Merge pull request #4616 from wwylele/core-global-clean

Cleanup System::GetInstance reference - Part 1
This commit is contained in:
Weiyi Wang 2019-02-25 10:22:02 -05:00 committed by GitHub
commit c265f3f507
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
34 changed files with 234 additions and 160 deletions

View file

@ -73,7 +73,7 @@ class DynarmicUserCallbacks final : public Dynarmic::A32::UserCallbacks {
public:
explicit DynarmicUserCallbacks(ARM_Dynarmic& parent)
: parent(parent), timing(parent.system.CoreTiming()), svc_context(parent.system),
memory(parent.system.Memory()) {}
memory(parent.memory) {}
~DynarmicUserCallbacks() = default;
std::uint8_t MemoryRead8(VAddr vaddr) override {
@ -163,9 +163,10 @@ public:
Memory::MemorySystem& memory;
};
ARM_Dynarmic::ARM_Dynarmic(Core::System& system, PrivilegeMode initial_mode)
: system(system), cb(std::make_unique<DynarmicUserCallbacks>(*this)) {
interpreter_state = std::make_shared<ARMul_State>(system, initial_mode);
ARM_Dynarmic::ARM_Dynarmic(Core::System* system, Memory::MemorySystem& memory,
PrivilegeMode initial_mode)
: system(*system), memory(memory), cb(std::make_unique<DynarmicUserCallbacks>(*this)) {
interpreter_state = std::make_shared<ARMul_State>(system, memory, initial_mode);
PageTableChanged();
}
@ -174,7 +175,7 @@ ARM_Dynarmic::~ARM_Dynarmic() = default;
MICROPROFILE_DEFINE(ARM_Jit, "ARM JIT", "ARM JIT", MP_RGB(255, 64, 64));
void ARM_Dynarmic::Run() {
ASSERT(system.Memory().GetCurrentPageTable() == current_page_table);
ASSERT(memory.GetCurrentPageTable() == current_page_table);
MICROPROFILE_SCOPE(ARM_Jit);
jit->Run();
@ -281,7 +282,7 @@ void ARM_Dynarmic::InvalidateCacheRange(u32 start_address, std::size_t length) {
}
void ARM_Dynarmic::PageTableChanged() {
current_page_table = system.Memory().GetCurrentPageTable();
current_page_table = memory.GetCurrentPageTable();
auto iter = jits.find(current_page_table);
if (iter != jits.end()) {

View file

@ -13,6 +13,7 @@
namespace Memory {
struct PageTable;
class MemorySystem;
} // namespace Memory
namespace Core {
@ -23,7 +24,7 @@ class DynarmicUserCallbacks;
class ARM_Dynarmic final : public ARM_Interface {
public:
ARM_Dynarmic(Core::System& system, PrivilegeMode initial_mode);
ARM_Dynarmic(Core::System* system, Memory::MemorySystem& memory, PrivilegeMode initial_mode);
~ARM_Dynarmic();
void Run() override;
@ -55,6 +56,7 @@ public:
private:
friend class DynarmicUserCallbacks;
Core::System& system;
Memory::MemorySystem& memory;
std::unique_ptr<DynarmicUserCallbacks> cb;
std::unique_ptr<Dynarmic::A32::Jit> MakeJit();

View file

@ -68,14 +68,17 @@ private:
u32 fpexc;
};
ARM_DynCom::ARM_DynCom(Core::System& system, PrivilegeMode initial_mode) : system(system) {
state = std::make_unique<ARMul_State>(system, initial_mode);
ARM_DynCom::ARM_DynCom(Core::System* system, Memory::MemorySystem& memory,
PrivilegeMode initial_mode)
: system(system) {
state = std::make_unique<ARMul_State>(system, memory, initial_mode);
}
ARM_DynCom::~ARM_DynCom() {}
void ARM_DynCom::Run() {
ExecuteInstructions(std::max<s64>(system.CoreTiming().GetDowncount(), 0));
DEBUG_ASSERT(system != nullptr);
ExecuteInstructions(std::max<s64>(system->CoreTiming().GetDowncount(), 0));
}
void ARM_DynCom::Step() {
@ -146,7 +149,9 @@ void ARM_DynCom::SetCP15Register(CP15Register reg, u32 value) {
void ARM_DynCom::ExecuteInstructions(u64 num_instructions) {
state->NumInstrsToExecute = num_instructions;
unsigned ticks_executed = InterpreterMainLoop(state.get());
system.CoreTiming().AddTicks(ticks_executed);
if (system != nullptr) {
system->CoreTiming().AddTicks(ticks_executed);
}
state->ServeBreak();
}

View file

@ -14,9 +14,14 @@ namespace Core {
struct System;
}
namespace Memory {
class MemorySystem;
}
class ARM_DynCom final : public ARM_Interface {
public:
explicit ARM_DynCom(Core::System& system, PrivilegeMode initial_mode);
explicit ARM_DynCom(Core::System* system, Memory::MemorySystem& memory,
PrivilegeMode initial_mode);
~ARM_DynCom();
void Run() override;
@ -48,6 +53,6 @@ public:
private:
void ExecuteInstructions(u64 num_instructions);
Core::System& system;
Core::System* system;
std::unique_ptr<ARMul_State> state;
};

