Opentk/Source/OpenTK/Math/Vector4d.cs

1354 lines
49 KiB
C#
Raw Normal View History

#region --- License ---
/* Licensed under the MIT/X11 license.
* Copyright (c) 2006-2008 the OpenTK Team.
* This notice may not be removed from any source distribution.
* See license.txt for licensing detailed licensing details.
*
* Contributions by James Talton.
*/
#endregion
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Text.RegularExpressions;
namespace OpenTK.Math
{
/// <summary>A 4-dimensional vector using double-precision floating point numbers.</summary>
[Serializable]
[StructLayout(LayoutKind.Sequential)]
internal struct Vector4d : IEquatable<Vector4d>, IComparer<Vector4d>, IComparable<Vector4d>
{
#region Fields & Access
/// <summary>The X coordinate of the vector.</summary>
public double X;
/// <summary>The Y coordinate of the vector.</summary>
public double Y;
/// <summary>The Z coordinate of the vector.</summary>
public double Z;
/// <summary>The W coordinate of the vector.</summary>
public double W;
/// <summary>The coordinate at the index of the vector.</summary>
public double this[int index]
{
get
{
switch( index )
{
case 0:
return X;
case 1:
return Y;
case 2:
return Z;
case 3:
return W;
}
throw new IndexOutOfRangeException();
}
set
{
switch( index )
{
case 0:
X = value;
return;
case 1:
Y = value;
return;
case 2:
Z = value;
return;
case 3:
W = value;
return;
}
throw new IndexOutOfRangeException();
}
}
/// <summary>Converts the vector into an array of double-precision floating point numbers.</summary>
/// <param name="vector">The vector being converted.</param>
/// <returns>An array of double-precision floating point numbers representing the vector coordinates.</returns>
public static explicit operator double[](Vector4d vector)
{
return new double[4]{vector.X, vector.Y, vector.Z, vector.W};
}
/// <summary>Converts the vector into left double-precision floating point number pointer.</summary>
/// <param name="vector">The vector being converted.</param>
/// <returns>A double-precision floating point number pointer to the vector coordinates.</returns>
//unsafe public static explicit operator double*(Vector4d vector)
//{
// return &vector.X;
//}
/// <summary>Converts the vector into an IntPtr.</summary>
/// <param name="vector">The vector being converted.</param>
/// <returns>An IntPtr to the vector coordinates.</returns>
//public static explicit operator IntPtr(Vector4d vector)
//{
// unsafe
// {
// return (IntPtr)(&vector.X);
// }
//}
#endregion
#region Constructors
/// <summary>Constructs left vector with the given coordinates.</summary>
/// <param name="x">The X coordinate.</param>
/// <param name="y">The Y coordinate.</param>
/// <param name="z">The Z coordinate.</param>
/// <param name="w">The W coordinate.</param>
public Vector4d(double x, double y, double z, double w)
{
this.X = x;
this.Y = y;
this.Z = z;
this.W = w;
}
/// <summary>Constructs left vector with the same coordinates as the given vector.</summary>
/// <param name="vector">The vector whose coordinates to copy.</param>
public Vector4d(ref Vector2d vector)
{
this.X = vector.X;
this.Y = vector.Y;
this.Z = 0;
this.W = 0;
}
/// <summary>Constructs left vector with the same coordinates as the given vector.</summary>
/// <param name="vector">The vector whose coordinates to copy.</param>
public Vector4d(ref Vector3d vector)
{
this.X = vector.X;
this.Y = vector.Y;
this.Z = vector.Z;
this.W = 0;
}
/// <summary>Constructs left vector with the same coordinates as the given vector.</summary>
/// <param name="vector">The vector whose coordinates to copy.</param>
public Vector4d(ref Vector4d vector)
{
this.X = vector.X;
this.Y = vector.Y;
this.Z = vector.Z;
this.W = vector.W;
}
/// <summary>Constructs left vector from the given array of double-precision floating point numbers.</summary>
/// <param name="doubleArray">The array of doubles for the coordinates of the vector.</param>
public Vector4d(double[] coordinateArray)
{
if( coordinateArray == null || coordinateArray.GetLength(0) < 4 ) throw new Exception("Invalid parameter.");
this.X = coordinateArray[0];
this.Y = coordinateArray[1];
this.Z = coordinateArray[2];
this.W = coordinateArray[3];
}
#endregion
