */ uint64_t (*read)(struct uc_struct* uc, void *opaque, hwaddr addr, unsigned size); /* Write to the memory region. @addr is relative to @mr; @size is * in bytes. */ void (*write)(struct uc_struct* uc, void *opaque, hwaddr addr, uint64_t data, unsigned size); MemTxResult (*read_with_attrs)(struct uc_struct* uc, void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs); MemTxResult (*write_with_attrs)(struct uc_struct* uc, void *opaque, hwaddr addr, uint64_t data, unsigned size, MemTxAttrs attrs); enum device_endian endianness; /* Guest-visible constraints: */ struct { /* If nonzero, specify bounds on access sizes beyond which a machine * check is thrown. */ unsigned min_access_size; unsigned max_access_size; /* If true, unaligned accesses are supported. Otherwise unaligned * accesses throw machine checks. */ bool unaligned; /* * If present, and returns #false, the transaction is not accepted * by the device (and results in machine dependent behaviour such * as a machine check exception). */ bool (*accepts)(void *opaque, hwaddr addr, unsigned size, bool is_write); } valid; /* Internal implementation constraints: */ struct { /* If nonzero, specifies the minimum size implemented. Smaller sizes * will be rounded upwards and a partial result will be returned. */ unsigned min_access_size; /* If nonzero, specifies the maximum size implemented. Larger sizes * will be done as a series of accesses with smaller sizes. */ unsigned max_access_size; /* If true, unaligned accesses are supported. Otherwise all accesses * are converted to (possibly multiple) naturally aligned accesses. */ bool unaligned; } impl; /* If .read and .write are not present, old_mmio may be used for * backwards compatibility with old mmio registration */ const MemoryRegionMmio old_mmio; }; typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; struct MemoryRegionIOMMUOps { /* Return a TLB entry that contains a given address. */ IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write); /* Returns minimum supported page size */ uint64_t (*get_min_page_size)(MemoryRegion *iommu); /* Called when the first notifier is set */ void (*notify_started)(MemoryRegion *iommu); /* Called when the last notifier is removed */ void (*notify_stopped)(MemoryRegion *iommu); }; struct MemoryRegion { Object parent_obj; /* All fields are private - violators will be prosecuted */ /* The following fields should fit in a cache line */ bool romd_mode; bool ram; bool subpage; bool readonly; /* For RAM regions */ bool rom_device; bool flush_coalesced_mmio; bool global_locking; uint8_t dirty_log_mask; RAMBlock *ram_block; const MemoryRegionIOMMUOps *iommu_ops; Object *owner; const MemoryRegionOps *ops; void *opaque; MemoryRegion *container; Int128 size; hwaddr addr; void (*destructor)(MemoryRegion *mr); uint64_t align; bool terminates; bool ram_device; bool enabled; bool warning_printed; /* For reservations */ MemoryRegion *alias; hwaddr alias_offset; int32_t priority; QTAILQ_HEAD(subregions, MemoryRegion) subregions; QTAILQ_ENTRY(MemoryRegion) subregions_link; const char *name; struct uc_struct *uc; uint32_t perms; //all perms, partially redundant with readonly uint64_t end; }; /** * MemoryListener: callbacks structure for updates to the physical memory map * * Allows a component to adjust to changes in the guest-visible memory map. * Use with memory_listener_register() and memory_listener_unregister(). */ struct MemoryListener { void (*begin)(MemoryListener *listener); void (*commit)(MemoryListener *listener); void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, int old, int new); void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, int old, int new); void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); void (*log_global_start)(MemoryListener *listener); void (*log_global_stop)(MemoryListener *listener); /* Lower = earlier (during add), later (during del) */ unsigned priority; AddressSpace *address_space; QTAILQ_ENTRY(MemoryListener) link; QTAILQ_ENTRY(MemoryListener) link_as; }; /** * AddressSpace: describes a mapping of addresses to #MemoryRegion objects */ struct AddressSpace { /* All fields are private. */ char *name; MemoryRegion *root; int ref_count; bool malloced; struct FlatView *current_map; struct AddressSpaceDispatch *dispatch; struct AddressSpaceDispatch *next_dispatch; MemoryListener dispatch_listener; struct uc_struct* uc; QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners; QTAILQ_ENTRY(AddressSpace) address_spaces_link; }; /** * MemoryRegionSection: describes a fragment of a #MemoryRegion * * @mr: the region, or %NULL if empty * @address_space: the address space the region is mapped in * @offset_within_region: the beginning of the section, relative to @mr's start * @size: the size of the section; will not exceed @mr's boundaries * @offset_within_address_space: the address of the first byte of the section * relative to the region's address space * @readonly: writes to this section are ignored */ struct MemoryRegionSection { MemoryRegion *mr; AddressSpace *address_space; hwaddr offset_within_region; Int128 size; hwaddr offset_within_address_space; bool readonly; }; static inline MemoryRegionSection MemoryRegionSection_make(MemoryRegion *mr, AddressSpace *address_space, hwaddr offset_within_region, Int128 size, hwaddr