View file

@ -811,7 +811,7 @@ MICROPROFILE_DEFINE(DynCom_Decode, "DynCom", "Decode", MP_RGB(255, 64, 64));
static unsigned int InterpreterTranslateInstruction(const ARMul_State* cpu, const u32 phys_addr,
ARM_INST_PTR& inst_base) {
u32 inst_size = 4;
u32 inst = cpu->system.Memory().Read32(phys_addr & 0xFFFFFFFC);
u32 inst = cpu->memory.Read32(phys_addr & 0xFFFFFFFC);
// If we are in Thumb mode, we'll translate one Thumb instruction to the corresponding ARM
// instruction
@ -3859,12 +3859,13 @@ SUB_INST : {
}
SWI_INST : {
if (inst_base->cond == ConditionCode::AL || CondPassed(cpu, inst_base->cond)) {
DEBUG_ASSERT(cpu->system != nullptr);
swi_inst* const inst_cream = (swi_inst*)inst_base->component;
cpu->system.CoreTiming().AddTicks(num_instrs);
cpu->system->CoreTiming().AddTicks(num_instrs);
cpu->NumInstrsToExecute =
num_instrs >= cpu->NumInstrsToExecute ? 0 : cpu->NumInstrsToExecute - num_instrs;
num_instrs = 0;
Kernel::SVCContext{cpu->system}.CallSVC(inst_cream->num & 0xFFFF);
Kernel::SVCContext{*cpu->system}.CallSVC(inst_cream->num & 0xFFFF);
// The kernel would call ERET to get here, which clears exclusive memory state.
cpu->UnsetExclusiveMemoryAddress();
}

View file

@ -10,7 +10,9 @@
#include "core/core.h"
#include "core/memory.h"
ARMul_State::ARMul_State(Core::System& system, PrivilegeMode initial_mode) : system(system) {
ARMul_State::ARMul_State(Core::System* system, Memory::MemorySystem& memory,
PrivilegeMode initial_mode)
: system(system), memory(memory) {
Reset();
ChangePrivilegeMode(initial_mode);
}
@ -191,13 +193,13 @@ static void CheckMemoryBreakpoint(u32 address, GDBStub::BreakpointType type) {
u8 ARMul_State::ReadMemory8(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
return system.Memory().Read8(address);
return memory.Read8(address);
}
u16 ARMul_State::ReadMemory16(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u16 data = system.Memory().Read16(address);
u16 data = memory.Read16(address);
if (InBigEndianMode())
data = Common::swap16(data);
@ -208,7 +210,7 @@ u16 ARMul_State::ReadMemory16(u32 address) const {
u32 ARMul_State::ReadMemory32(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u32 data = system.Memory().Read32(address);
u32 data = memory.Read32(address);
if (InBigEndianMode())
data = Common::swap32(data);
@ -219,7 +221,7 @@ u32 ARMul_State::ReadMemory32(u32 address) const {
u64 ARMul_State::ReadMemory64(u32 address) const {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Read);
u64 data = system.Memory().Read64(address);
u64 data = memory.Read64(address);
if (InBigEndianMode())
data = Common::swap64(data);
@ -230,7 +232,7 @@ u64 ARMul_State::ReadMemory64(u32 address) const {
void ARMul_State::WriteMemory8(u32 address, u8 data) {
CheckMemoryBreakpoint(address, GDBStub::BreakpointType::Write);
system.Memory().Write8(address, data);
memory.Write8(address, data);
}
void ARMul_State::WriteMemory16(u32 address, u16 data) {
@ -239,7 +241,7 @@ void ARMul_State::WriteMemory16(u32 address, u16 data) {
if (InBigEndianMode())
data = Common::swap16(data);
system.Memory().Write16(address, data);
memory.Write16(address, data);
}
void ARMul_State::WriteMemory32(u32 address, u32 data) {
@ -248,7 +250,7 @@ void ARMul_State::WriteMemory32(u32 address, u32 data) {
if (InBigEndianMode())
data = Common::swap32(data);
system.Memory().Write32(address, data);
memory.Write32(address, data);
}
void ARMul_State::WriteMemory64(u32 address, u64 data) {
@ -257,7 +259,7 @@ void ARMul_State::WriteMemory64(u32 address, u64 data) {
if (InBigEndianMode())
data = Common::swap64(data);
system.Memory().Write64(address, data);
memory.Write64(address, data);
}
// Reads from the CP15 registers. Used with implementation of the MRC instruction.
@ -603,8 +605,9 @@ void ARMul_State::ServeBreak() {
if (last_bkpt_hit) {
Reg[15] = last_bkpt.address;
}
Kernel::Thread* thread = system.Kernel().GetThreadManager().GetCurrentThread();
system.CPU().SaveContext(thread->context);
DEBUG_ASSERT(system != nullptr);
Kernel::Thread* thread = system->Kernel().GetThreadManager().GetCurrentThread();
system->CPU().SaveContext(thread->context);
if (last_bkpt_hit || GDBStub::GetCpuStepFlag()) {
last_bkpt_hit = false;
GDBStub::Break();

View file

@ -27,6 +27,10 @@ namespace Core {
class System;
}
namespace Memory {
class MemorySystem;
}
// Signal levels
enum { LOW = 0, HIGH = 1, LOWHIGH = 1, HIGHLOW = 2 };
@ -143,7 +147,8 @@ enum {
struct ARMul_State final {
public:
explicit ARMul_State(Core::System& system, PrivilegeMode initial_mode);
explicit ARMul_State(Core::System* system, Memory::MemorySystem& memory,
PrivilegeMode initial_mode);
void ChangePrivilegeMode(u32 new_mode);
void Reset();
@ -201,7 +206,8 @@ public:
void ServeBreak();
Core::System& system;
Core::System* system;
Memory::MemorySystem& memory;
std::array<u32, 16> Reg{}; // The current register file
std::array<u32, 2> Reg_usr{};

View file

@ -174,19 +174,23 @@ System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) {
timing = std::make_unique<Timing>();
kernel = std::make_unique<Kernel::KernelSystem>(*memory, system_mode);
kernel = std::make_unique<Kernel::KernelSystem>(*memory, *timing,
[this] { PrepareReschedule(); }, system_mode);
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
cpu_core = std::make_unique<ARM_Dynarmic>(*this, USER32MODE);
cpu_core = std::make_unique<ARM_Dynarmic>(this, *memory, USER32MODE);
#else
cpu_core = std::make_unique<ARM_DynCom>(*this, USER32MODE);
cpu_core = std::make_unique<ARM_DynCom>(this, *memory, USER32MODE);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
cpu_core = std::make_unique<ARM_DynCom>(*this, USER32MODE);
cpu_core = std::make_unique<ARM_DynCom>(this, *memory, USER32MODE);
}
kernel->GetThreadManager().SetCPU(*cpu_core);
memory->SetCPU(*cpu_core);
if (Settings::values.enable_dsp_lle) {
dsp_core = std::make_unique<AudioCore::DspLle>(*memory,
Settings::values.enable_dsp_lle_multithread);