#region Equality
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
/// <param name="vector">An vector to compare with this vector.</param>
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
[CLSCompliant(false)]
public bool Equals(Vector4d vector)
{
return
X == vector.X &&
Y == vector.Y &&
Z == vector.Z &&
W == vector.W;
}
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
/// <param name="vector">An vector to compare with this vector.</param>
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
public bool Equals(ref Vector4d vector)
{
return
X == vector.X &&
Y == vector.Y &&
Z == vector.Z &&
W == vector.W;
}
/// <summary>Indicates whether two vectors are approximately equal to each other.</summary>
/// <param name="matrix">The first vector.</param>
/// <param name="right">The second vector.</param>
/// <returns>true if the vectors are approximately equal; otherwise, false.</returns>
public static bool Equals(ref Vector4d left, ref Vector4d right)
{
return
left.X == right.X &&
left.Y == right.Y &&
left.Z == right.Z &&
left.W == right.W;
}
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
/// <param name="vector">An vector to compare with this vector.</param>
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
public bool EqualsApprox(ref Vector4d vector, double tolerance)
{
return
System.Math.Abs(X - vector.X) <= tolerance &&
System.Math.Abs(Y - vector.Y) <= tolerance &&
System.Math.Abs(Z - vector.Z) <= tolerance &&
System.Math.Abs(W - vector.W) <= tolerance;
}
/// <summary>Indicates whether two vectors are approximately equal to each other within left given tolerance.</summary>
/// <param name="matrix">The first vector.</param>
/// <param name="right">The second vector.</param>
/// <param name="tolerance">The tolerance for the approximation.</param>
/// <returns>true if the vectors are approximately equal; otherwise, false.</returns>
public static bool EqualsApprox(ref Vector4d left, ref Vector4d right, double tolerance)
{
return
System.Math.Abs(left.X - right.X) <= tolerance &&
System.Math.Abs(left.Y - right.Y) <= tolerance &&
System.Math.Abs(left.Z - right.Z) <= tolerance &&
System.Math.Abs(left.W - right.W) <= tolerance;
}
#endregion
#region IComparer
/// <summary>Compares two vectors and returns left value indicating whether one is less than, equal to, or greater than the other.</summary>
public int Compare(Vector4d left, Vector4d right)
{
if (left.X != right.X)
{
if (left.X < right.X) return -1;
else return 1;
}
else if (left.Y != right.Y)
{
if (left.Y < right.Y) return -1;
else return 1;
}
else if (left.Z != right.Z)
{
if (left.Z < right.Z) return -1;
else return 1;
}
else if (left.W != right.W)
{
if (left.W < right.W) return -1;
else return 1;
}
return 0;
}
#endregion
#region IComparable
/// <summary>Compares the vector with another vector and returns left value indicating whether it is less than, equal to, or greater than the other vector.</summary>
public int CompareTo(Vector4d vector) { return Compare(this, vector); }
#endregion
#region Length
/// <summary>Gets the length of the vector.</summary>
public double Length
{
get
{
double lengthSquared = LengthSquared;
if (lengthSquared == 1)
{
return 1;
}
else
{
return System.Math.Sqrt(lengthSquared);
}
}
}
/// <summary>Gets the squared length of the vector.</summary>
public double LengthSquared
{
get
{
return X * X + Y * Y + Z * Z + W * W;
}
}
/// <summary>Gets the approimate length of the vector.</summary>
public double LengthApprox
{
get
{
return 1.0d / Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W);
}
}
#endregion
#region Distance
/// <summary>Gets the distance from this vector to the given vector.</summary>
/// <param name="vector">The vector to which to find the distance.</param>
/// <returns>The distance from this vector to the given vector.</returns>
public double DistanceTo(ref Vector4d vector)
{
double deltaX = vector.X - X;
double deltaY = vector.Y - Y;
double deltaZ = vector.Z - Z;
double deltaW = vector.W - W;
return System.Math.Sqrt(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW);
}
/// <summary>Gets the squared distance from this vector to the given vector.</summary>
/// <param name="vector">The vector to which to find the squared distance.</param>
