mirror of
https://github.com/Ryujinx/Opentk.git
synced 2024-12-27 08:05:36 +00:00
639 lines
24 KiB
C#
639 lines
24 KiB
C#
|
using System;
|
||
|
using System.Runtime.InteropServices;
|
||
|
using System.Text.RegularExpressions;
|
||
|
|
||
|
namespace OpenTK.Math
|
||
|
{
|
||
|
[Serializable]
|
||
|
[StructLayout(LayoutKind.Sequential)]
|
||
|
public struct Quaterniond
|
||
|
{
|
||
|
#region Fields
|
||
|
|
||
|
/// <summary>The W component of the quaternion.</summary>
|
||
|
public double W;
|
||
|
|
||
|
/// <summary>The X component of the quaternion.</summary>
|
||
|
public double X;
|
||
|
|
||
|
/// <summary>The Y component of the quaternion.</summary>
|
||
|
public double Y;
|
||
|
|
||
|
/// <summary>The Z component of the quaternion.</summary>
|
||
|
public double Z;
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region Constructors
|
||
|
|
||
|
/// <summary>Constructs left quaternion that is left copy of the given quaternion.</summary>
|
||
|
/// <param name="quaterniond">The quaternion to copy.</param>
|
||
|
public Quaterniond(ref Quaterniond quaternion) : this(quaternion.W, quaternion.X, quaternion.Y, quaternion.Z) { }
|
||
|
|
||
|
/// <summary>Constructs left quaternion from the given components.</summary>
|
||
|
/// <param name="w">The W component for the quaternion.</param>
|
||
|
/// <param name="vector3d">A Vector representing the X, Y, and Z componets for the quaterion.</param>
|
||
|
public Quaterniond(double w, ref Vector3d vector3d) : this(w, vector3d.X, vector3d.Y, vector3d.Z) { }
|
||
|
|
||
|
/// <summary>Constructs left quaternion from the given axis and angle.</summary>
|
||
|
/// <param name="axis">The axis for the quaternion.</param>
|
||
|
/// <param name="angle">The angle for the quaternione.</param>
|
||
|
public Quaterniond(ref Vector3d axis, double angle)
|
||
|
{
|
||
|
double halfAngle = Functions.DTOR * angle / 2;
|
||
|
|
||
|
this.W = System.Math.Cos(halfAngle);
|
||
|
|
||
|
double sin = System.Math.Sin(halfAngle);
|
||
|
Vector3d axisNormalized;
|
||
|
axis.Normalize(out axisNormalized);
|
||
|
this.X = axisNormalized.X * sin;
|
||
|
this.Y = axisNormalized.Y * sin;
|
||
|
this.Z = axisNormalized.Z * sin;
|
||
|
}
|
||
|
|
||
|
/// <summary>Constructs left quaternion from the given components.</summary>
|
||
|
/// <param name="w">The W component for the quaternion.</param>
|
||
|
/// <param name="x">The X component for the quaternion.</param>
|
||
|
/// <param name="y">The Y component for the quaternion.</param>
|
||
|
/// <param name="z">The Z component for the quaternion.</param>
|
||
|
public Quaterniond(double w, double x, double y, double z)
|
||
|
{
|
||
|
this.W = w;
|
||
|
this.X = x;
|
||
|
this.Y = y;
|
||
|
this.Z = z;
|
||
|
}
|
||
|
|
||
|
/// <summary>Constructs left quaternion from the given array of double-precision floating point numbers.</summary>
|
||
|
/// <param name="doubleArray">The array of doubles for the components of the quaternion.</param>
|
||
|
public Quaterniond(double[] doubleArray)
|
||
|
{
|
||
|
if (doubleArray == null || doubleArray.GetLength(0) < 4) throw new MissingFieldException();
|
||
|
|
||
|
this.W = doubleArray[0];
|
||
|
this.X = doubleArray[1];
|
||
|
this.Y = doubleArray[2];
|
||
|
this.Z = doubleArray[3];
|
||
|
}
|
||
|
|
||
|
/// <summary>Constructs left quaternion from the given matrix. Only contains rotation information.</summary>
|
||
|
/// <param name="matrix">The matrix for the components of the quaternion.</param>
|
||
|