View file

@ -270,8 +270,6 @@ private:
std::unique_ptr<Service::FS::ArchiveManager> archive_manager;
public: // HACK: this is temporary exposed for tests,
// due to WIP kernel refactor causing desync state in memory
std::unique_ptr<Memory::MemorySystem> memory;
std::unique_ptr<Kernel::KernelSystem> kernel;
std::unique_ptr<Timing> timing;

View file

@ -16,11 +16,11 @@
namespace Kernel {
ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread> dst_thread,
VAddr src_address, VAddr dst_address,
ResultCode TranslateCommandBuffer(Memory::MemorySystem& memory, SharedPtr<Thread> src_thread,
SharedPtr<Thread> dst_thread, VAddr src_address,
VAddr dst_address,
std::vector<MappedBufferContext>& mapped_buffer_context,
bool reply) {
Memory::MemorySystem& memory = Core::System::GetInstance().Memory();
auto& src_process = src_thread->owner_process;
auto& dst_process = dst_thread->owner_process;

View file

@ -10,6 +10,10 @@
#include "core/hle/ipc.h"
#include "core/hle/kernel/thread.h"
namespace Memory {
class MemorySystem;
}
namespace Kernel {
struct MappedBufferContext {
@ -23,8 +27,9 @@ struct MappedBufferContext {
};
/// Performs IPC command buffer translation from one process to another.
ResultCode TranslateCommandBuffer(SharedPtr<Thread> src_thread, SharedPtr<Thread> dst_thread,
VAddr src_address, VAddr dst_address,
ResultCode TranslateCommandBuffer(Memory::MemorySystem& memory, SharedPtr<Thread> src_thread,
SharedPtr<Thread> dst_thread, VAddr src_address,
VAddr dst_address,
std::vector<MappedBufferContext>& mapped_buffer_context,
bool reply);
} // namespace Kernel

View file

@ -16,12 +16,15 @@
namespace Kernel {
/// Initialize the kernel
KernelSystem::KernelSystem(Memory::MemorySystem& memory, u32 system_mode) : memory(memory) {
KernelSystem::KernelSystem(Memory::MemorySystem& memory, Core::Timing& timing,
std::function<void()> prepare_reschedule_callback, u32 system_mode)
: memory(memory), timing(timing),
prepare_reschedule_callback(std::move(prepare_reschedule_callback)) {
MemoryInit(system_mode);
resource_limits = std::make_unique<ResourceLimitList>(*this);
thread_manager = std::make_unique<ThreadManager>(*this);
timer_manager = std::make_unique<TimerManager>();
timer_manager = std::make_unique<TimerManager>(timing);
}
/// Shutdown the kernel

View file

@ -6,6 +6,7 @@
#include <array>
#include <atomic>
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
@ -27,6 +28,10 @@ namespace Memory {
class MemorySystem;
}
namespace Core {
class Timing;
}
namespace Kernel {
class AddressArbiter;
@ -78,7 +83,8 @@ using SharedPtr = boost::intrusive_ptr<T>;
class KernelSystem {
public:
explicit KernelSystem(Memory::MemorySystem& memory, u32 system_mode);
explicit KernelSystem(Memory::MemorySystem& memory, Core::Timing& timing,
std::function<void()> prepare_reschedule_callback, u32 system_mode);
~KernelSystem();
/**
@ -224,14 +230,22 @@ public:
/// Adds a port to the named port table
void AddNamedPort(std::string name, SharedPtr<ClientPort> port);
void PrepareReschedule() {
prepare_reschedule_callback();
}
/// Map of named ports managed by the kernel, which can be retrieved using the ConnectToPort
std::unordered_map<std::string, SharedPtr<ClientPort>> named_ports;
Memory::MemorySystem& memory;
Core::Timing& timing;
private:
void MemoryInit(u32 mem_type);
std::function<void()> prepare_reschedule_callback;
std::unique_ptr<ResourceLimitList> resource_limits;
std::atomic<u32> next_object_id{0};

View file

@ -66,7 +66,7 @@ void KernelSystem::MemoryInit(u32 mem_type) {
config_mem.sys_mem_alloc = memory_regions[1].size;
config_mem.base_mem_alloc = memory_regions[2].size;
shared_page_handler = std::make_unique<SharedPage::Handler>();
shared_page_handler = std::make_unique<SharedPage::Handler>(timing);
}
MemoryRegionInfo* KernelSystem::GetMemoryRegion(MemoryRegion region) {

View file

@ -24,7 +24,7 @@ void ReleaseThreadMutexes(Thread* thread) {
thread->held_mutexes.clear();
}
Mutex::Mutex(KernelSystem& kernel) : WaitObject(kernel) {}
Mutex::Mutex(KernelSystem& kernel) : WaitObject(kernel), kernel(kernel) {}
Mutex::~Mutex() {}
SharedPtr<Mutex> KernelSystem::CreateMutex(bool initial_locked, std::string name) {
@ -54,7 +54,7 @@ void Mutex::Acquire(Thread* thread) {
thread->held_mutexes.insert(this);
holding_thread = thread;
thread->UpdatePriority();
Core::System::GetInstance().PrepareReschedule();
kernel.PrepareReschedule();
}
lock_count++;
@ -87,7 +87,7 @@ ResultCode Mutex::Release(Thread* thread) {
holding_thread->UpdatePriority();
holding_thread = nullptr;
WakeupAllWaitingThreads();
Core::System::GetInstance().PrepareReschedule();
kernel.PrepareReschedule();
}
return RESULT_SUCCESS;