/// <returns>The squared distance from this vector to the given vector.</returns>
public double DistanceSquaredTo(ref Vector4d vector)
{
double deltaX = vector.X - X;
double deltaY = vector.Y - Y;
double deltaZ = vector.Z - Z;
double deltaW = vector.W - W;
return deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW;
}
/// <summary>Gets the approximate distance from this vector to the given vector.</summary>
/// <param name="vector">The vector to which to find the approximate distance.</param>
/// <returns>The approximate distance from this vector to the given vector.</returns>
public double DistanceApproxTo(ref Vector4d vector)
{
double deltaX = vector.X - X;
double deltaY = vector.Y - Y;
double deltaZ = vector.Z - Z;
double deltaW = vector.W - W;
return 1.0d / Functions.InverseSqrtFast(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ + deltaW * deltaW);
}
#endregion
#region Normalize
/// <summary>Normalize this vector.</summary>
public void Normalize()
{
double lengthSquared = LengthSquared;
if (lengthSquared != 1 && lengthSquared != 0)
{
double length = System.Math.Sqrt(lengthSquared);
X = X / length;
Y = Y / length;
Z = Z / length;
W = W / length;
}
}
/// <summary>Get the normalized version of this vector.</summary>
/// <param name="result">The resulting normalized vector.</param>
public void Normalize(out Vector4d result)
{
double lengthSquared = LengthSquared;
if (lengthSquared == 1)
{
result.X = X;
result.Y = Y;
result.Z = Z;
result.W = W;
}
else if (lengthSquared == 0)
{
result.X = 0;
result.Y = 0;
result.Z = 0;
result.W = 0;
}
else
{
double length = System.Math.Sqrt(lengthSquared);
result.X = X / length;
result.Y = Y / length;
result.Z = Z / length;
result.W = W / length;
}
}
public static void Normalize(ref Vector4d vector, out Vector4d result)
{
double lengthSquared = vector.LengthSquared;
if (lengthSquared == 1)
{
result.X = vector.X;
result.Y = vector.Y;
result.Z = vector.Z;
result.W = vector.W;
}
else if (lengthSquared == 0)
{
result.X = 0;
result.Y = 0;
result.Z = 0;
result.W = 0;
}
else
{
double length = System.Math.Sqrt(lengthSquared);
result.X = vector.X / length;
result.Y = vector.Y / length;
result.Z = vector.Z / length;
result.W = vector.W / length;
}
}
public void NormalizeApprox()
{
double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W);
X = X * inverseSquare;
Y = Y * inverseSquare;
Z = Z * inverseSquare;
W = W * inverseSquare;
}
/// <summary>Gets left approximately normalized vector of the vector.</summary>
public void NormalizedApprox(out Vector4d result)
{
double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z + W * W);
result.X = X * inverseSquare;
result.Y = Y * inverseSquare;
result.Z = Z * inverseSquare;
result.W = W * inverseSquare;
}
public static void NormalizeApprox(ref Vector4d vector, out Vector4d result)
{
double inverseSquare = Functions.InverseSqrtFast(vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W);
result.X = vector.X * inverseSquare;
result.Y = vector.Y * inverseSquare;
result.Z = vector.Z * inverseSquare;
result.W = vector.W * inverseSquare;
}
#endregion
/// <summary>Gets the dot product of two vectors.</summary>
/// <param name="matrix">The first vector.</param>
/// <param name="right">The second vector.</param>
/// <returns>The dot product of two vectors.</returns>
public static double DotProduct(ref Vector4d left, ref Vector4d right)
{
return left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
}
#region Abs
public void Abs()
{
X = System.Math.Abs(X);
Y = System.Math.Abs(Y);
Z = System.Math.Abs(Z);
W = System.Math.Abs(W);
}
public void Abs(out Vector4d result)
{
result.X = System.Math.Abs(X);
result.Y = System.Math.Abs(Y);
result.Z = System.Math.Abs(Z);
result.W = System.Math.Abs(W);
}
public static void Abs(ref Vector4d vector, out Vector4d result)
{
result.X = System.Math.Abs(vector.X);
result.Y = System.Math.Abs(vector.Y);
result.Z = System.Math.Abs(vector.Z);
result.W = System.Math.Abs(vector.W);
}
#endregion
#region Inverse
public void Inverse()
{
X = -X;
Y = -Y;
Z = -Z;
W = -W;
}
public void Inverse(out Vector4d result)
{
result.X = -X;
result.Y = -Y;
result.Z = -Z;
result.W = -W;
}