public Quaterniond(ref Matrix4d matrix)
|
||
|
{
|
||
|
double scale = System.Math.Pow(matrix.Determinant, 1.0d/3.0d);
|
||
|
|
||
|
W = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] + matrix[1, 1] + matrix[2, 2])) / 2;
|
||
|
X = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] - matrix[1, 1] - matrix[2, 2])) / 2;
|
||
|
Y = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] + matrix[1, 1] - matrix[2, 2])) / 2;
|
||
|
Z = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] - matrix[1, 1] + matrix[2, 2])) / 2;
|
||
|
if( matrix[2,1] - matrix[1,2] < 0 ) X = -X;
|
||
|
if( matrix[0,2] - matrix[2,0] < 0 ) Y = -Y;
|
||
|
if( matrix[1,0] - matrix[0,1] < 0 ) Z = -Z;
|
||
|
}
|
||
|
|
||
|
public Quaterniond(ref Matrix3d matrix)
|
||
|
{
|
||
|
double scale = System.Math.Pow(matrix.Determinant, 1.0d / 3.0d);
|
||
|
|
||
|
W = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] + matrix[1, 1] + matrix[2, 2])) / 2;
|
||
|
X = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] - matrix[1, 1] - matrix[2, 2])) / 2;
|
||
|
Y = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] + matrix[1, 1] - matrix[2, 2])) / 2;
|
||
|
Z = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] - matrix[1, 1] + matrix[2, 2])) / 2;
|
||
|
if (matrix[2, 1] - matrix[1, 2] < 0) X = -X;
|
||
|
if (matrix[0, 2] - matrix[2, 0] < 0) Y = -Y;
|
||
|
if (matrix[1, 0] - matrix[0, 1] < 0) Z = -Z;
|
||
|
}
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region Arithmetic Operators
|
||
|
|
||
|
public void Add(ref Quaterniond quaternion)
|
||
|
{
|
||
|
W = W + quaternion.W;
|
||
|
X = X + quaternion.X;
|
||
|
Y = Y + quaternion.Y;
|
||
|
Z = Z + quaternion.Z;
|
||
|
}
|
||
|
public void Add(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
result.W = W + quaternion.W;
|
||
|
result.X = X + quaternion.X;
|
||
|
result.Y = Y + quaternion.Y;
|
||
|
result.Z = Z + quaternion.Z;
|
||
|
}
|
||
|
public static void Add(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
|
{
|
||
|
result.W = left.W + right.W;
|
||
|
result.X = left.X + right.X;
|
||
|
result.Y = left.Y + right.Y;
|
||
|
result.Z = left.Z + right.Z;
|
||
|
}
|
||
|
|
||
|
public void Subtract(ref Quaterniond quaternion)
|
||
|
{
|
||
|
W = W - quaternion.W;
|
||
|
X = X - quaternion.X;
|
||
|
Y = Y - quaternion.Y;
|
||
|
Z = Z - quaternion.Z;
|
||
|
}
|
||
|
public void Subtract(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
result.W = W - quaternion.W;
|
||
|
result.X = X - quaternion.X;
|
||
|
result.Y = Y - quaternion.Y;
|
||
|
result.Z = Z - quaternion.Z;
|
||
|
}
|
||
|
public static void Subtract(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
|
{
|
||
|
result.W = left.W - right.W;
|
||
|
result.X = left.X - right.X;
|
||
|
result.Y = left.Y - right.Y;
|
||
|
result.Z = left.Z - right.Z;
|
||
|
}
|
||
|
|
||
|
public void Multiply(ref Quaterniond quaternion)
|
||
|
{
|
||
|
double w = W * quaternion.W - X * quaternion.X - Y * quaternion.Y - Z * quaternion.Z;
|
||
|
double x = W * quaternion.X + X * quaternion.W + Y * quaternion.Z - Z * quaternion.Y;
|
||
|
double y = W * quaternion.Y + Y * quaternion.W + Z * quaternion.X - X * quaternion.Z;
|
||
|
Z = W * quaternion.Z + Z * quaternion.W + X * quaternion.Y - Y * quaternion.X;
|
||
|
W = w;
|
||
|
X = x;
|
||
|
Y = y;
|
||
|
}
|
||
|
public void Multiply(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
result.W = W * quaternion.W - X * quaternion.X - Y * quaternion.Y - Z * quaternion.Z;
|
||
|
