invadeez/src/emulator/structs.rs
2023-01-28 23:43:16 +01:00

284 lines
7.7 KiB
Rust

use crate::mapper::MemoryMapper;
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct EmulatorState<M: MemoryMapper> {
pub a: u8,
pub b: u8,
pub c: u8,
pub d: u8,
pub e: u8,
pub h: u8,
pub l: u8,
pub cc: ConditionCodes,
/// Stack pointer
pub sp: u16,
/// Memory pointer
pub pc: u16,
/// Enable interrupts
pub ei: bool,
/// Memory mapper
pub mapper: M,
}
impl<M: MemoryMapper> EmulatorState<M> {
pub fn new(mapper: M) -> Self {
Self {
a: 0,
b: 0,
c: 0,
d: 0,
e: 0,
h: 0,
l: 0,
sp: 0,
cc: ConditionCodes {
z: true,
s: true,
p: true,
c: true,
},
pc: 0,
ei: false,
mapper,
}
}
/// Read a byte at a specific address
#[inline]
pub fn read_byte(&mut self, address: u16) -> u8 {
self.mapper.read(address)
}
/// Write a byte at a specific address
#[inline]
pub fn write_byte(&mut self, address: u16, value: u8) {
self.mapper.write(address, value);
}
/// Read the next byte from memory pointed at by PC
#[inline]
pub fn next_byte(&mut self) -> u8 {
let value = self.read_byte(self.pc);
(self.pc, ..) = self.pc.overflowing_add(1);
value
}
/// Read a 16-bit word at a specific address
#[inline]
pub fn read_word(&mut self, address: u16) -> u16 {
u16::from_le_bytes([
self.mapper.read(address),
self.mapper.read(address.overflowing_add(1).0),
])
}
/// Write a 16-bit word at a specific address
#[inline]
pub fn write_word(&mut self, address: u16, value: u16) {
let [low, high] = u16::to_le_bytes(value);
self.mapper.write(address, low);
self.mapper.write(address.overflowing_add(1).0, high);
}
/// Read the next 16-bit word from memory pointed at by PC, in little endian order
#[inline]
pub fn next_word(&mut self) -> u16 {
let value = self.read_word(self.pc);
(self.pc, ..) = self.pc.overflowing_add(2);
value
}
}
impl<M: MemoryMapper + Default> Default for EmulatorState<M> {
fn default() -> Self {
Self::new(M::default())
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct ConditionCodes {
/// Zero (Z), set if the result is zero.
pub z: bool,
/// Sign (S), set if the result is negative.
pub s: bool,
/// Parity (P), set if the number of 1 bits in the result is even.
pub p: bool,
/// Carry (C), set if the last addition operation resulted in a carry or if the last subtraction operation required a borrow.
pub c: bool,
// Auxiliary carry (AC or H), used for binary-coded decimal arithmetic (BCD).