public static void Inverse(ref Vector4d vector, out Vector4d result)
{
result.X = -vector.X;
result.Y = -vector.Y;
result.Z = -vector.Z;
result.W = -vector.W;
}
#endregion
#region Arithmatic
public void Add(ref Vector4d vector)
{
X = X + vector.X;
Y = Y + vector.Y;
Z = Z + vector.Z;
W = W + vector.W;
}
public void Add(ref Vector4d vector, out Vector4d result)
{
result.X = X + vector.X;
result.Y = Y + vector.Y;
result.Z = Z + vector.Z;
result.W = W + vector.W;
}
public static void Add(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X + right.X;
result.Y = left.Y + right.Y;
result.Z = left.Z + right.Z;
result.W = left.W + right.W;
}
public void Add(double x, double y, double z, double w)
{
X = X + x;
Y = Y + y;
Z = Z + z;
W = W + w;
}
public void Add(double x, double y, double z, double w, out Vector4d result)
{
result.X = X + x;
result.Y = Y + y;
result.Z = Z + z;
result.W = W + w;
}
public static void Add(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X + x;
result.Y = vector.Y + y;
result.Z = vector.Z + z;
result.W = vector.W + w;
}
public void Subtract(ref Vector4d vector)
{
X = X - vector.X;
Y = Y - vector.Y;
Z = Z - vector.Z;
W = W - vector.W;
}
public void Subtract(ref Vector4d vector, out Vector4d result)
{
result.X = X - vector.X;
result.Y = Y - vector.Y;
result.Z = Z - vector.Z;
result.W = W - vector.W;
}
public static void Subtract(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X - right.X;
result.Y = left.Y - right.Y;
result.Z = left.Z - right.Z;
result.W = left.W - right.W;
}
public void Subtract(double x, double y, double z, double w)
{
X = X - x;
Y = Y - y;
Z = Z - z;
W = W - w;
}
public void Subtract(double x, double y, double z, double w, out Vector4d result)
{
result.X = X - x;
result.Y = Y - y;
result.Z = Z - z;
result.W = W - w;
}
public static void Subtract(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X - x;
result.Y = vector.Y - y;
result.Z = vector.Z - z;
result.W = vector.W - w;
}
public void Multiply(double scalar)
{
X = X * scalar;
Y = Y * scalar;
Z = Z * scalar;
W = W * scalar;
}
public void Multiply(double scalar, out Vector4d result)
{
result.X = X * scalar;
result.Y = Y * scalar;
result.Z = Z * scalar;
result.W = W * scalar;
}
public static void Multiply(ref Vector4d vector, double scalar, out Vector4d result)
{
result.X = vector.X * scalar;
result.Y = vector.Y * scalar;
result.Z = vector.Z * scalar;
result.W = vector.W * scalar;
}
public void Multiply(ref Vector4d vector)
{
X = X * vector.X;
Y = Y * vector.Y;
Z = Z * vector.Z;
W = W * vector.W;
}
public void Multiply(ref Vector4d vector, out Vector4d result)
{
result.X = X * vector.X;
result.Y = Y * vector.Y;
result.Z = Z * vector.Z;
result.W = W * vector.W;
}
public static void Multiply(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X * right.X;
result.Y = left.Y * right.Y;
result.Z = left.Z * right.Z;
result.W = left.W * right.W;
}
public void Multiply(double x, double y, double z, double w)
{
X = X * x;
Y = Y * y;
Z = Z * z;
W = W * w;
}
public void Multiply(double x, double y, double z, double w, out Vector4d result)
{
result.X = X * x;
result.Y = Y * y;
result.Z = Z * z;
result.W = W * w;
}
public static void Multiply(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X * x;
result.Y = vector.Y * y;
result.Z = vector.Z * z;
result.W = vector.W * w;
}
public void Divide(double scalar)
{
X = X / scalar;
Y = Y / scalar;
Z = X / scalar;
W = W / scalar;
}
public void Divide(double scalar, out Vector4d result)
{
result.X = X / scalar;
result.Y = Y / scalar;
result.Z = X / scalar;
result.W = W / scalar;
}
public static void Divide(ref Vector4d vector, double scalar, out Vector4d result)
{
result.X = vector.X / scalar;
result.Y = vector.Y / scalar;
result.Z = vector.Z / scalar;
result.W = vector.W / scalar;
}
public void Divide(ref Vector4d vector)
{
X = X / vector.X;
Y = Y / vector.Y;
Z = Z / vector.Z;
W = W / vector.W;
}
public void Divide(ref Vector4d vector, out Vector4d result)
{
result.X = X / vector.X;
result.Y = Y / vector.Y;
result.Z = Z / vector.Z;
result.W = W / vector.W;
}
public static void Divide(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X / right.X;
result.Y = left.Y / right.Y;