result.X = W * quaternion.X + X * quaternion.W + Y * quaternion.Z - Z * quaternion.Y;
|
||
|
result.Y = W * quaternion.Y + Y * quaternion.W + Z * quaternion.X - X * quaternion.Z;
|
||
|
result.Z = W * quaternion.Z + Z * quaternion.W + X * quaternion.Y - Y * quaternion.X;
|
||
|
}
|
||
|
public static void Multiply(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
|
{
|
||
|
result.W = left.W * right.W - left.X * right.X - left.Y * right.Y - left.Z * right.Z;
|
||
|
result.X = left.W * right.X + left.X * right.W + left.Y * right.Z - left.Z * right.Y;
|
||
|
result.Y = left.W * right.Y + left.Y * right.W + left.Z * right.X - left.X * right.Z;
|
||
|
result.Z = left.W * right.Z + left.Z * right.W + left.X * right.Y - left.Y * right.X;
|
||
|
}
|
||
|
|
||
|
public void Multiply(double scalar)
|
||
|
{
|
||
|
W = W * scalar;
|
||
|
X = X * scalar;
|
||
|
Y = Y * scalar;
|
||
|
Z = Z * scalar;
|
||
|
}
|
||
|
public void Multiply(double scalar, out Quaterniond result)
|
||
|
{
|
||
|
result.W = W * scalar;
|
||
|
result.X = X * scalar;
|
||
|
result.Y = Y * scalar;
|
||
|
result.Z = Z * scalar;
|
||
|
}
|
||
|
public static void Multiply(ref Quaterniond quaternion, double scalar, out Quaterniond result)
|
||
|
{
|
||
|
result.W = quaternion.W * scalar;
|
||
|
result.X = quaternion.X * scalar;
|
||
|
result.Y = quaternion.Y * scalar;
|
||
|
result.Z = quaternion.Z * scalar;
|
||
|
}
|
||
|
|
||
|
public void Divide(double scalar)
|
||
|
{
|
||
|
if (scalar == 0) throw new DivideByZeroException();
|
||
|
W = W / scalar;
|
||
|
X = X / scalar;
|
||
|
Y = Y / scalar;
|
||
|
Z = Z / scalar;
|
||
|
}
|
||
|
public void Divide(double scalar, out Quaterniond result)
|
||
|
{
|
||
|
if (scalar == 0) throw new DivideByZeroException();
|
||
|
result.W = W / scalar;
|
||
|
result.X = X / scalar;
|
||
|
result.Y = Y / scalar;
|
||
|
result.Z = Z / scalar;
|
||
|
}
|
||
|
public static void Divide(ref Quaterniond quaternion, double scalar, out Quaterniond result)
|
||
|
{
|
||
|
if (scalar == 0) throw new DivideByZeroException();
|
||
|
result.W = quaternion.W / scalar;
|
||
|
result.X = quaternion.X / scalar;
|
||
|
result.Y = quaternion.Y / scalar;
|
||
|
result.Z = quaternion.Z / scalar;
|
||
|
}
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region Functions
|
||
|
|
||
|
public double Modulus
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
|
}
|
||
|
}
|
||
|
public double ModulusSquared
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return W * W + X * X + Y * Y + Z * Z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static double DotProduct(Quaterniond left, Quaterniond right)
|
||
|
{
|
||
|
return left.W * right.W + left.X * right.X + left.Y * right.Y + left.Z * right.Z;
|
||
|
}
|
||
|
|
||
|
public void Normalize()
|
||
|
{
|
||
|
double modulus = System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
|
if (modulus == 0) throw new DivideByZeroException();
|
||
|
W = W / modulus;
|
||
|
X = X / modulus;
|
||
|
Y = Y / modulus;
|
||
|
Z = Z / modulus;
|
||
|
}
|
||
|
public void Normalize( out Quaterniond result )
|
||
|
{
|
||
|
double modulus = System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
|
if (modulus == 0) throw new DivideByZeroException();
|
||
|
result.W = W / modulus;
|
||
|
result.X = X / modulus;
|
||
|
result.Y = Y / modulus;
|
||
|
result.Z = Z / modulus;
|
||
|
}
|
||
|
public static void Normalize(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
