/* * x86 CPU topology data structures and functions * * Copyright (c) 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef TARGET_I386_TOPOLOGY_H #define TARGET_I386_TOPOLOGY_H /* This file implements the APIC-ID-based CPU topology enumeration logic, * documented at the following document: * IntelĀ® 64 Architecture Processor Topology Enumeration * http://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration/ * * This code should be compatible with AMD's "Extended Method" described at: * AMD CPUID Specification (Publication #25481) * Section 3: Multiple Core Calcuation * as long as: * nr_threads is set to 1; * OFFSET_IDX is assumed to be 0; * CPUID Fn8000_0008_ECX[ApicIdCoreIdSize[3:0]] is set to apicid_core_width(). */ #include "unicorn/platform.h" #include #include "qemu/bitops.h" /* APIC IDs can be 32-bit, but beware: APIC IDs > 255 require x2APIC support */ typedef uint32_t apic_id_t; typedef struct X86CPUTopoInfo { unsigned pkg_id; unsigned core_id; unsigned smt_id; } X86CPUTopoInfo; /* Return the bit width needed for 'count' IDs */ static unsigned apicid_bitwidth_for_count(unsigned count) { g_assert(count >= 1); count -= 1; return count ? 32 - clz32(count) : 0; } /* Bit width of the SMT_ID (thread ID) field on the APIC ID */ static inline unsigned apicid_smt_width(unsigned nr_cores, unsigned nr_threads) { return apicid_bitwidth_for_count(nr_threads); } /* Bit width of the Core_ID field */ static inline unsigned apicid_core_width(unsigned nr_cores, unsigned nr_threads) { return apicid_bitwidth_for_count(nr_cores); } /* Bit offset of the Core_ID field */ static inline unsigned apicid_core_offset(unsigned nr_cores, unsigned nr_threads) { return apicid_smt_width(nr_cores, nr_threads); } /* Bit offset of the Pkg_ID (socket ID) field */ static inline unsigned apicid_pkg_offset(unsigned nr_cores, unsigned nr_threads) { return apicid_core_offset(nr_cores, nr_threads) + apicid_core_width(nr_cores, nr_threads); } /* Make APIC ID for the CPU based on Pkg_ID, Core_ID, SMT_ID * * The caller must make sure core_id < nr_cores and smt_id < nr_threads. */ static inline apic_id_t apicid_from_topo_ids(unsigned nr_cores, unsigned nr_threads, const X86CPUTopoInfo *topo) { return (topo->pkg_id << apicid_pkg_offset(nr_cores, nr_threads)) | (topo->core_id << apicid_core_offset(nr_cores, nr_threads)) | topo->smt_id; } /* Calculate thread/core/package IDs for a specific topology, * based on (contiguous) CPU index */ static inline void x86_topo_ids_from_idx(unsigned nr_cores, unsigned nr_threads, unsigned cpu_index, X86CPUTopoInfo *topo) { unsigned core_index = cpu_index / nr_threads; topo->smt_id = cpu_index % nr_threads; topo->core_id = core_index % nr_cores; topo->pkg_id = core_index / nr_cores; } /* Make APIC ID for the CPU 'cpu_index' * * 'cpu_index' is a sequential, contiguous ID for the CPU. */ static inline apic_id_t x86_apicid_from_cpu_idx(unsigned nr_cores, unsigned nr_threads, unsigned cpu_index) { X86CPUTopoInfo topo; x86_topo_ids_from_idx(nr_cores, nr_threads, cpu_index, &topo); return apicid_from_topo_ids(nr_cores, nr_threads, &topo); } #endif /* TARGET_I386_TOPOLOGY_H */