View file

@ -57,6 +57,7 @@ private:
~Mutex() override;
friend class KernelSystem;
KernelSystem& kernel;
};
/**

View file

@ -37,7 +37,7 @@ static std::chrono::seconds GetInitTime() {
}
}
Handler::Handler() {
Handler::Handler(Core::Timing& timing) : timing(timing) {
std::memset(&shared_page, 0, sizeof(shared_page));
shared_page.running_hw = 0x1; // product
@ -54,9 +54,9 @@ Handler::Handler() {
init_time = GetInitTime();
using namespace std::placeholders;
update_time_event = Core::System::GetInstance().CoreTiming().RegisterEvent(
"SharedPage::UpdateTimeCallback", std::bind(&Handler::UpdateTimeCallback, this, _1, _2));
Core::System::GetInstance().CoreTiming().ScheduleEvent(0, update_time_event);
update_time_event = timing.RegisterEvent("SharedPage::UpdateTimeCallback",
std::bind(&Handler::UpdateTimeCallback, this, _1, _2));
timing.ScheduleEvent(0, update_time_event);
float slidestate =
Settings::values.toggle_3d ? (float_le)Settings::values.factor_3d / 100 : 0.0f;
@ -66,8 +66,7 @@ Handler::Handler() {
/// Gets system time in 3DS format. The epoch is Jan 1900, and the unit is millisecond.
u64 Handler::GetSystemTime() const {
std::chrono::milliseconds now =
init_time + std::chrono::duration_cast<std::chrono::milliseconds>(
Core::System::GetInstance().CoreTiming().GetGlobalTimeUs());
init_time + std::chrono::duration_cast<std::chrono::milliseconds>(timing.GetGlobalTimeUs());
// 3DS system does't allow user to set a time before Jan 1 2000,
// so we use it as an auxiliary epoch to calculate the console time.
@ -98,15 +97,14 @@ void Handler::UpdateTimeCallback(u64 userdata, int cycles_late) {
shared_page.date_time_counter % 2 ? shared_page.date_time_0 : shared_page.date_time_1;
date_time.date_time = GetSystemTime();
date_time.update_tick = Core::System::GetInstance().CoreTiming().GetTicks();
date_time.update_tick = timing.GetTicks();
date_time.tick_to_second_coefficient = BASE_CLOCK_RATE_ARM11;
date_time.tick_offset = 0;
++shared_page.date_time_counter;
// system time is updated hourly
Core::System::GetInstance().CoreTiming().ScheduleEvent(msToCycles(60 * 60 * 1000) - cycles_late,
update_time_event);
timing.ScheduleEvent(msToCycles(60 * 60 * 1000) - cycles_late, update_time_event);
}
void Handler::SetMacAddress(const MacAddress& addr) {

View file

@ -23,7 +23,8 @@
namespace Core {
struct TimingEventType;
}
class Timing;
} // namespace Core
namespace SharedPage {
@ -83,7 +84,7 @@ static_assert(sizeof(SharedPageDef) == Memory::SHARED_PAGE_SIZE,
class Handler {
public:
Handler();
Handler(Core::Timing& timing);
void SetMacAddress(const MacAddress&);
@ -98,6 +99,7 @@ public:
private:
u64 GetSystemTime() const;
void UpdateTimeCallback(u64 userdata, int cycles_late);
Core::Timing& timing;
Core::TimingEventType* update_time_event;
std::chrono::seconds init_time;

View file

@ -592,7 +592,8 @@ ResultCode SVC::WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle
}
}
static ResultCode ReceiveIPCRequest(SharedPtr<ServerSession> server_session,
static ResultCode ReceiveIPCRequest(Memory::MemorySystem& memory,
SharedPtr<ServerSession> server_session,
SharedPtr<Thread> thread) {
if (server_session->parent->client == nullptr) {
return ERR_SESSION_CLOSED_BY_REMOTE;
@ -602,7 +603,7 @@ static ResultCode ReceiveIPCRequest(SharedPtr<ServerSession> server_session,
VAddr source_address = server_session->currently_handling->GetCommandBufferAddress();
ResultCode translation_result =
TranslateCommandBuffer(server_session->currently_handling, thread, source_address,
TranslateCommandBuffer(memory, server_session->currently_handling, thread, source_address,
target_address, server_session->mapped_buffer_context, false);
// If a translation error occurred, immediately resume the client thread.
@ -669,7 +670,7 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
VAddr target_address = request_thread->GetCommandBufferAddress();
ResultCode translation_result =
TranslateCommandBuffer(thread, request_thread, source_address, target_address,
TranslateCommandBuffer(memory, thread, request_thread, source_address, target_address,
session->mapped_buffer_context, true);
// Note: The real kernel seems to always panic if the Server->Client buffer translation
@ -705,7 +706,7 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
return RESULT_SUCCESS;
auto server_session = static_cast<ServerSession*>(object);
return ReceiveIPCRequest(server_session, thread);
return ReceiveIPCRequest(memory, server_session, thread);
}
// No objects were ready to be acquired, prepare to suspend the thread.
@ -721,8 +722,9 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
thread->wait_objects = std::move(objects);
thread->wakeup_callback = [](ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
thread->wakeup_callback = [& memory = this->memory](ThreadWakeupReason reason,
SharedPtr<Thread> thread,
SharedPtr<WaitObject> object) {
ASSERT(thread->status == ThreadStatus::WaitSynchAny);
ASSERT(reason == ThreadWakeupReason::Signal);
@ -730,7 +732,7 @@ ResultCode SVC::ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_co
if (object->GetHandleType() == HandleType::ServerSession) {
auto server_session = DynamicObjectCast<ServerSession>(object);
result = ReceiveIPCRequest(server_session, thread);
result = ReceiveIPCRequest(memory, server_session, thread);
}
thread->SetWaitSynchronizationResult(result);