double modulus = System.Math.Sqrt(quaternion.W * quaternion.W + quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z);
|
||
|
if (modulus == 0) throw new DivideByZeroException();
|
||
|
result.W = quaternion.W / modulus;
|
||
|
result.X = quaternion.X / modulus;
|
||
|
result.Y = quaternion.Y / modulus;
|
||
|
result.Z = quaternion.Z / modulus;
|
||
|
}
|
||
|
|
||
|
public void Conjugate()
|
||
|
{
|
||
|
X = -X;
|
||
|
Y = -Y;
|
||
|
Z = -Z;
|
||
|
}
|
||
|
public void Conjugate( out Quaterniond result )
|
||
|
{
|
||
|
result.W = W;
|
||
|
result.X = -X;
|
||
|
result.Y = -Y;
|
||
|
result.Z = -Z;
|
||
|
}
|
||
|
public static void Conjugate(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
result.W = quaternion.W;
|
||
|
result.X = -quaternion.X;
|
||
|
result.Y = -quaternion.Y;
|
||
|
result.Z = -quaternion.Z;
|
||
|
}
|
||
|
|
||
|
public void Inverse()
|
||
|
{
|
||
|
double modulusSquared = W * W + X * X + Y * Y + Z * Z;
|
||
|
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
|
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
|
W = W * inverseModulusSquared;
|
||
|
X = X * -inverseModulusSquared;
|
||
|
Y = Y * -inverseModulusSquared;
|
||
|
Z = Z * -inverseModulusSquared;
|
||
|
}
|
||
|
public void Inverse( out Quaterniond result )
|
||
|
{
|
||
|
double modulusSquared = W * W + X * X + Y * Y + Z * Z;
|
||
|
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
|
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
|
result.W = W * inverseModulusSquared;
|
||
|
result.X = X * -inverseModulusSquared;
|
||
|
result.Y = Y * -inverseModulusSquared;
|
||
|
result.Z = Z * -inverseModulusSquared;
|
||
|
}
|
||
|
public static void Inverse(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
double modulusSquared = quaternion.W * quaternion.W + quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z;
|
||
|
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
|
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
|
result.W = quaternion.W * inverseModulusSquared;
|
||
|
result.X = quaternion.X * -inverseModulusSquared;
|
||
|
result.Y = quaternion.Y * -inverseModulusSquared;
|
||
|
result.Z = quaternion.Z * -inverseModulusSquared;
|
||
|
}
|
||
|
|
||
|
public void Log()
|
||
|
{
|
||
|
if (System.Math.Abs(W) < 1.0)
|
||
|
{
|
||
|
double angle = System.Math.Acos(W);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) >= 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
X = X * coefficient;
|
||
|
Y = Y * coefficient;
|
||
|
Z = Z * coefficient;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
X = 0;
|
||
|
Y = 0;
|
||
|
Z = 0;
|
||
|
}
|
||
|
|
||
|
W = 0;
|
||
|
}
|
||
|
public void Log( out Quaterniond result )
|
||
|
{
|
||
|
if (System.Math.Abs(W) < 1.0)
|
||
|
{
|
||
|
double angle = System.Math.Acos(W);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) >= 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
result.X = X * coefficient;
|
||
|
result.Y = Y * coefficient;
|
||
|
result.Z = Z * coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.X = X;
|
||
|
result.Y = Y;
|
||
|
result.Z = Z;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.X = 0;
|
||
|
result.Y = 0;
|
||
|
result.Z = 0;
|
||
|
}
|
||
|
|
||
|
result.W = 0;
|
||
|
}
|
||
|
public static void Log(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
if (System.Math.Abs(quaternion.W) < 1.0)
|
||
|
{
|
||
|
double angle = System.Math.Acos(quaternion.W);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) >= 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