offset_within_address_space, bool readonly) { MemoryRegionSection section; section.mr = mr; section.address_space = address_space; section.offset_within_region = offset_within_region; section.size = size; section.offset_within_address_space = offset_within_address_space; section.readonly = readonly; return section; } /** * memory_region_init: Initialize a memory region * * The region typically acts as a container for other memory regions. Use * memory_region_add_subregion() to add subregions. * * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @size: size of the region; any subregions beyond this size will be clipped */ void memory_region_init(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size); /** * memory_region_ref: Add 1 to a memory region's reference count * * Whenever memory regions are accessed outside the BQL, they need to be * preserved against hot-unplug. MemoryRegions actually do not have their * own reference count; they piggyback on a QOM object, their "owner". * This function adds a reference to the owner. * * All MemoryRegions must have an owner if they can disappear, even if the * device they belong to operates exclusively under the BQL. This is because * the region could be returned at any time by memory_region_find, and this * is usually under guest control. * * @mr: the #MemoryRegion */ void memory_region_ref(MemoryRegion *mr); /** * memory_region_unref: Remove 1 to a memory region's reference count * * Whenever memory regions are accessed outside the BQL, they need to be * preserved against hot-unplug. MemoryRegions actually do not have their * own reference count; they piggyback on a QOM object, their "owner". * This function removes a reference to the owner and possibly destroys it. * * @mr: the #MemoryRegion */ void memory_region_unref(MemoryRegion *mr); /** * memory_region_init_io: Initialize an I/O memory region. * * Accesses into the region will cause the callbacks in @ops to be called. * if @size is nonzero, subregions will be clipped to @size. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @ops: a structure containing read and write callbacks to be used when * I/O is performed on the region. * @opaque: passed to to the read and write callbacks of the @ops structure. * @name: used for debugging; not visible to the user or ABI * @size: size of the region. */ void memory_region_init_io(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size); /** * memory_region_init_ram: Initialize RAM memory region. Accesses into the * region will modify memory directly. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @perms: permissions on the region (UC_PROT_READ, UC_PROT_WRITE, UC_PROT_EXEC). * @errp: pointer to Error*, to store an error if it happens. */ void memory_region_init_ram(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, uint32_t perms, Error **errp); /** * memory_region_init_ram_ptr: Initialize RAM memory region from a * user-provided pointer. Accesses into the * region will modify memory directly. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @ptr: memory to be mapped; must contain at least @size bytes. */ void memory_region_init_ram_ptr(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, void *ptr); /** * memory_region_init_ram_device_ptr: Initialize RAM device memory region from * a user-provided pointer. * * A RAM device represents a mapping to a physical device, such as to a PCI * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped * into the VM address space and access to the region will modify memory * directly. However, the memory region should not be included in a memory * dump (device may not be enabled/mapped at the time of the dump), and * operations incompatible with manipulating MMIO should be avoided. Replaces * skip_dump flag. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @ptr: memory to be mapped; must contain at least @size bytes. */ void memory_region_init_ram_device_ptr(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, void *ptr); /** * memory_region_init_alias: Initialize a memory region that aliases all or a * part of another memory region. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @orig: the region to be referenced; @mr will be equivalent to * @orig between @offset and @offset + @size - 1. * @offset: start of the section in @orig to be referenced. * @size: size of the region. */ void memory_region_init_alias(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, MemoryRegion *orig, hwaddr offset, uint64_t size); /** * memory_region_init_rom: Initialize a ROM memory region. * * This has the same effect as calling memory_region_init_ram() * and then marking the resulting region read-only with * memory_region_set_readonly(). * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. */ void memory_region_init_rom(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, Error **errp); /** * memory_region_init_rom_device: Initialize a ROM memory region. Writes are * handled via callbacks. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @ops: callbacks for write access handling (must not be NULL). * @name: the name of the region. * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. */ void memory_region_init_rom_device(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size, Error **errp); /** * memory_region_init_resizeable_ram: Initialize memory region with resizeable * RAM. Accesses into the region will * modify memory directly. Only an initial * portion of this RAM is actually used. * The used size can change across reboots. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: used size of the region. * @max_size: max size of the region. * @resized: callback to notify owner about used size change. * @errp: pointer to Error*, to store an error if it happens. */ void memory_region_init_resizeable_ram(struct uc_struct *uc, MemoryRegion *mr, struct Object *owner, const char *name, uint64_t size, uint64_t max_size, void (*resized)(const char*, uint64_t length, void *host), Error **errp); /** * memory_region_init_reservation: Initialize a memory region that reserves * I/O space. * * A reservation region primariy serves debugging purposes. It claims I/O * space that is not supposed to be handled by QEMU itself. Any access via * the memory API will cause an abort(). * This function is deprecated. Use memory_region_init_io() with NULL * callbacks instead. * * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @size: size of the region. */ static inline void memory_region_init_reservation(struct uc_struct *uc, MemoryRegion *mr, Object *owner, const char *name, uint64_t size) { memory_region_init_io(uc, mr, owner, NULL, mr, name, size); } /** * memory_region_init_iommu: Initialize a memory region that translates * addresses * * An IOMMU region translates addresses and forwards accesses to a target * memory region. * * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count * @ops: a function that translates addresses into the @target region * @name: used for debugging; not visible to the user or ABI * @size: size of the region. */ void memory_region_init_iommu(MemoryRegion *mr, struct Object *owner, const MemoryRegionIOMMUOps *ops, const char *name, uint64_t size); /** * memory_region_size: get a memory region's size. * * @mr: the memory region being queried. */ uint64_t memory_region_size(MemoryRegion *mr); /** * memory_region_is_ram: check whether a memory region is random access * * Returns %true is a memory region is random access. * * @mr: the memory region being queried */ static inline bool memory_region_is_ram(MemoryRegion *mr) { return mr->ram; } /** * memory_region_is_ram_device: check whether a memory region is a ram device * * Returns %true is a memory region is a device backed ram region * * @mr: the memory region being queried */ bool memory_region_is_ram_device(MemoryRegion *mr); /** * memory_region_is_romd: check whether a memory region is in ROMD mode * * Returns %true if a memory region is a ROM device and currently set to allow * direct reads. * * @mr: the memory region being queried */ static inline bool memory_region_is_romd(MemoryRegion *mr) { return mr->rom_device && mr->romd_mode; } /** * memory_region_is_iommu: check whether a memory region is an iommu * * Returns %true is a memory region is an iommu. * * @mr: the memory region being queried */ static inline bool memory_region_is_iommu(MemoryRegion *mr) { return mr->iommu_ops; } /** * memory_region_notify_iommu: notify a change in an IOMMU translation entry. * * @mr: the memory region that was changed * @entry: the new entry in the IOMMU translation table. The entry * replaces all old entries for the same virtual I/O address range. * Deleted entries have .@perm == 0. */ void memory_region_notify_iommu(MemoryRegion *mr, IOMMUTLBEntry entry); /** * memory_region_name: get a memory region's name * * Returns the string that was used to initialize the memory region. * * @mr: the memory region being queried */ const char *memory_region_name(const MemoryRegion *mr); /** * memory_region_is_logging: return whether a memory region is logging writes * * Returns %true if the memory region is logging writes * * @mr: the memory region being queried * @client: the client being queried */ bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); /** * memory_region_get_dirty_log_mask: return the clients for which a * memory region is logging writes. * * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants * are the bit indices. * * @mr: the memory region being queried */ uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); /** * memory_region_is_rom: check whether a memory region is ROM * * Returns %true is a memory region is read-only memory. * * @mr: the memory region being queried */ static inline bool memory_region_is_rom(MemoryRegion *mr) { return mr->ram && mr->readonly; } /** * memory_region_get_fd: Get a file descriptor backing a RAM memory region. * * Returns a file descriptor backing a file-based RAM memory region, * or -1 if the region is not a file-based RAM memory region. * * @mr: the RAM or alias memory region being queried. */ int memory_region_get_fd(MemoryRegion *mr); /** * memory_region_from_host: Convert a pointer into a RAM memory region * and an offset within it. * * Given a host pointer inside a RAM memory region (created with * memory_region_init_ram() or memory_region_init_ram_ptr()), return * the MemoryRegion and the offset within it. * * Use with care; by the time this function returns, the returned pointer is * not protected by RCU anymore. If the caller is not within an RCU critical * section and does not hold the iothread lock, it