result.Z = left.Z / right.Z;
result.W = left.W / right.W;
}
public void Divide(double x, double y, double z, double w)
{
X = X / x;
Y = Y / y;
Z = Z / z;
W = W / w;
}
public void Divide(double x, double y, double z, double w, out Vector4d result)
{
result.X = X / x;
result.Y = Y / y;
result.Z = Z / z;
result.W = W / w;
}
public static void Divide(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X / x;
result.Y = vector.Y / y;
result.Z = vector.Z / z;
result.W = vector.W / w;
}
#endregion
#region Transformations
public void Transform(ref Matrix4d matrix)
{
double x = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z + matrix.R0C3 * W;
double y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z + matrix.R1C3 * W;
double z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z + matrix.R2C3 * W;
W = matrix.R3C0 * X + matrix.R3C1 * Y + matrix.R3C2 * Z + matrix.R3C3 * W;
X = x;
Y = y;
Z = z;
}
public void Transform(ref Matrix4d matrix, out Vector4d result)
{
result.X = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z + matrix.R0C3 * W;
result.Y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z + matrix.R1C3 * W;
result.Z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z + matrix.R2C3 * W;
result.W = matrix.R3C0 * X + matrix.R3C1 * Y + matrix.R3C2 * Z + matrix.R3C3 * W;
}
public static void Transform(ref Vector4d vector, ref Matrix4d matrix, out Vector4d result)
{
result.X = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z + matrix.R0C3 * vector.W;
result.Y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z + matrix.R1C3 * vector.W;
result.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z + matrix.R2C3 * vector.W;
result.W = matrix.R3C0 * vector.X + matrix.R3C1 * vector.Y + matrix.R3C2 * vector.Z + matrix.R3C3 * vector.W;
}
public void Translate(ref Vector4d vector)
{
X = X + vector.X;
Y = Y + vector.Y;
Z = Z + vector.Z;
W = W + vector.W;
}
public void Translate(ref Vector4d vector, out Vector4d result)
{
result.X = X + vector.X;
result.Y = Y + vector.Y;
result.Z = Z + vector.Z;
result.W = W + vector.W;
}
public static void Translate(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X + right.X;
result.Y = left.Y + right.Y;
result.Z = left.Z + right.Z;
result.W = left.W + right.W;
}
public void Translate(double x, double y, double z, double w)
{
X = X + x;
Y = Y + y;
Z = Z + z;
W = W + w;
}
public void Translate(double x, double y, double z, double w, out Vector4d result)
{
result.X = X + x;
result.Y = Y + y;
result.Z = Z + z;
result.W = W + w;
}
public static void Translate(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X + x;
result.Y = vector.Y + y;
result.Z = vector.Z + z;
result.W = vector.W + w;
}
public void Scale(ref Vector4d vector)
{
X = X * vector.X;
Y = Y * vector.Y;
Z = Z * vector.Z;
W = W * vector.W;
}
public void Scale(ref Vector4d vector, out Vector4d result)
{
result.X = X * vector.X;
result.Y = Y * vector.Y;
result.Z = Z * vector.Z;
result.W = W * vector.W;
}
public static void Scale(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = left.X * right.X;
result.Y = left.Y * right.Y;
result.Z = left.Z * right.Z;
result.W = left.W * right.W;
}
public void Scale(double x, double y, double z, double w)
{
X = X * x;
Y = Y * y;
Z = Z * z;
W = W * w;
}
public void Scale(double x, double y, double z, double w, out Vector4d result)
{
result.X = X * x;
result.Y = Y * y;
result.Z = Z * z;
result.W = W * w;
}
public static void Scale(ref Vector4d vector, double x, double y, double z, double w, out Vector4d result)
{
result.X = vector.X * x;
result.Y = vector.Y * y;
result.Z = vector.Z * z;
result.W = vector.W * w;
}
public void RotateX(double angle)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
double y = cos * Y + sin * Z;
Z = cos * Z - sin * Y;
Y = y;
}
public void RotateX(double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = X;
result.Y = cos * Y + sin * Z;
result.Z = cos * Z - sin * Y;
result.W = W;
}
public static void RotateX(ref Vector4d vector, double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = vector.X;
result.Y = cos * vector.Y + sin * vector.Z;
result.Z = cos * vector.Z - sin * vector.Y;
result.W = vector.W;
}