result.X = quaternion.X * coefficient;
|
||
|
result.Y = quaternion.Y * coefficient;
|
||
|
result.Z = quaternion.Z * coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.X = quaternion.X;
|
||
|
result.Y = quaternion.Y;
|
||
|
result.Z = quaternion.Z;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.X = 0;
|
||
|
result.Y = 0;
|
||
|
result.Z = 0;
|
||
|
}
|
||
|
|
||
|
result.W = 0;
|
||
|
}
|
||
|
|
||
|
public void Exp()
|
||
|
{
|
||
|
double angle = System.Math.Sqrt(X * X + Y * Y + Z * Z);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) > 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
W = 0;
|
||
|
X = X * coefficient;
|
||
|
Y = Y * coefficient;
|
||
|
Z = Z * coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
W = 0;
|
||
|
}
|
||
|
}
|
||
|
public void Exp(out Quaterniond result)
|
||
|
{
|
||
|
double angle = System.Math.Sqrt(X * X + Y * Y + Z * Z);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) > 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
result.W = 0;
|
||
|
result.X = X * coefficient;
|
||
|
result.Y = Y * coefficient;
|
||
|
result.Z = Z * coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.W = 0;
|
||
|
result.X = X;
|
||
|
result.Y = Y;
|
||
|
result.Z = Z;
|
||
|
}
|
||
|
}
|
||
|
public static void Exp(ref Quaterniond quaternion, out Quaterniond result)
|
||
|
{
|
||
|
double angle = System.Math.Sqrt(quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z);
|
||
|
double sin = System.Math.Sin(angle);
|
||
|
|
||
|
if (System.Math.Abs(sin) > 0)
|
||
|
{
|
||
|
double coefficient = angle / sin;
|
||
|
result.W = 0;
|
||
|
result.X = quaternion.X * coefficient;
|
||
|
result.Y = quaternion.Y * coefficient;
|
||
|
result.Z = quaternion.Z * coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.W = 0;
|
||
|
result.X = quaternion.X;
|
||
|
result.Y = quaternion.Y;
|
||
|
result.Z = quaternion.Z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>Returns left matrix for this quaternion.</summary>
|
||
|
public void Matrix4(out Matrix4d result)
|
||
|
{
|
||
|
// TODO Expand
|
||
|
result = new Matrix4d(ref this);
|
||
|
}
|
||
|
|
||
|
public void GetAxisAndAngle(out Vector3d axis, out double angle)
|
||
|
{
|
||
|
Quaterniond quaternion;
|
||
|
Normalize(out quaternion);
|
||
|
double cos = quaternion.W;
|
||
|
angle = System.Math.Acos(cos) * 2 * Functions.RTOD;
|
||
|
double sin = System.Math.Sqrt( 1.0d - cos * cos );
|
||
|
if ( System.Math.Abs( sin ) < 0.0001 ) sin = 1;
|
||
|
axis = new Vector3d(X / sin, Y / sin, Z / sin);
|
||
|
}
|
||
|
|
||
|
public static void Slerp(ref Quaterniond start, ref Quaterniond end, double blend, out Quaterniond result)
|
||
|
{
|
||
|
if (start.W == 0 && start.X == 0 && start.Y == 0 && start.Z == 0)
|
||
|
{
|
||
|
if (end.W == 0 && end.X == 0 && end.Y == 0 && end.Z == 0)
|
||
|
{
|
||
|
result.W = 1;
|
||
|
result.X = 0;
|
||
|
result.Y = 0;
|
||
|
result.Z = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result = end;
|
||
|
}
|
||
|
}
|
||
|
else if (end.W == 0 && end.X == 0 && end.Y == 0 && end.Z == 0)
|
||
|
{
|
||
|
result = start;
|
||
|
}
|
||
|
|
||
|
Vector3d startVector = new Vector3d(start.X, start.Y, start.Z);
|
||
|
Vector3d endVector = new Vector3d(end.X, end.Y, end.Z);
|
||
|
double cosHalfAngle = start.W * end.W + Vector3d.DotProduct(ref startVector, ref endVector);
|
||
|
|
||
|
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f)
|
||
|
{
|
||
|
// angle = 0.0f, so just return one input.