View file

@ -38,7 +38,7 @@ u32 ThreadManager::NewThreadId() {
}
Thread::Thread(KernelSystem& kernel)
: WaitObject(kernel), context(Core::CPU().NewContext()),
: WaitObject(kernel), context(kernel.GetThreadManager().NewContext()),
thread_manager(kernel.GetThreadManager()) {}
Thread::~Thread() {}
@ -48,8 +48,7 @@ Thread* ThreadManager::GetCurrentThread() const {
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
Core::System::GetInstance().CoreTiming().UnscheduleEvent(thread_manager.ThreadWakeupEventType,
thread_id);
thread_manager.kernel.timing.UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id);
thread_manager.wakeup_callback_table.erase(thread_id);
// Clean up thread from ready queue
@ -81,12 +80,12 @@ void Thread::Stop() {
void ThreadManager::SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread();
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
Core::Timing& timing = kernel.timing;
// Save context for previous thread
if (previous_thread) {
previous_thread->last_running_ticks = timing.GetTicks();
Core::CPU().SaveContext(previous_thread->context);
cpu->SaveContext(previous_thread->context);
if (previous_thread->status == ThreadStatus::Running) {
// This is only the case when a reschedule is triggered without the current thread
@ -117,8 +116,8 @@ void ThreadManager::SwitchContext(Thread* new_thread) {
&current_thread->owner_process->vm_manager.page_table);
}
Core::CPU().LoadContext(new_thread->context);
Core::CPU().SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
cpu->LoadContext(new_thread->context);
cpu->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
} else {
current_thread = nullptr;
// Note: We do not reset the current process and current page table when idling because
@ -186,8 +185,8 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
if (nanoseconds == -1)
return;
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType, thread_id);
thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds),
thread_manager.ThreadWakeupEventType, thread_id);
}
void Thread::ResumeFromWait() {
@ -225,7 +224,7 @@ void Thread::ResumeFromWait() {
thread_manager.ready_queue.push_back(current_priority, this);
status = ThreadStatus::Ready;
Core::System::GetInstance().PrepareReschedule();
thread_manager.kernel.PrepareReschedule();
}
void ThreadManager::DebugThreadQueue() {
@ -320,7 +319,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = Core::System::GetInstance().CoreTiming().GetTicks();
thread->last_running_ticks = timing.GetTicks();
thread->processor_id = processor_id;
thread->wait_objects.clear();
thread->wait_address = 0;
@ -462,9 +461,10 @@ VAddr Thread::GetCommandBufferAddress() const {
}
ThreadManager::ThreadManager(Kernel::KernelSystem& kernel) : kernel(kernel) {
ThreadWakeupEventType = Core::System::GetInstance().CoreTiming().RegisterEvent(
"ThreadWakeupCallback",
[this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); });
ThreadWakeupEventType =
kernel.timing.RegisterEvent("ThreadWakeupCallback", [this](u64 thread_id, s64 cycle_late) {
ThreadWakeupCallback(thread_id, cycle_late);
});
}
ThreadManager::~ThreadManager() {

View file

@ -101,6 +101,14 @@ public:
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
void SetCPU(ARM_Interface& cpu) {
this->cpu = &cpu;
}
std::unique_ptr<ARM_Interface::ThreadContext> NewContext() {
return cpu->NewContext();
}
private:
/**
* Switches the CPU's active thread context to that of the specified thread
@ -122,6 +130,7 @@ private:
void ThreadWakeupCallback(u64 thread_id, s64 cycles_late);
Kernel::KernelSystem& kernel;
ARM_Interface* cpu;
u32 next_thread_id = 1;
SharedPtr<Thread> current_thread;

View file

@ -14,7 +14,8 @@
namespace Kernel {
Timer::Timer(KernelSystem& kernel) : WaitObject(kernel), timer_manager(kernel.GetTimerManager()) {}
Timer::Timer(KernelSystem& kernel)
: WaitObject(kernel), kernel(kernel), timer_manager(kernel.GetTimerManager()) {}
Timer::~Timer() {
Cancel();
timer_manager.timer_callback_table.erase(callback_id);
@ -56,14 +57,13 @@ void Timer::Set(s64 initial, s64 interval) {
// Immediately invoke the callback
Signal(0);
} else {
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(initial), timer_manager.timer_callback_event_type, callback_id);
kernel.timing.ScheduleEvent(nsToCycles(initial), timer_manager.timer_callback_event_type,
callback_id);
}
}
void Timer::Cancel() {
Core::System::GetInstance().CoreTiming().UnscheduleEvent(
timer_manager.timer_callback_event_type, callback_id);
kernel.timing.UnscheduleEvent(timer_manager.timer_callback_event_type, callback_id);
}
void Timer::Clear() {
@ -87,9 +87,8 @@ void Timer::Signal(s64 cycles_late) {
if (interval_delay != 0) {
// Reschedule the timer with the interval delay
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(interval_delay) - cycles_late, timer_manager.timer_callback_event_type,
callback_id);
kernel.timing.ScheduleEvent(nsToCycles(interval_delay) - cycles_late,
timer_manager.timer_callback_event_type, callback_id);
}
}
@ -105,10 +104,11 @@ void TimerManager::TimerCallback(u64 callback_id, s64 cycles_late) {
timer->Signal(cycles_late);
}
TimerManager::TimerManager() {
timer_callback_event_type = Core::System::GetInstance().CoreTiming().RegisterEvent(
"TimerCallback",
[this](u64 thread_id, s64 cycle_late) { TimerCallback(thread_id, cycle_late); });
TimerManager::TimerManager(Core::Timing& timing) : timing(timing) {
timer_callback_event_type =
timing.RegisterEvent("TimerCallback", [this](u64 thread_id, s64 cycle_late) {
TimerCallback(thread_id, cycle_late);
});
}
} // namespace Kernel