// Can't test this so I won't implement it
// ac: bool,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Register {
B,
C,
D,
E,
H,
L,
M,
A,
SP,
}
/// Returns a Register enum based on the input number 0..7 in the order B,C,D,E,H,L,M,A
#[track_caller]
pub fn register_from_num(b: u8) -> Register {
match b {
0 => Register::B,
1 => Register::C,
2 => Register::D,
3 => Register::E,
4 => Register::H,
5 => Register::L,
6 => Register::M,
7 => Register::A,
_ => panic!("'{b}' cannot be converted to register enum"),
}
}
pub fn get_register<M: MemoryMapper>(register: Register, state: &mut EmulatorState<M>) -> u8 {
match register {
Register::B => state.b,
Register::C => state.c,
Register::D => state.d,
Register::E => state.e,
Register::H => state.h,
Register::L => state.l,
Register::A => state.a,
Register::M => state.mapper.read(u16::from_le_bytes([state.l, state.h])),
Register::SP => unreachable!(),
}
}
pub fn set_register<M: MemoryMapper>(register: Register, value: u8, state: &mut EmulatorState<M>) {
match register {
Register::B => state.b = value,
Register::C => state.c = value,
Register::D => state.d = value,
Register::E => state.e = value,
Register::H => state.h = value,
Register::L => state.l = value,
Register::A => state.a = value,
Register::M => state
.mapper
.write(u16::from_le_bytes([state.l, state.h]), value),
Register::SP => panic!("Cannot set 'SP' through set_register()"),
};
}
pub fn get_register_pair<M: MemoryMapper>(register: Register, state: &mut EmulatorState<M>) -> u16 {
match register {
Register::B => u16::from_le_bytes([state.c, state.b]),
Register::D => u16::from_le_bytes([state.e, state.d]),
Register::H => u16::from_le_bytes([state.l, state.h]),
Register::A => {
// the PSW looks like this: SZ0A0P1C
let flags: u8 = u8::from(state.cc.s) << 7 // bit 7
| u8::from(state.cc.z) << 6 // bit 6
//| u8::from(state.cc.a) << 4 // bit 4
| u8::from(state.cc.p) << 2 // bit 2
| 0x02 // bit 1
| u8::from(state.cc.c); // bit 0
u16::from_le_bytes([flags, state.a])
}
Register::SP => state.sp,
_ => unreachable!(),
}
}
pub fn set_register_pair<M: MemoryMapper>(
register: Register,
value: u16,
state: &mut EmulatorState<M>,
) {
let arr = value.to_le_bytes();
let high = arr[1];
let low = arr[0];
match register {
Register::B => {
state.b = high;
state.c = low;
}
Register::D => {
state.d = high;
state.e = low;
}
Register::H => {
state.h = high;
state.l = low;
}
Register::A => {
state.a = high;
// the PSW looks like this: SZ0A0P1C
state.cc.s = low & 0b1000_0000 > 0;
state.cc.z = low & 0b0100_0000 > 0;
debug_assert!(low & 0b0010_0000 == 0, "malformed PSW");
//state.cc.a = low & 0b0001_0000 > 0;
debug_assert!(low & 0b0000_1000 == 0, "malformed PSW");
state.cc.p = low & 0b0000_0100 > 0;
debug_assert!(low & 0b0000_0010 > 0, "malformed PSW");
state.cc.c = low & 0b0000_0001 > 0;
}
Register::SP => state.sp = value,
_ => unreachable!(),
}
}
/// Print values of registers and flags to stdout
pub fn print_state<M: MemoryMapper>(state: &EmulatorState<M>) {
// State
println!("\nsp\tpc\tei");
println!("{:#06x}\t{:#06x}\t{}", state.sp, state.pc, state.ei);
// Registers
println!("\nB\tC\tD\tE\tH\tL\tA");
println!(
"{:#04x}\t{:#04x}\t{:#04x}\t{:#04x}\t{:#04x}\t{:#04x}\t{:#04x}",
state.b, state.c, state.d, state.e, state.h, state.l, state.a
);
// Flags
println!("\nz\ts\tp\tc");
println!(
"{}\t{}\t{}\t{}",
state.cc.z, state.cc.s, state.cc.p, state.cc.c
);
}
#[cfg(test)]
mod tests {
use super::*;
use crate::mapper::TestMapper;
#[test]
fn read_word() {
let mut state = EmulatorState::<TestMapper>::default();
state.mapper.0[0x10] = 0x34;
state.mapper.0[0x11] = 0x12;
assert_eq!(state.read_word(0x10), 0x1234);
}
#[test]
fn write_word() {
let mut state = EmulatorState::<TestMapper>::default();
state.write_word(0x10, 0x1234);
assert_eq!(state.mapper.0[0x10..=0x11], [0x34, 0x12]);
}
#[test]
fn next_word_at_pc() {
let mut state = EmulatorState::<TestMapper>::default();
state.mapper.0[0x10] = 0x34;
state.mapper.0[0x11] = 0x12;
state.pc = 0x10;
assert_eq!(state.next_word(), 0x1234);
}
}