citra-canary/src/core/loader/elf.cpp
Subv d3634d4bf4 Core/ResourceLimits: Implemented the basic structure of ResourceLimits.
Implemented svcs GetResourceLimit, GetResourceLimitCurrentValues and GetResourceLimitLimitValues.

Note that the resource limits do not currently keep track of used objects, since we have no way to distinguish between an object created by the application, and an object created by some HLE module once we're inside Kernel::T::Create.
2015-05-14 22:50:13 -05:00

372 lines
9.8 KiB
C++

// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <string>
#include <memory>
#include "common/common_types.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/symbols.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/loader/elf.h"
#include "core/memory.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF Header Constants
// File type
enum ElfType {
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOPROC = 0xFF00,
ET_HIPROC = 0xFFFF,
};
// Machine/Architecture
enum ElfMachine {
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
};
// File version
#define EV_NONE 0
#define EV_CURRENT 1
// Identification index
#define EI_MAG0 0
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define EI_VERSION 6
#define EI_PAD 7
#define EI_NIDENT 16
// Sections constants
// Section types
#define SHT_NULL 0
#define SHT_PROGBITS 1
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
#define SHT_RELA 4
#define SHT_HASH 5
#define SHT_DYNAMIC 6
#define SHT_NOTE 7
#define SHT_NOBITS 8
#define SHT_REL 9
#define SHT_SHLIB 10
#define SHT_DYNSYM 11
#define SHT_LOPROC 0x70000000
#define SHT_HIPROC 0x7FFFFFFF
#define SHT_LOUSER 0x80000000
#define SHT_HIUSER 0xFFFFFFFF
// Section flags
enum ElfSectionFlags
{
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MASKPROC = 0xF0000000,
};
// Segment types
#define PT_NULL 0
#define PT_LOAD 1
#define PT_DYNAMIC 2
#define PT_INTERP 3
#define PT_NOTE 4
#define PT_SHLIB 5
#define PT_PHDR 6
#define PT_LOPROC 0x70000000
#define PT_HIPROC 0x7FFFFFFF
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF file header
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
};
// Section header
struct Elf32_Shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
};
// Segment header
struct Elf32_Phdr {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
};
// Symbol table entry
struct Elf32_Sym {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
};
// Relocation entries
struct Elf32_Rel {
Elf32_Addr r_offset;
Elf32_Word r_info;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// ElfReader class
typedef int SectionID;
class ElfReader {
private:
char *base;
u32 *base32;
Elf32_Ehdr *header;
Elf32_Phdr *segments;
Elf32_Shdr *sections;
u32 *sectionAddrs;
bool relocate;
u32 entryPoint;
public:
ElfReader(void *ptr);
u32 Read32(int off) const { return base32[off >> 2]; }
// Quick accessors
ElfType GetType() const { return (ElfType)(header->e_type); }
ElfMachine GetMachine() const { return (ElfMachine)(header->e_machine); }
u32 GetEntryPoint() const { return entryPoint; }
u32 GetFlags() const { return (u32)(header->e_flags); }
void LoadInto(u32 vaddr);
bool LoadSymbols();
int GetNumSegments() const { return (int)(header->e_phnum); }
int GetNumSections() const { return (int)(header->e_shnum); }
const u8 *GetPtr(int offset) const { return (u8*)base + offset; }
const char *GetSectionName(int section) const;
const u8 *GetSectionDataPtr(int section) const {
if (section < 0 || section >= header->e_shnum)
return nullptr;
if (sections[section].sh_type != SHT_NOBITS)
return GetPtr(sections[section].sh_offset);
else
return nullptr;
}
bool IsCodeSection(int section) const {
return sections[section].sh_type == SHT_PROGBITS;
}
const u8 *GetSegmentPtr(int segment) {
return GetPtr(segments[segment].p_offset);
}
u32 GetSectionAddr(SectionID section) const { return sectionAddrs[section]; }
unsigned int GetSectionSize(SectionID section) const { return sections[section].sh_size; }