View file

@ -9,16 +9,22 @@
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/wait_object.h"
namespace Core {
class Timing;
}
namespace Kernel {
class TimerManager {
public:
TimerManager();
TimerManager(Core::Timing& timing);
private:
/// The timer callback event, called when a timer is fired
void TimerCallback(u64 callback_id, s64 cycles_late);
Core::Timing& timing;
/// The event type of the generic timer callback event
Core::TimingEventType* timer_callback_event_type = nullptr;
@ -93,6 +99,7 @@ private:
/// ID used as userdata to reference this object when inserting into the CoreTiming queue.
u64 callback_id;
KernelSystem& kernel;
TimerManager& timer_manager;
friend class KernelSystem;

View file

@ -72,11 +72,11 @@ ResultCode CROHelper::ApplyRelocation(VAddr target_address, RelocationType reloc
case RelocationType::AbsoluteAddress:
case RelocationType::AbsoluteAddress2:
memory.Write32(target_address, symbol_address + addend);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
cpu.InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::RelativeAddress:
memory.Write32(target_address, symbol_address + addend - target_future_address);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
cpu.InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::ThumbBranch:
case RelocationType::ArmBranch:
@ -99,7 +99,7 @@ ResultCode CROHelper::ClearRelocation(VAddr target_address, RelocationType reloc
case RelocationType::AbsoluteAddress2:
case RelocationType::RelativeAddress:
memory.Write32(target_address, 0);
Core::CPU().InvalidateCacheRange(target_address, sizeof(u32));
cpu.InvalidateCacheRange(target_address, sizeof(u32));
break;
case RelocationType::ThumbBranch:
case RelocationType::ArmBranch:
@ -548,7 +548,7 @@ ResultCode CROHelper::ApplyStaticAnonymousSymbolToCRS(VAddr crs_address) {
static_relocation_table_offset +
GetField(StaticRelocationNum) * sizeof(StaticRelocationEntry);
CROHelper crs(crs_address, process, memory);
CROHelper crs(crs_address, process, memory, cpu);
u32 offset_export_num = GetField(StaticAnonymousSymbolNum);
LOG_INFO(Service_LDR, "CRO \"{}\" exports {} static anonymous symbols", ModuleName(),
offset_export_num);
@ -759,7 +759,7 @@ ResultCode CROHelper::ApplyImportNamedSymbol(VAddr crs_address) {
if (!relocation_entry.is_batch_resolved) {
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
process, memory, cpu, crs_address, [&](CROHelper source) -> ResultVal<bool> {
std::string symbol_name =
memory.ReadCString(entry.name_offset, import_strings_size);
u32 symbol_address = source.FindExportNamedSymbol(symbol_name);
@ -861,7 +861,7 @@ ResultCode CROHelper::ApplyModuleImport(VAddr crs_address) {
std::string want_cro_name = memory.ReadCString(entry.name_offset, import_strings_size);
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
process, memory, cpu, crs_address, [&](CROHelper source) -> ResultVal<bool> {
if (want_cro_name == source.ModuleName()) {
LOG_INFO(Service_LDR, "CRO \"{}\" imports {} indexed symbols from \"{}\"",
ModuleName(), entry.import_indexed_symbol_num, source.ModuleName());
@ -1071,7 +1071,7 @@ ResultCode CROHelper::ApplyExitRelocations(VAddr crs_address) {
if (memory.ReadCString(entry.name_offset, import_strings_size) == "__aeabi_atexit") {
ResultCode result = ForEachAutoLinkCRO(
process, memory, crs_address, [&](CROHelper source) -> ResultVal<bool> {
process, memory, cpu, crs_address, [&](CROHelper source) -> ResultVal<bool> {
u32 symbol_address = source.FindExportNamedSymbol("nnroAeabiAtexit_");
if (symbol_address != 0) {
@ -1301,7 +1301,7 @@ ResultCode CROHelper::Link(VAddr crs_address, bool link_on_load_bug_fix) {
}
// Exports symbols to other modules
result = ForEachAutoLinkCRO(process, memory, crs_address,
result = ForEachAutoLinkCRO(process, memory, cpu, crs_address,
[this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ApplyExportNamedSymbol(target);
if (result.IsError())
@ -1346,7 +1346,7 @@ ResultCode CROHelper::Unlink(VAddr crs_address) {
// Resets all symbols in other modules imported from this module
// Note: the RO service seems only searching in auto-link modules
result = ForEachAutoLinkCRO(process, memory, crs_address,
result = ForEachAutoLinkCRO(process, memory, cpu, crs_address,
[this](CROHelper target) -> ResultVal<bool> {
ResultCode result = ResetExportNamedSymbol(target);
if (result.IsError())
@ -1387,13 +1387,13 @@ void CROHelper::InitCRS() {
}
void CROHelper::Register(VAddr crs_address, bool auto_link) {
CROHelper crs(crs_address, process, memory);
CROHelper head(auto_link ? crs.NextModule() : crs.PreviousModule(), process, memory);
CROHelper crs(crs_address, process, memory, cpu);
CROHelper head(auto_link ? crs.NextModule() : crs.PreviousModule(), process, memory, cpu);
if (head.module_address) {
// there are already CROs registered
// register as the new tail
CROHelper tail(head.PreviousModule(), process, memory);
CROHelper tail(head.PreviousModule(), process, memory, cpu);
// link with the old tail
ASSERT(tail.NextModule() == 0);
@ -1419,11 +1419,11 @@ void CROHelper::Register(VAddr crs_address, bool auto_link) {
}
void CROHelper::Unregister(VAddr crs_address) {
CROHelper crs(crs_address, process, memory);
CROHelper next_head(crs.NextModule(), process, memory);
CROHelper previous_head(crs.PreviousModule(), process, memory);
CROHelper next(NextModule(), process, memory);
CROHelper previous(PreviousModule(), process, memory);
CROHelper crs(crs_address, process, memory, cpu);
CROHelper next_head(crs.NextModule(), process, memory, cpu);
CROHelper previous_head(crs.PreviousModule(), process, memory, cpu);
CROHelper next(NextModule(), process, memory, cpu);
CROHelper previous(PreviousModule(), process, memory, cpu);
if (module_address == next_head.module_address ||
module_address == previous_head.module_address) {

