mirror of
https://github.com/citra-emu/citra-nightly.git
synced 2024-12-27 20:55:47 +00:00
gl_rasterizer: Fix issue with interpolation of opposite quaternions.
This commit is contained in:
parent
b694423d09
commit
8e9318f20a
|
@ -158,12 +158,34 @@ void RasterizerOpenGL::Reset() {
|
||||||
res_cache.InvalidateAll();
|
res_cache.InvalidateAll();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is a helper function to resolve an issue with opposite quaternions being interpolated by
|
||||||
|
* OpenGL. See below for a detailed description of this issue (yuriks):
|
||||||
|
*
|
||||||
|
* For any rotation, there are two quaternions Q, and -Q, that represent the same rotation. If you
|
||||||
|
* interpolate two quaternions that are opposite, instead of going from one rotation to another
|
||||||
|
* using the shortest path, you'll go around the longest path. You can test if two quaternions are
|
||||||
|
* opposite by checking if Dot(Q1, W2) < 0. In that case, you can flip either of them, therefore
|
||||||
|
* making Dot(-Q1, W2) positive.
|
||||||
|
*
|
||||||
|
* NOTE: This solution corrects this issue per-vertex before passing the quaternions to OpenGL. This
|
||||||
|
* should be correct for nearly all cases, however a more correct implementation (but less trivial
|
||||||
|
* and perhaps unnecessary) would be to handle this per-fragment, by interpolating the quaternions
|
||||||
|
* manually using two Lerps, and doing this correction before each Lerp.
|
||||||
|
*/
|
||||||
|
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) {
|
||||||
|
Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() };
|
||||||
|
Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() };
|
||||||
|
|
||||||
|
return (Math::Dot(a, b) < 0.f);
|
||||||
|
}
|
||||||
|
|
||||||
void RasterizerOpenGL::AddTriangle(const Pica::Shader::OutputVertex& v0,
|
void RasterizerOpenGL::AddTriangle(const Pica::Shader::OutputVertex& v0,
|
||||||
const Pica::Shader::OutputVertex& v1,
|
const Pica::Shader::OutputVertex& v1,
|
||||||
const Pica::Shader::OutputVertex& v2) {
|
const Pica::Shader::OutputVertex& v2) {
|
||||||
vertex_batch.emplace_back(v0);
|
vertex_batch.emplace_back(v0, false);
|
||||||
vertex_batch.emplace_back(v1);
|
vertex_batch.emplace_back(v1, AreQuaternionsOpposite(v0.quat, v1.quat));
|
||||||
vertex_batch.emplace_back(v2);
|
vertex_batch.emplace_back(v2, AreQuaternionsOpposite(v0.quat, v2.quat));
|
||||||
}
|
}
|
||||||
|
|
||||||
void RasterizerOpenGL::DrawTriangles() {
|
void RasterizerOpenGL::DrawTriangles() {
|
||||||
|
|
|
@ -248,7 +248,7 @@ private:
|
||||||
|
|
||||||
/// Structure that the hardware rendered vertices are composed of
|
/// Structure that the hardware rendered vertices are composed of
|
||||||
struct HardwareVertex {
|
struct HardwareVertex {
|
||||||
HardwareVertex(const Pica::Shader::OutputVertex& v) {
|
HardwareVertex(const Pica::Shader::OutputVertex& v, bool flip_quaternion) {
|
||||||
position[0] = v.pos.x.ToFloat32();
|
position[0] = v.pos.x.ToFloat32();
|
||||||
position[1] = v.pos.y.ToFloat32();
|
position[1] = v.pos.y.ToFloat32();
|
||||||
position[2] = v.pos.z.ToFloat32();
|
position[2] = v.pos.z.ToFloat32();
|
||||||
|
@ -270,6 +270,12 @@ private:
|
||||||
view[0] = v.view.x.ToFloat32();
|
view[0] = v.view.x.ToFloat32();
|
||||||
view[1] = v.view.y.ToFloat32();
|
view[1] = v.view.y.ToFloat32();
|
||||||
view[2] = v.view.z.ToFloat32();
|
view[2] = v.view.z.ToFloat32();
|
||||||
|
|
||||||
|
if (flip_quaternion) {
|
||||||
|
for (float& x : normquat) {
|
||||||
|
x = -x;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GLfloat position[4];
|
GLfloat position[4];
|
||||||
|
|
Loading…
Reference in a new issue