must have other means of * protecting the pointer, such as a reference to the region that includes * the incoming ram_addr_t. * * @mr: the memory region being queried. */ MemoryRegion *memory_region_from_host(struct uc_struct *uc, void *ptr, ram_addr_t *offset); /** * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. * * Returns a host pointer to a RAM memory region (created with * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with * care. * * @mr: the memory region being queried. */ void *memory_region_get_ram_ptr(MemoryRegion *mr); /** * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty * for a specified client. It clears them. * * Checks whether a range of bytes has been written to since the last * call to memory_region_reset_dirty() with the same @client. Dirty logging * must be enabled. * * @mr: the memory region being queried. * @addr: the address (relative to the start of the region) being queried. * @size: the size of the range being queried. * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or * %DIRTY_MEMORY_VGA. */ bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size, unsigned client); /** * memory_region_set_readonly: Turn a memory region read-only (or read-write) * * Allows a memory region to be marked as read-only (turning it into a ROM). * only useful on RAM regions. * * @mr: the region being updated. * @readonly: whether rhe region is to be ROM or RAM. */ void memory_region_set_readonly(MemoryRegion *mr, bool readonly); /** * memory_region_set_global_locking: Declares the access processing requires * QEMU's global lock. * * When this is invoked, accesses to the memory region will be processed while * holding the global lock of QEMU. This is the default behavior of memory * regions. * * @mr: the memory region to be updated. */ void memory_region_set_global_locking(MemoryRegion *mr); /** * memory_region_clear_global_locking: Declares that access processing does * not depend on the QEMU global lock. * * By clearing this property, accesses to the memory region will be processed * outside of QEMU's global lock (unless the lock is held on when issuing the * access request). In this case, the device model implementing the access * handlers is responsible for synchronization of concurrency. * * @mr: the memory region to be updated. */ void memory_region_clear_global_locking(MemoryRegion *mr); /** * memory_region_rom_device_set_romd: enable/disable ROMD mode * * Allows a ROM device (initialized with memory_region_init_rom_device() to * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the * device is mapped to guest memory and satisfies read access directly. * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. * Writes are always handled by the #MemoryRegion.write function. * * @mr: the memory region to be updated * @romd_mode: %true to put the region into ROMD mode */ void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); /** * memory_region_add_subregion: Add a subregion to a container. * * Adds a subregion at @offset. The subregion may not overlap with other * subregions (except for those explicitly marked as overlapping). A region * may only be added once as a subregion (unless removed with * memory_region_del_subregion()); use memory_region_init_alias() if you * want a region to be a subregion in multiple locations. * * @mr: the region to contain the new subregion; must be a container * initialized with memory_region_init(). * @offset: the offset relative to @mr where @subregion is added. * @subregion: the subregion to be added. */ void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion); /** * memory_region_add_subregion_overlap: Add a subregion to a container * with overlap. * * Adds a subregion at @offset. The subregion may overlap with other * subregions. Conflicts are resolved by having a higher @priority hide a * lower @priority. Subregions without priority are taken as @priority 0. * A region may only be added once as a subregion (unless removed with * memory_region_del_subregion()); use memory_region_init_alias() if you * want a region to be a subregion in multiple locations. * * @mr: the region to contain the new subregion; must be a container * initialized with memory_region_init(). * @offset: the offset relative to @mr where @subregion is added. * @subregion: the subregion to be added. * @priority: used for resolving overlaps; highest priority wins. */ void memory_region_add_subregion_overlap(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion, int priority); /** * memory_region_get_ram_addr: Get the ram address associated with a memory * region */ ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); uint64_t memory_region_get_alignment(const MemoryRegion *mr); /** * memory_region_del_subregion: Remove a subregion. * * Removes a subregion from its container. * * @mr: the container to be updated. * @subregion: the region being removed; must be a current subregion of @mr. */ void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion); /* * memory_region_set_enabled: dynamically enable or disable a region * * Enables or disables a memory region. A disabled memory region * ignores all accesses to itself and its subregions. It does not * obscure sibling subregions with lower priority - it simply behaves as * if it was removed from the