mirror of
https://github.com/Ryujinx/Opentk.git
synced 2024-12-23 19:55:29 +00:00
Changes suggested by Rob Rouhani
* Turned the new Matrix4 properties into methods * Matrix4.Normalize() now behaves correctly. ExtractRotation() does its own row normalisation.
This commit is contained in:
parent
b20b21d228
commit
498b659d58
|
@ -275,9 +275,11 @@ namespace OpenTK
|
|||
/// </summary>
|
||||
public void Normalize()
|
||||
{
|
||||
Row0.Xyz = Row0.Xyz.Normalized();
|
||||
Row1.Xyz = Row1.Xyz.Normalized();
|
||||
Row2.Xyz = Row2.Xyz.Normalized();
|
||||
var determinant = this.Determinant;
|
||||
Row0 /= determinant;
|
||||
Row1 /= determinant;
|
||||
Row2 /= determinant;
|
||||
Row3 /= determinant;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
|
@ -292,72 +294,81 @@ namespace OpenTK
|
|||
}
|
||||
|
||||
/// <summary>
|
||||
/// Gets the translation component of this instance.
|
||||
/// Returns the translation component of this instance.
|
||||
/// </summary>
|
||||
public Vector3 TranslationPart { get { return Row3.Xyz; } }
|
||||
public Vector3 ExtractTranslation() { return Row3.Xyz; }
|
||||
|
||||
/// <summary>
|
||||
/// Gets the scale component of this instance.
|
||||
/// Returns the scale component of this instance.
|
||||
/// </summary>
|
||||
public Vector3 ScalePart { get { return new Vector3 (Row0.Length, Row1.Length, Row2.Length); } }
|
||||
public Vector3 ExtractScale() { return new Vector3 (Row0.Length, Row1.Length, Row2.Length); }
|
||||
|
||||
/// <summary>
|
||||
/// Gets the rotation component of this instance. The Matrix MUST be normalized first.
|
||||
/// Returns the rotation component of this instance. Quite slow.
|
||||
/// </summary>
|
||||
public Quaternion RotationPart
|
||||
/// <param name="row_normalise">Whether the method should operate on a row-normalised (i.e. scale == 1) version of the Matrix. Pass false if you know it's already normalised.</param>
|
||||
public Quaternion ExtractRotation(bool row_normalise = true)
|
||||
{
|
||||
get
|
||||
var row0 = Row0.Xyz;
|
||||
var row1 = Row1.Xyz;
|
||||
var row2 = Row2.Xyz;
|
||||
|
||||
if (row_normalise)
|
||||
{
|
||||
if (row0.LengthSquared != 1) row0 = row0.Normalized();
|
||||
if (row1.LengthSquared != 1) row1 = row1.Normalized();
|
||||
if (row2.LengthSquared != 1) row2 = row2.Normalized();
|
||||
}
|
||||
|
||||
// code below adapted from Blender
|
||||
|
||||
Quaternion q = new Quaternion();
|
||||
double trace = 0.25 * (row0[0] + row1[1] + row2[2] + 1.0);
|
||||
|
||||
// Adapted from Blender
|
||||
double trace = 0.25 * (Row0[0] + Row1[1] + Row2[2] + 1.0);
|
||||
|
||||
if (trace > 0.0f)
|
||||
if (trace > 0)
|
||||
{
|
||||
double sq = Math.Sqrt(trace);
|
||||
|
||||
q.W = (float)sq;
|
||||
sq = 1.0 / (4.0 * sq);
|
||||
q.X = (float)((Row1[2] - Row2[1]) * sq);
|
||||
q.Y = (float)((Row2[0] - Row0[2]) * sq);
|
||||
q.Z = (float)((Row0[1] - Row1[0]) * sq);
|
||||
q.X = (float)((row1[2] - row2[1]) * sq);
|
||||
q.Y = (float)((row2[0] - row0[2]) * sq);
|
||||
q.Z = (float)((row0[1] - row1[0]) * sq);
|
||||
}
|
||||
else if (Row0[0] > Row1[1] && Row0[0] > Row2[2])
|
||||
else if (row0[0] > row1[1] && row0[0] > row2[2])
|
||||
{
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + Row0[0] - Row1[1] - Row2[2]);
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + row0[0] - row1[1] - row2[2]);
|
||||
|
||||
q.X = (float)(0.25 * sq);
|
||||
sq = 1.0 / sq;
|
||||
q.W = (float)((Row2[1] - Row1[2]) * sq);
|
||||
q.Y = (float)((Row1[0] + Row0[1]) * sq);
|
||||
q.Z = (float)((Row2[0] + Row0[2]) * sq);
|
||||
q.W = (float)((row2[1] - row1[2]) * sq);
|
||||
q.Y = (float)((row1[0] + row0[1]) * sq);
|
||||
q.Z = (float)((row2[0] + row0[2]) * sq);
|
||||
}
|
||||
else if (Row1[1] > Row2[2])
|
||||
else if (row1[1] > row2[2])
|
||||
{
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + Row1[1] - Row0[0] - Row2[2]);
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + row1[1] - row0[0] - row2[2]);
|
||||
|
||||
q.Y = (float)(0.25 * sq);
|
||||
sq = 1.0 / sq;
|
||||
q.W = (float)((Row2[0] - Row0[2]) * sq);
|
||||
q.X = (float)((Row1[0] + Row0[1]) * sq);
|
||||
q.Z = (float)((Row2[1] + Row1[2]) * sq);
|
||||
q.W = (float)((row2[0] - row0[2]) * sq);
|
||||
q.X = (float)((row1[0] + row0[1]) * sq);
|
||||
q.Z = (float)((row2[1] + row1[2]) * sq);
|
||||
}
|
||||
else
|
||||
{
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + Row2[2] - Row0[0] - Row1[1]);
|
||||
double sq = 2.0 * Math.Sqrt(1.0 + row2[2] - row0[0] - row1[1]);
|
||||
|
||||
q.Z = (float)(0.25 * sq);
|
||||
sq = 1.0 / sq;
|
||||
q.W = (float)((Row1[0] - Row0[1]) * sq);
|
||||
q.X = (float)((Row2[0] + Row0[2]) * sq);
|
||||
q.Y = (float)((Row2[1] + Row1[2]) * sq);
|
||||
q.W = (float)((row1[0] - row0[1]) * sq);
|
||||
q.X = (float)((row2[0] + row0[2]) * sq);
|
||||
q.Y = (float)((row2[1] + row1[2]) * sq);
|
||||
}
|
||||
|
||||
q.Normalize();
|
||||
return q;
|
||||
}
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
|
|
Loading…
Reference in a new issue