View file

@ -15,6 +15,8 @@ namespace Kernel {
class Process;
}
class ARM_Interface;
namespace Service::LDR {
#define ASSERT_CRO_STRUCT(name, size) \
@ -31,8 +33,9 @@ static constexpr u32 CRO_HASH_SIZE = 0x80;
class CROHelper final {
public:
// TODO (wwylele): pass in the process handle for memory access
explicit CROHelper(VAddr cro_address, Kernel::Process& process, Memory::MemorySystem& memory)
: module_address(cro_address), process(process), memory(memory) {}
explicit CROHelper(VAddr cro_address, Kernel::Process& process, Memory::MemorySystem& memory,
ARM_Interface& cpu)
: module_address(cro_address), process(process), memory(memory), cpu(cpu) {}
std::string ModuleName() const {
return memory.ReadCString(GetField(ModuleNameOffset), GetField(ModuleNameSize));
@ -142,6 +145,7 @@ private:
const VAddr module_address; ///< the virtual address of this module
Kernel::Process& process; ///< the owner process of this module
Memory::MemorySystem& memory;
ARM_Interface& cpu;
/**
* Each item in this enum represents a u32 field in the header begin from address+0x80,
@ -471,10 +475,11 @@ private:
*/
template <typename FunctionObject>
static ResultCode ForEachAutoLinkCRO(Kernel::Process& process, Memory::MemorySystem& memory,
VAddr crs_address, FunctionObject func) {
ARM_Interface& cpu, VAddr crs_address,
FunctionObject func) {
VAddr current = crs_address;
while (current != 0) {
CROHelper cro(current, process, memory);
CROHelper cro(current, process, memory, cpu);
CASCADE_RESULT(bool next, func(cro));
if (!next)
break;

View file

@ -115,7 +115,7 @@ void RO::Initialize(Kernel::HLERequestContext& ctx) {
return;
}
CROHelper crs(crs_address, *process, system.Memory());
CROHelper crs(crs_address, *process, system.Memory(), system.CPU());
crs.InitCRS();
result = crs.Rebase(0, crs_size, 0, 0, 0, 0, true);
@ -249,7 +249,7 @@ void RO::LoadCRO(Kernel::HLERequestContext& ctx, bool link_on_load_bug_fix) {
return;
}
CROHelper cro(cro_address, *process, system.Memory());
CROHelper cro(cro_address, *process, system.Memory(), system.CPU());
result = cro.VerifyHash(cro_size, crr_address);
if (result.IsError()) {
@ -313,7 +313,7 @@ void RO::LoadCRO(Kernel::HLERequestContext& ctx, bool link_on_load_bug_fix) {
}
}
Core::CPU().InvalidateCacheRange(cro_address, cro_size);
system.CPU().InvalidateCacheRange(cro_address, cro_size);
LOG_INFO(Service_LDR, "CRO \"{}\" loaded at 0x{:08X}, fixed_end=0x{:08X}", cro.ModuleName(),
cro_address, cro_address + fix_size);
@ -331,7 +331,7 @@ void RO::UnloadCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}, zero={}, cro_buffer_ptr=0x{:08X}",
cro_address, zero, cro_buffer_ptr);
CROHelper cro(cro_address, *process, system.Memory());
CROHelper cro(cro_address, *process, system.Memory(), system.CPU());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -386,7 +386,7 @@ void RO::UnloadCRO(Kernel::HLERequestContext& ctx) {
LOG_ERROR(Service_LDR, "Error unmapping CRO {:08X}", result.raw);
}
Core::CPU().InvalidateCacheRange(cro_address, fixed_size);
system.CPU().InvalidateCacheRange(cro_address, fixed_size);
rb.Push(result);
}
@ -398,7 +398,7 @@ void RO::LinkCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}", cro_address);
CROHelper cro(cro_address, *process, system.Memory());
CROHelper cro(cro_address, *process, system.Memory(), system.CPU());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -438,7 +438,7 @@ void RO::UnlinkCRO(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_LDR, "called, cro_address=0x{:08X}", cro_address);
CROHelper cro(cro_address, *process, system.Memory());
CROHelper cro(cro_address, *process, system.Memory(), system.CPU());
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -487,7 +487,7 @@ void RO::Shutdown(Kernel::HLERequestContext& ctx) {
return;
}
CROHelper crs(slot->loaded_crs, *process, system.Memory());
CROHelper crs(slot->loaded_crs, *process, system.Memory(), system.CPU());
crs.Unrebase(true);
ResultCode result = RESULT_SUCCESS;

View file

@ -65,15 +65,21 @@ public:
PageTable* current_page_table = nullptr;
RasterizerCacheMarker cache_marker;
std::vector<PageTable*> page_table_list;
ARM_Interface* cpu = nullptr;
};
MemorySystem::MemorySystem() : impl(std::make_unique<Impl>()) {}
MemorySystem::~MemorySystem() = default;
void MemorySystem::SetCPU(ARM_Interface& cpu) {
impl->cpu = &cpu;
}
void MemorySystem::SetCurrentPageTable(PageTable* page_table) {
impl->current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
if (impl->cpu != nullptr) {
impl->cpu->PageTableChanged();
}
}

View file

@ -12,6 +12,8 @@
#include "common/common_types.h"
#include "core/mmio.h"
class ARM_Interface;
namespace Kernel {
class Process;
}
@ -214,6 +216,9 @@ public:
MemorySystem();
~MemorySystem();
/// Sets CPU to notify page table change
void SetCPU(ARM_Interface& cpu);
/**
* Maps an allocated buffer onto a region of the emulated process address space.
*