hierarchy. * * Regions default to being enabled. * * @mr: the region to be updated * @enabled: whether to enable or disable the region */ void memory_region_set_enabled(MemoryRegion *mr, bool enabled); /* * memory_region_set_address: dynamically update the address of a region * * Dynamically updates the address of a region, relative to its container. * May be used on regions are currently part of a memory hierarchy. * * @mr: the region to be updated * @addr: new address, relative to container region */ void memory_region_set_address(MemoryRegion *mr, hwaddr addr); /* * memory_region_set_size: dynamically update the size of a region. * * Dynamically updates the size of a region. * * @mr: the region to be updated * @size: used size of the region. */ void memory_region_set_size(MemoryRegion *mr, uint64_t size); /* * memory_region_set_alias_offset: dynamically update a memory alias's offset * * Dynamically updates the offset into the target region that an alias points * to, as if the fourth argument to memory_region_init_alias() has changed. * * @mr: the #MemoryRegion to be updated; should be an alias. * @offset: the new offset into the target memory region */ void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset); /** * memory_region_present: checks if an address relative to a @container * translates into #MemoryRegion within @container * * Answer whether a #MemoryRegion within @container covers the address * @addr. * * @container: a #MemoryRegion within which @addr is a relative address * @addr: the area within @container to be searched */ bool memory_region_present(MemoryRegion *container, hwaddr addr); /** * memory_region_is_mapped: returns true if #MemoryRegion is mapped * into any address space. * * @mr: a #MemoryRegion which should be checked if it's mapped */ bool memory_region_is_mapped(MemoryRegion *mr); /** * memory_region_find: translate an address/size relative to a * MemoryRegion into a #MemoryRegionSection. * * Locates the first #MemoryRegion within @mr that overlaps the range * given by @addr and @size. * * Returns a #MemoryRegionSection that describes a contiguous overlap. * It will have the following characteristics: * .@size = 0 iff no overlap was found * .@mr is non-%NULL iff an overlap was found * * Remember that in the return value the @offset_within_region is * relative to the returned region (in the .@mr field), not to the * @mr argument. * * Similarly, the .@offset_within_address_space is relative to the * address space that contains both regions, the passed and the * returned one. However, in the special case where the @mr argument * has no container (and thus is the root of the address space), the * following will hold: * .@offset_within_address_space >= @addr * .@offset_within_address_space + .@size <= @addr + @size * * @mr: a MemoryRegion within which @addr is a relative address * @addr: start of the area within @as to be searched * @size: size of the area to be searched */ MemoryRegionSection memory_region_find(MemoryRegion *mr, hwaddr addr, uint64_t size); /** * memory_region_transaction_begin: Start a transaction. * * During a transaction, changes will be accumulated and made visible * only when the transaction ends (is committed). */ void memory_region_transaction_begin(struct uc_struct*); /** * memory_region_transaction_commit: Commit a transaction and make changes * visible to the guest. */ void memory_region_transaction_commit(struct uc_struct*); /** * memory_listener_register: register callbacks to be called when memory * sections are mapped or unmapped into an address * space * * @listener: an object containing the callbacks to be called * @filter: if non-%NULL, only regions in this address space will be observed */ void memory_listener_register(struct uc_struct* uc, MemoryListener *listener, AddressSpace *filter); /** * memory_listener_unregister: undo the effect of memory_listener_register() * * @listener: an object containing the callbacks to be removed */ void memory_listener_unregister(struct uc_struct* uc, MemoryListener *listener); /** * memory_region_dispatch_read: perform a read directly to the specified * MemoryRegion. * * @mr: #MemoryRegion to access * @addr: address within that region * @pval: pointer to uint64_t which the data is written to * @size: size of the access in bytes * @attrs: memory transaction attributes to use for the access */ MemTxResult memory_region_dispatch_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size, MemTxAttrs attrs); /** * memory_region_dispatch_write: perform a write directly to the specified * MemoryRegion. * * @mr: #MemoryRegion to access * @addr: address within that region * @data: data to write * @size: size of the access in bytes * @attrs: memory transaction attributes to use for the access */ MemTxResult memory_region_dispatch_write(MemoryRegion *mr, hwaddr addr, uint64_t data, unsigned size, MemTxAttrs attrs); /** * address_space_init: initializes an address space * * @as: an uninitialized #AddressSpace * @root: a #MemoryRegion that routes addesses for the address space * @name: an address space name. The name is only used for debugging * output. */ void address_space_init(struct uc_struct *uc, AddressSpace *as, MemoryRegion *root, const char *name); /** * address_space_init_shareable: return an address space for a memory