SectionID GetSectionByName(const char *name, int firstSection = 0) const; //-1 for not found
bool DidRelocate() const {
return relocate;
}
};
ElfReader::ElfReader(void *ptr) {
base = (char*)ptr;
base32 = (u32*)ptr;
header = (Elf32_Ehdr*)ptr;
segments = (Elf32_Phdr*)(base + header->e_phoff);
sections = (Elf32_Shdr*)(base + header->e_shoff);
entryPoint = header->e_entry;
LoadSymbols();
}
const char *ElfReader::GetSectionName(int section) const {
if (sections[section].sh_type == SHT_NULL)
return nullptr;
int name_offset = sections[section].sh_name;
const char* ptr = (char*)GetSectionDataPtr(header->e_shstrndx);
if (ptr)
return ptr + name_offset;
return nullptr;
}
void ElfReader::LoadInto(u32 vaddr) {
LOG_DEBUG(Loader, "String section: %i", header->e_shstrndx);
// Should we relocate?
relocate = (header->e_type != ET_EXEC);
if (relocate) {
LOG_DEBUG(Loader, "Relocatable module");
entryPoint += vaddr;
} else {
LOG_DEBUG(Loader, "Prerelocated executable");
}
LOG_DEBUG(Loader, "%i segments:", header->e_phnum);
// First pass : Get the bits into RAM
u32 segment_addr[32];
u32 base_addr = relocate ? vaddr : 0;
for (unsigned i = 0; i < header->e_phnum; i++) {
Elf32_Phdr* p = segments + i;
LOG_DEBUG(Loader, "Type: %i Vaddr: %08x Filesz: %i Memsz: %i ", p->p_type, p->p_vaddr,
p->p_filesz, p->p_memsz);
if (p->p_type == PT_LOAD) {
segment_addr[i] = base_addr + p->p_vaddr;
memcpy(Memory::GetPointer(segment_addr[i]), GetSegmentPtr(i), p->p_filesz);
LOG_DEBUG(Loader, "Loadable Segment Copied to %08x, size %08x", segment_addr[i],
p->p_memsz);
}
}
LOG_DEBUG(Loader, "Done loading.");
}
SectionID ElfReader::GetSectionByName(const char *name, int firstSection) const {
for (int i = firstSection; i < header->e_shnum; i++) {
const char *secname = GetSectionName(i);
if (secname != nullptr && strcmp(name, secname) == 0)
return i;
}
return -1;
}
bool ElfReader::LoadSymbols() {
bool hasSymbols = false;
SectionID sec = GetSectionByName(".symtab");
if (sec != -1) {
int stringSection = sections[sec].sh_link;
const char *stringBase = (const char *)GetSectionDataPtr(stringSection);
//We have a symbol table!
Elf32_Sym* symtab = (Elf32_Sym *)(GetSectionDataPtr(sec));
unsigned int numSymbols = sections[sec].sh_size / sizeof(Elf32_Sym);
for (unsigned sym = 0; sym < numSymbols; sym++) {
int size = symtab[sym].st_size;
if (size == 0)
continue;
int type = symtab[sym].st_info & 0xF;
const char *name = stringBase + symtab[sym].st_name;
Symbols::Add(symtab[sym].st_value, name, size, type);
hasSymbols = true;
}
}
return hasSymbols;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace
namespace Loader {
FileType AppLoader_ELF::IdentifyType(FileUtil::IOFile& file) {
u32 magic;
file.Seek(0, SEEK_SET);
if (1 != file.ReadArray<u32>(&magic, 1))
return FileType::Error;
if (MakeMagic('\x7f', 'E', 'L', 'F') == magic)
return FileType::ELF;
return FileType::Error;
}
ResultStatus AppLoader_ELF::Load() {
if (is_loaded)
return ResultStatus::ErrorAlreadyLoaded;
if (!file->IsOpen())
return ResultStatus::Error;
// Reset read pointer in case this file has been read before.
file->Seek(0, SEEK_SET);
u32 size = static_cast<u32>(file->GetSize());
std::unique_ptr<u8[]> buffer(new u8[size]);
if (file->ReadBytes(&buffer[0], size) != size)
return ResultStatus::Error;
Kernel::g_current_process = Kernel::Process::Create(filename, 0);
Kernel::g_current_process->svc_access_mask.set();
Kernel::g_current_process->address_mappings = default_address_mappings;
// Attach the default resource limit (APPLICATION) to the process
Kernel::g_current_process->resource_limit = Kernel::ResourceLimit::GetForCategory(Kernel::ResourceLimitCategory::APPLICATION);
ElfReader elf_reader(&buffer[0]);
elf_reader.LoadInto(Memory::PROCESS_IMAGE_VADDR);
// TODO: Fill application title
Kernel::g_current_process->Run(elf_reader.GetEntryPoint(), 48, Kernel::DEFAULT_STACK_SIZE);
is_loaded = true;
return ResultStatus::Success;
}
} // namespace Loader