View file

@ -20,17 +20,13 @@
#include "audio_fixures.h"
TEST_CASE("DSP HLE Audio Decoder", "[audio_core]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*Core::System::GetInstance().memory, 0);
Memory::MemorySystem memory;
SECTION("decoder should produce correct samples") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
auto decoder =
#ifdef HAVE_MF
std::make_unique<AudioCore::HLE::WMFDecoder>(*Core::System::GetInstance().memory);
std::make_unique<AudioCore::HLE::WMFDecoder>(memory);
#elif HAVE_FFMPEG
std::make_unique<AudioCore::HLE::FFMPEGDecoder>(*Core::System::GetInstance().memory);
std::make_unique<AudioCore::HLE::FFMPEGDecoder>(memory);
#endif
AudioCore::HLE::BinaryRequest request;
@ -40,7 +36,7 @@ TEST_CASE("DSP HLE Audio Decoder", "[audio_core]") {
std::optional<AudioCore::HLE::BinaryResponse> response = decoder->ProcessRequest(request);
request.cmd = AudioCore::HLE::DecoderCommand::Decode;
u8* fcram = Core::System::GetInstance().memory->GetFCRAMPointer(0);
u8* fcram = memory.GetFCRAMPointer(0);
memcpy(fcram, fixure_buffer, fixure_buffer_size);
request.src_addr = Memory::FCRAM_PADDR;

View file

@ -15,14 +15,9 @@ static Memory::PageTable* page_table = nullptr;
TestEnvironment::TestEnvironment(bool mutable_memory_)
: mutable_memory(mutable_memory_), test_memory(std::make_shared<TestMemory>(this)) {
// HACK: some memory functions are currently referring kernel from the global instance,
// so we need to create the kernel object there.
// Change this when all global states are eliminated.
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Memory::MemorySystem& memory = *Core::System::GetInstance().memory;
Core::System::GetInstance().kernel = std::make_unique<Kernel::KernelSystem>(memory, 0);
kernel = Core::System::GetInstance().kernel.get();
timing = std::make_unique<Core::Timing>();
memory = std::make_unique<Memory::MemorySystem>();
kernel = std::make_unique<Kernel::KernelSystem>(*memory, *timing, [] {}, 0);
kernel->SetCurrentProcess(kernel->CreateProcess(kernel->CreateCodeSet("", 0)));
page_table = &kernel->GetCurrentProcess()->vm_manager.page_table;
@ -30,17 +25,15 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
page_table->pointers.fill(nullptr);
page_table->attributes.fill(Memory::PageType::Unmapped);
memory.MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory);
memory.MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory);
memory->MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory);
memory->MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory);
memory.SetCurrentPageTable(page_table);
memory->SetCurrentPageTable(page_table);
}
TestEnvironment::~TestEnvironment() {
Memory::MemorySystem& memory = *Core::System::GetInstance().memory;
memory.UnmapRegion(*page_table, 0x80000000, 0x80000000);
memory.UnmapRegion(*page_table, 0x00000000, 0x80000000);
Core::System::GetInstance().kernel.reset();
memory->UnmapRegion(*page_table, 0x80000000, 0x80000000);
memory->UnmapRegion(*page_table, 0x00000000, 0x80000000);
}
void TestEnvironment::SetMemory64(VAddr vaddr, u64 value) {

View file

@ -49,6 +49,10 @@ public:
/// Empties the internal write-record store.
void ClearWriteRecords();
Memory::MemorySystem& GetMemory() {
return *memory;
}
private:
friend struct TestMemory;
struct TestMemory final : Memory::MMIORegion {
@ -80,7 +84,9 @@ private:
std::shared_ptr<TestMemory> test_memory;
std::vector<WriteRecord> write_records;
Kernel::KernelSystem* kernel;
std::unique_ptr<Core::Timing> timing;
std::unique_ptr<Memory::MemorySystem> memory;
std::unique_ptr<Kernel::KernelSystem> kernel;
};
} // namespace ArmTests

View file

@ -23,7 +23,7 @@ TEST_CASE("ARM_DynCom (vfp): vadd", "[arm_dyncom]") {
test_env.SetMemory32(0, 0xEE321A03); // vadd.f32 s2, s4, s6
test_env.SetMemory32(4, 0xEAFFFFFE); // b +#0
ARM_DynCom dyncom(Core::System::GetInstance(), USER32MODE);
ARM_DynCom dyncom(nullptr, test_env.GetMemory(), USER32MODE);
std::vector<VfpTestCase> test_cases{{
#include "vfp_vadd_f32.inc"

View file

@ -21,10 +21,9 @@ static SharedPtr<Object> MakeObject(Kernel::KernelSystem& kernel) {
}
TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
auto memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*memory, 0);
Core::Timing timing;
Memory::MemorySystem memory;
Kernel::KernelSystem kernel(memory, timing, [] {}, 0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));
@ -234,10 +233,9 @@ TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel
}
TEST_CASE("HLERequestContext::WriteToOutgoingCommandBuffer", "[core][kernel]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
auto memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*memory, 0);
Core::Timing timing;
Memory::MemorySystem memory;
Kernel::KernelSystem kernel(memory, timing, [] {}, 0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));

View file

@ -11,10 +11,9 @@
#include "core/memory.h"
TEST_CASE("Memory::IsValidVirtualAddress", "[core][memory]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*Core::System::GetInstance().memory, 0);
Core::Timing timing;
Memory::MemorySystem memory;
Kernel::KernelSystem kernel(memory, timing, [] {}, 0);
SECTION("these regions should not be mapped on an empty process") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
CHECK(Memory::IsValidVirtualAddress(*process, Memory::PROCESS_IMAGE_VADDR) == false);