public void RotateY(double angle)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
double x = cos * X - sin * Z;
Z = sin * X + cos * Z;
X = x;
}
public void RotateY(double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = cos * X - sin * Z;
result.Y = Y;
result.Z = sin * Y + cos * Z;
result.W = W;
}
public static void RotateY(ref Vector4d vector, double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = cos * vector.X - sin * vector.Z;
result.Y = vector.Y;
result.Z = sin * vector.Y + cos * vector.Z;
result.W = vector.W;
}
public void RotateZ(double angle)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
double x = cos * X + sin * Y;
Y = cos * Y - sin * X;
X = x;
}
public void RotateZ(double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = cos * X + sin * Y;
result.Y = cos * Y - sin * X;
result.Z = Z;
result.W = W;
}
public static void RotateZ(ref Vector4d vector, double angle, out Vector4d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.X = cos * vector.X + sin * vector.Y;
result.Y = cos * vector.Y - sin * vector.X;
result.Z = vector.Z;
result.W = vector.W;
}
public void Rotate(ref Vector3d axis, double angle)
{
Vector3d axisNormalized;
axis.Normalize(out axisNormalized);
double x = axisNormalized.X;
double y = axisNormalized.Y;
double z = axisNormalized.Z;
double angleRadians = Functions.DTOR * angle;
double cos = (double)System.Math.Cos(angleRadians);
double sin = (double)System.Math.Sin(angleRadians);
double oneMinusCos = 1 - cos;
double xOneMinusCos = x * oneMinusCos;
double yOneMinusCos = y * oneMinusCos;
double zOneMinusCos = z * oneMinusCos;
double xxOneMinusCos = x * xOneMinusCos;
double xyOneMinusCos = x * yOneMinusCos;
double xzOneMinusCos = x * zOneMinusCos;
double yyOneMinusCos = y * yOneMinusCos;
double yzOneMinusCos = y * zOneMinusCos;
double zzOneMinusCos = z * zOneMinusCos;
double xSin = x * sin;
double ySin = y * sin;
double zSin = z * sin;
double tx = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z;
double ty = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z;
Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z;
X = tx;
Y = ty;
}
public void Rotate(ref Vector3d axis, double angle, out Vector4d result)
{
Vector3d axisNormalized;
axis.Normalize(out axisNormalized);
double x = axisNormalized.X;
double y = axisNormalized.Y;
double z = axisNormalized.Z;
double angleRadians = Functions.DTOR * angle;
double cos = (double)System.Math.Cos(angleRadians);
double sin = (double)System.Math.Sin(angleRadians);
double oneMinusCos = 1 - cos;
double xOneMinusCos = x * oneMinusCos;
double yOneMinusCos = y * oneMinusCos;
double zOneMinusCos = z * oneMinusCos;
double xxOneMinusCos = x * xOneMinusCos;
double xyOneMinusCos = x * yOneMinusCos;
double xzOneMinusCos = x * zOneMinusCos;
double yyOneMinusCos = y * yOneMinusCos;
double yzOneMinusCos = y * zOneMinusCos;
double zzOneMinusCos = z * zOneMinusCos;
double xSin = x * sin;
double ySin = y * sin;
double zSin = z * sin;
result.X = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z;
result.Y = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z;
result.Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z;
result.W = W;
}
public static void Rotate(ref Vector4d vector, ref Vector3d axis, double angle, out Vector4d result)
{
Vector3d axisNormalized;
axis.Normalize(out axisNormalized);
double x = axisNormalized.X;
double y = axisNormalized.Y;
double z = axisNormalized.Z;
double angleRadians = Functions.DTOR * angle;
double cos = (double)System.Math.Cos(angleRadians);
double sin = (double)System.Math.Sin(angleRadians);
double oneMinusCos = 1 - cos;
double xOneMinusCos = x * oneMinusCos;
double yOneMinusCos = y * oneMinusCos;
double zOneMinusCos = z * oneMinusCos;
double xxOneMinusCos = x * xOneMinusCos;
double xyOneMinusCos = x * yOneMinusCos;
double xzOneMinusCos = x * zOneMinusCos;
double yyOneMinusCos = y * yOneMinusCos;
double yzOneMinusCos = y * zOneMinusCos;
double zzOneMinusCos = z * zOneMinusCos;
double xSin = x * sin;
double ySin = y * sin;
double zSin = z * sin;
result.X = (xxOneMinusCos + cos ) * vector.X + (xyOneMinusCos + zSin) * vector.Y + (xzOneMinusCos - ySin) * vector.Z;
result.Y = (xyOneMinusCos - zSin) * vector.X + (yyOneMinusCos + cos) * vector.Y + (yzOneMinusCos + xSin) * vector.Z;