region, * creating it if it does not already exist * * @root: a #MemoryRegion that routes addresses for the address space * @name: an address space name. The name is only used for debugging * output. * * This function will return a pointer to an existing AddressSpace * which was initialized with the specified MemoryRegion, or it will * create and initialize one if it does not already exist. The ASes * are reference-counted, so the memory will be freed automatically * when the AddressSpace is destroyed via address_space_destroy. */ AddressSpace *address_space_init_shareable(struct uc_struct* uc, MemoryRegion *root, const char *name); /** * address_space_destroy: destroy an address space * * Releases all resources associated with an address space. After an address space * is destroyed, its root memory region (given by address_space_init()) may be destroyed * as well. * * @as: address space to be destroyed */ void address_space_destroy(AddressSpace *as); /** * address_space_rw: read from or write to an address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred * @is_write: indicates the transfer direction */ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, bool is_write); /** * address_space_write: write to address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred */ MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const uint8_t *buf, int len); /** * address_space_ld*: load from an address space * address_space_st*: store to an address space * * These functions perform a load or store of the byte, word, * longword or quad to the specified address within the AddressSpace. * The _le suffixed functions treat the data as little endian; * _be indicates big endian; no suffix indicates "same endianness * as guest CPU". * * The "guest CPU endianness" accessors are deprecated for use outside * target-* code; devices should be CPU-agnostic and use either the LE * or the BE accessors. * * @as #AddressSpace to be accessed * @addr: address within that address space * @val: data value, for stores * @attrs: memory transaction attributes * @result: location to write the success/failure of the transaction; * if NULL, this information is discarded */ uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result); uint32_t ldub_phys(AddressSpace *as, hwaddr addr); uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr); uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr); uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr); uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr); uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr); uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr); void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val); void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val); struct MemoryRegionCache { hwaddr xlat; void *ptr; hwaddr len; MemoryRegion *mr; bool is_write; }; /* address_space_cache_init: prepare for repeated access to a physical * memory region * * @cache: #MemoryRegionCache to be filled * @as: #AddressSpace to be accessed * @addr: address within that address space * @len: length of buffer * @is_write: indicates the transfer direction * * Will only work with RAM, and may map a subset of the requested range by * returning a value that is less than @len. On failure, return a negative * errno value. * * Because it only works with RAM, this function can be used for * read-modify-write operations. In this case, is_write should be %true. * * Note that addresses passed to the address_space_*_cached functions * are relative to @addr. */ int64_t address_space_cache_init(MemoryRegionCache *cache, AddressSpace *as, hwaddr addr, hwaddr len, bool is_write); /** * address_space_cache_invalidate: complete a write to a #MemoryRegionCache * * @cache: The #MemoryRegionCache to operate on. * @addr: The first physical address that was written, relative to the * address that was passed to @address_space_cache_init. * @access_len: The number of bytes that were written starting at @addr. */ void address_space_cache_invalidate(MemoryRegionCache *cache, hwaddr addr, hwaddr access_len); /** * address_space_cache_destroy: free a #MemoryRegionCache * * @cache: The #MemoryRegionCache whose memory should be released. */ void address_space_cache_destroy(MemoryRegionCache *cache); /* address_space_ld*_cached: load from a cached #MemoryRegion * address_space_st*_cached: store into a cached #MemoryRegion * * These functions perform a load or store of the byte, word, * longword or quad to the specified address. The address is * a physical address in the AddressSpace, but it must lie within * a #MemoryRegion that was mapped with address_space_cache_init. * * The _le suffixed functions treat the data as little endian; * _be indicates big endian; no suffix indicates "same endianness * as guest CPU". * * The "guest CPU endianness" accessors are deprecated for use outside * target-* code; devices should be CPU-agnostic and use either the LE * or the BE accessors. * * @cache: previously initialized #MemoryRegionCache to be accessed * @addr: address within the address space * @val: data value, for stores * @attrs: memory transaction attributes * @result: location to write the success/failure of the transaction; * if NULL, this information is discarded */ uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result); uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr); uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr); void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val); void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val); /* address_space_get_iotlb_entry: translate an address into an IOTLB * entry. Should be called from an RCU critical section. */ IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, bool is_write); /* address_space_translate: translate an address range into an address space * into a MemoryRegion and an address range into that section * * @as: #AddressSpace to be accessed * @addr: address within that address space * @xlat: pointer to address within the returned memory region section's * #MemoryRegion. * @len: pointer to length * @is_write: indicates the transfer direction */ MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, hwaddr *xlat, hwaddr *len, bool is_write); /* address_space_access_valid: check for validity of accessing an address * space range * * Check whether memory is assigned to the given address space range, and * access is permitted by any IOMMU regions that are active for the address * space. * * For now, addr and len should be aligned to a page size. This limitation * will be lifted in the future. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @len: length of the area to be checked * @is_write: indicates the transfer direction */ bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); /* address_space_map: map a physical memory region into a host virtual address * * May map a subset of the requested range, given by and returned in @plen. * May return %NULL if resources needed to perform the mapping are exhausted. * Use only for reads OR writes - not for read-modify-write operations. * Use cpu_register_map_client() to know when retrying the map operation is * likely to succeed. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @plen: pointer to length of buffer; updated on return * @is_write: indicates the transfer direction */ void *address_space_map(AddressSpace *as, hwaddr addr, hwaddr *plen, bool is_write); /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() * * Will also mark the memory as dirty if @is_write == %true. @access_len gives * the amount of memory that was actually read or written by the caller. * * @as: #AddressSpace used * @addr: address within that address space * @len: buffer length as returned by address_space_map() * @access_len: amount of data actually transferred * @is_write: indicates the transfer direction */ void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, int is_write, hwaddr access_len); void memory_register_types(struct uc_struct *uc); MemoryRegion *memory_map(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms); MemoryRegion *memory_map_ptr(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms, void *ptr); void memory_unmap(struct uc_struct *uc, MemoryRegion *mr); int memory_free(struct uc_struct *uc); /* Internal functions, part of the implementation of address_space_read. */ MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len, hwaddr addr1, hwaddr l, MemoryRegion *mr); MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len); void *qemu_map_ram_ptr(struct uc_struct *uc, RAMBlock *ram_block, ram_addr_t addr); static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) { if (is_write) { return memory_region_is_ram(mr) && !mr->readonly && !memory_region_is_ram_device(mr); } else { return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || memory_region_is_romd(mr); } } /** * address_space_read: read from an address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred */ static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, uint8_t *buf, int len) { MemTxResult result = MEMTX_OK; /* Unicorn: commented out hwaddr l, addr1; void *ptr; MemoryRegion *mr; if (__builtin_constant_p(len)) { if (len) { // Unicorn: commented out //rcu_read_lock(); l = len; mr = address_space_translate(as, addr, &addr1, &l, false); if (len == l && memory_access_is_direct(mr, false)) { ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, addr1); memcpy(buf, ptr, len); } else { result = address_space_read_continue(as, addr, attrs, buf, len, addr1, l, mr); } // Unicorn: commented out //rcu_read_unlock(); } } else {*/ result = address_space_read_full(as, addr, attrs, buf, len); //} return result; } /** * address_space_read_cached: read from a cached RAM region * * @cache: Cached region to be addressed * @addr: address relative to the base of the RAM region * @buf: buffer with the data transferred * @len: length of the data transferred */ static inline void address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, void *buf, int len) { assert(addr < cache->len && len <= cache->len - addr); memcpy(buf, cache->ptr + addr, len); } /** * address_space_write_cached: write to a cached RAM region * * @cache: Cached region to be addressed * @addr: address relative to the base of the RAM region * @buf: buffer with the data transferred * @len: length of the data transferred */ static inline void address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, void *buf, int len) { assert(addr < cache->len && len <= cache->len - addr); memcpy(cache->ptr + addr, buf, len); } #endif #endif