|
||
|
result = start;
|
||
|
}
|
||
|
else if (cosHalfAngle < 0.0f)
|
||
|
{
|
||
|
end.W = -end.W;
|
||
|
end.X = -end.X;
|
||
|
end.Y = -end.Y;
|
||
|
end.Z = -end.Z;
|
||
|
cosHalfAngle = -cosHalfAngle;
|
||
|
}
|
||
|
|
||
|
double blendA;
|
||
|
double blendB;
|
||
|
if (cosHalfAngle < 0.99f)
|
||
|
{
|
||
|
// do proper slerp for big angles
|
||
|
double halfAngle = (double)System.Math.Acos(cosHalfAngle);
|
||
|
double sinHalfAngle = (double)System.Math.Sin(halfAngle);
|
||
|
double oneOverSinHalfAngle = 1.0f / sinHalfAngle;
|
||
|
blendA = (double)System.Math.Sin(halfAngle * (1.0f - blend)) * oneOverSinHalfAngle;
|
||
|
blendB = (double)System.Math.Sin(halfAngle * blend) * oneOverSinHalfAngle;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// do lerp if angle is really small.
|
||
|
blendA = 1.0f - blend;
|
||
|
blendB = blend;
|
||
|
}
|
||
|
|
||
|
result.W = blendA * start.W + blendB * end.W;
|
||
|
result.X = blendA * start.X + blendB * end.X;
|
||
|
result.Y = blendA * start.Y + blendB * end.Y;
|
||
|
result.Z = blendA * start.Z + blendB * end.Z;
|
||
|
|
||
|
if (result.W != 0 || result.X != 0 || result.Y != 0 || result.Z != 0)
|
||
|
{
|
||
|
result.Normalize();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.W = 1;
|
||
|
result.X = 0;
|
||
|
result.Y = 0;
|
||
|
result.Z = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region HashCode
|
||
|
|
||
|
/// <summary>Returns the hash code for this instance.</summary>
|
||
|
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
|
||
|
public override int GetHashCode()
|
||
|
{
|
||
|
base.GetHashCode();
|
||
|
return W.GetHashCode() ^ X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode();
|
||
|
}
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region String and Parse
|
||
|
|
||
|
/// <summary>Returns the fully qualified type name of this instance.</summary>
|
||
|
/// <returns>A System.String containing left fully qualified type name.</returns>
|
||
|
public override string ToString()
|
||
|
{
|
||
|
return string.Format("({0}, {1}, {2}, {3})", W, X, Y, Z);
|
||
|
}
|
||
|
|
||
|
/// <summary>Parses left string, converting it to left quaternion.</summary>
|
||
|
/// <param name="str">The string to parse.</param>
|
||
|
/// <returns>The quaternion represented by the string.</returns>
|
||
|
public static void Parse(string str, out Quaterniond result)
|
||
|
{
|
||
|
Match match = new Regex(@"\((?<w>.*),(?<x>.*),(?<y>.*),(?<z>.*)\)", RegexOptions.None).Match(str);
|
||
|
if (!match.Success) throw new Exception("Parse failed!");
|
||
|
|
||
|
result.W = double.Parse(match.Result("${w}"));
|
||
|
result.X = double.Parse(match.Result("${x}"));
|
||
|
result.Y = double.Parse(match.Result("${y}"));
|
||
|
result.Z = double.Parse(match.Result("${z}"));
|
||
|
}
|
||
|
|
||
|
#endregion
|
||
|
|
||
|
|
||
|
#region Constants
|
||
|
|
||
|
/// <summary>A quaterion with all zero components.</summary>
|
||
|
public static readonly Quaterniond Zero = new Quaterniond(0, 0, 0, 0);
|
||
|
|
||
|
/// <summary>A quaterion representing an identity.</summary>
|
||
|
public static readonly Quaterniond Identity = new Quaterniond(1, 0, 0, 0);
|
||
|
|
||
|
/// <summary>A quaterion representing the W axis.</summary>
|
||
|
public static readonly Quaterniond WAxis = new Quaterniond(1, 0, 0, 0);
|
||
|
|
||
|
/// <summary>A quaterion representing the X axis.</summary>
|
||
|
public static readonly Quaterniond XAxis = new Quaterniond(0, 1, 0, 0);
|
||
|
|
||
|
/// <summary>A quaterion representing the Y axis.</summary>
|
||
|
public static readonly Quaterniond YAxis = new Quaterniond(0, 0, 1, 0);
|
||
|
|
||
|
/// <summary>A quaterion representing the Z axis.</summary>
|
||
|
public static readonly Quaterniond ZAxis = new Quaterniond(0, 0, 0, 1);
|
||
|
|
||
|
#endregion
|
||
|
}
|
||
|
}
|