result.Z = (xzOneMinusCos + ySin) * vector.X + (yzOneMinusCos - xSin) * vector.Y + (zzOneMinusCos + cos ) * vector.Z;
result.W = vector.W;
}
#endregion
#region Min & Max
public void Min(ref Vector4d vector)
{
double lengthSquared = X * X + Y * Y + Z * Z + W * W;
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W;
if (vectorLengthSquared < lengthSquared)
{
X = vector.X;
Y = vector.Y;
Z = vector.Z;
W = vector.W;
}
}
public void Min(ref Vector4d vector, out Vector4d result)
{
double lengthSquared = X * X + Y * Y + Z * Z + W * W;
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W;
if (vectorLengthSquared < lengthSquared)
{
result.X = vector.X;
result.Y = vector.Y;
result.Z = vector.Z;
result.W = vector.W;
}
else
{
result.X = X;
result.Y = Y;
result.Z = Z;
result.W = W;
}
}
public static void Min(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z + left.W * left.W;
double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z + right.W * right.W;
if (rightLengthSquared < leftLengthSquared)
{
result.X = right.X;
result.Y = right.Y;
result.Z = right.Z;
result.W = right.W;
}
else
{
result.X = left.X;
result.Y = left.Y;
result.Z = left.Z;
result.W = left.W;
}
}
public void Max(ref Vector4d vector)
{
double lengthSquared = X * X + Y * Y + Z * Z + W * W;
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W;
if (vectorLengthSquared > lengthSquared)
{
X = vector.X;
Y = vector.Y;
Z = vector.Z;
W = vector.W;
}
}
public void Max(ref Vector4d vector, out Vector4d result)
{
double lengthSquared = X * X + Y * Y + Z * Z + W * W;
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W;
if (vectorLengthSquared > lengthSquared)
{
result.X = vector.X;
result.Y = vector.Y;
result.Z = vector.Z;
result.W = vector.W;
}
else
{
result.X = X;
result.Y = Y;
result.Z = Z;
result.W = W;
}
}
public static void Max(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z + left.W * left.W;
double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z + right.W * right.W;
if (rightLengthSquared > leftLengthSquared)
{
result.X = right.X;
result.Y = right.Y;
result.Z = right.Z;
result.W = right.W;
}
else
{
result.X = left.X;
result.Y = left.Y;
result.Z = left.Z;
result.W = left.W;
}
}
public void CoordinateMin(ref Vector4d vector)
{
X = System.Math.Min(X, vector.X);
Y = System.Math.Min(Y, vector.Y);
Z = System.Math.Min(Z, vector.Z);
W = System.Math.Min(W, vector.W);
}
public void CoordinateMin(ref Vector4d vector, out Vector4d result)
{
result.X = System.Math.Min(X, vector.X);
result.Y = System.Math.Min(Y, vector.Y);
result.Z = System.Math.Min(Z, vector.Z);
result.W = System.Math.Min(W, vector.W);
}
public static void CoordinateMin(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = System.Math.Min(left.X, right.X);
result.Y = System.Math.Min(left.Y, right.Y);
result.Z = System.Math.Min(left.Z, right.Z);
result.W = System.Math.Min(left.W, right.W);
}
public void CoordinateMax(ref Vector4d vector)
{
X = System.Math.Max(X, vector.X);
Y = System.Math.Max(Y, vector.Y);
Z = System.Math.Max(Z, vector.Z);
W = System.Math.Max(W, vector.W);
}
public void CoordinateMax(ref Vector4d vector, out Vector4d result)
{
result.X = System.Math.Max(X, vector.X);
result.Y = System.Math.Max(Y, vector.Y);
result.Z = System.Math.Max(Z, vector.Z);
result.W = System.Math.Max(W, vector.W);
}
public static void CoordinateMax(ref Vector4d left, ref Vector4d right, out Vector4d result)
{
result.X = System.Math.Max(left.X, right.X);
result.Y = System.Math.Max(left.Y, right.Y);
result.Z = System.Math.Max(left.Z, right.Z);
result.W = System.Math.Max(left.W, right.W);
}
public void Clamp(ref Vector4d min, ref Vector4d max)
{
X = System.Math.Max(System.Math.Min(X, min.X), max.X);
Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y);
Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z);
W = System.Math.Max(System.Math.Min(W, min.W), max.W);
}
public void Clamp(ref Vector4d min, ref Vector4d max, out Vector4d result)
{
result.X = System.Math.Max(System.Math.Min(X, min.X), max.X);
result.Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y);
result.Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z);
result.W = System.Math.Max(System.Math.Min(W, min.W), max.W);
}
public static void Clamp(ref Vector4d vector, ref Vector4d min, ref Vector4d max, out Vector4d result)
{
result.X = System.Math.Max(System.Math.Min(vector.X, min.X), max.X);
result.Y = System.Math.Max(System.Math.Min(vector.Y, min.Y), max.Y);
result.Z = System.Math.Max(System.Math.Min(vector.Z, min.Z), max.Z);
result.W = System.Math.Max(System.Math.Min(vector.W, min.W), max.W);
}
#endregion
#region Interpolation
public void Lerp(ref Vector4d end, double blend)
{
X = X + (end.X - X) * blend;
Y = Y + (end.Y - Y) * blend;
Z = Z + (end.Z - Z) * blend;
W = W + (end.W - W) * blend;
}
public void Lerp(ref Vector4d end, double blend, out Vector4d result)
{
result.X = X + (end.X - X) * blend;
result.Y = Y + (end.Y - Y) * blend;
result.Z = Z + (end.Z - Z) * blend;
result.W = W + (end.W - W) * blend;
}
public static void Lerp(ref Vector4d start, ref Vector4d end, double blend, out Vector4d result)
{
result.X = start.X + (end.X - start.X) * blend;
result.Y = start.Y + (end.Y - start.Y) * blend;
result.Z = start.Z + (end.Z - start.Z) * blend;
result.W = start.W + (end.W - start.W) * blend;
}
public void BaryCentric(ref Vector4d endU, ref Vector4d endV, double u, double v)
{
X = X + (endU.X - X) * u + (endV.X - X) * v;
Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v;
Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v;
W = W + (endU.W - W) * u + (endV.W - W) * v;
}
public void BaryCentric(ref Vector4d endU, ref Vector4d endV, double u, double v, out Vector4d result)
{
result.X = X + (endU.X - X) * u + (endV.X - X) * v;
result.Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v;
result.Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v;
result.W = W + (endU.W - W) * u + (endV.W - W) * v;
}
public static void BaryCentric(ref Vector4d start, ref Vector4d endU, ref Vector4d endV, double u, double v, out Vector4d result)
{
result.X = start.X + (endU.X - start.X) * u + (endV.X - start.X) * v;
result.Y = start.Y + (endU.Y - start.Y) * u + (endV.Y - start.Y) * v;
result.Z = start.Z + (endU.Z - start.Z) * u + (endV.Z - start.Z) * v;
result.W = start.W + (endU.W - start.W) * u + (endV.W - start.W) * v;
}
#endregion
#region String and Parse
/// <summary>Returns the fully qualified type name of this instance.</summary>
/// <returns>A System.String containing left fully qualified type name.</returns>
public override string ToString()
{
return String.Format("{0} {1} {2} {3}", X, Y, Z, W);
}
/// <summary>Parse left string to convert it to left vector.</summary>
/// <param name="str">The string to parse.</param>
/// <returns>The vector represented by the string.</returns>
public static void Parse(string str, out Vector4d result)
{
Match match = new Regex(@"(?<x>.*) (?<y>.*) (?<z>.*) (?<w>.*)", RegexOptions.None).Match(str);
if (!match.Success) throw new Exception("Parse failed!");
result.X = double.Parse(match.Result("${x}"));
result.Y = double.Parse(match.Result("${y}"));
result.Z = double.Parse(match.Result("${z}"));
result.W = double.Parse(match.Result("${w}"));
}
#endregion
#region HashCode
/// <summary>Returns the hash code for this instance.</summary>
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
public override int GetHashCode()
{
return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode() ^ W.GetHashCode();
}
#endregion
#region Constants
/// <summary>A vector representing left zero vector.</summary>
public static readonly Vector4d Zero = new Vector4d(0, 0, 0, 0);
/// <summary>A vector with all coordinates set to one.</summary>
public static readonly Vector4d One = new Vector4d(1, 1, 1, 1);
/// <summary>A unit normal vector representing the positive X Axis.</summary>
public static readonly Vector4d XAxis = new Vector4d(1, 0, 0, 0);
/// <summary>A unit normal vector representing the positive Y Axis.</summary>
public static readonly Vector4d YAxis = new Vector4d(0, 1, 0, 0);
/// <summary>A unit normal vector representing the positive Z Axis.</summary>
public static readonly Vector4d ZAxis = new Vector4d(0, 0, 1, 0);
/// <summary>A unit normal vector representing the positive W Axis.</summary>
public static readonly Vector4d WAxis = new Vector4d(0, 0, 0, 1);
#endregion
}
}