Opentk/Source/Examples/OpenTK/GameWindow/GameWindowThreaded.cs
2014-07-21 17:20:19 +02:00

320 lines
10 KiB
C#

// This code was written for the OpenTK library and has been released
// to the Public Domain.
// It is provided "as is" without express or implied warranty of any kind.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Threading;
using OpenTK;
using OpenTK.Graphics;
using OpenTK.Graphics.OpenGL;
using OpenTK.Input;
namespace Examples.Tutorial
{
/// <summary>
/// Demonstrates how to decouple rendering from the main thread.
/// Note that all OpenGL function calls should take place at the rendering thread -
/// OpenGL will not be available on the main thread at all!
/// </summary>
[Example("GameWindow Threaded", ExampleCategory.OpenTK, "GameWindow", 3, Documentation = "GameWindowThreaded")]
public class ThreadedRendering : GameWindow
{
bool viewport_changed = true;
int viewport_width, viewport_height;
bool position_changed = true;
int position_x, position_y;
float position_dx, position_dy;
bool exit = false;
Thread rendering_thread;
object update_lock = new object();
const float GravityAccel = -9.81f;
struct Particle
{
public Vector2 Position;
public Vector2 Velocity;
public Color4 Color;
}
List<Particle> Particles = new List<Particle>();
Random rand = new Random();
public ThreadedRendering()
: base(800, 600)
{
KeyDown += delegate(object sender, KeyboardKeyEventArgs e)
{
if (e.Key == Key.Escape)
this.Exit();
};
KeyUp += delegate(object sender, KeyboardKeyEventArgs e)
{
if (e.Key == Key.F11)
if (this.WindowState == WindowState.Fullscreen)
this.WindowState = WindowState.Normal;
else
this.WindowState = WindowState.Fullscreen;
};
Resize += delegate(object sender, EventArgs e)
{
// Note that we cannot call any OpenGL methods directly. What we can do is set
// a flag and respond to it from the rendering thread.
lock (update_lock)
{
viewport_changed = true;
viewport_width = Width;
viewport_height = Height;
}
};
Move += delegate(object sender, EventArgs e)
{
// Note that we cannot call any OpenGL methods directly. What we can do is set
// a flag and respond to it from the rendering thread.
lock (update_lock)
{
position_changed = true;
position_dx = (position_x - X) / (float)Width;
position_dy = (position_y - Y) / (float)Height;
position_x = X;
position_y = Y;
}
};
// Make sure initial position are correct, otherwise we'll give a huge
// initial velocity to the balls.
position_x = X;
position_y = Y;
}
#region OnLoad
/// <summary>
/// Setup OpenGL and load resources here.
/// </summary>
/// <param name="e">Not used.</param>
protected override void OnLoad(EventArgs e)
{
Context.MakeCurrent(null); // Release the OpenGL context so it can be used on the new thread.
rendering_thread = new Thread(RenderLoop);
rendering_thread.IsBackground = true;
rendering_thread.Start();
}
#endregion
#region OnUnload
/// <summary>
/// Release resources here.
/// </summary>
/// <param name="e">Not used.</param>
protected override void OnUnload(EventArgs e)
{
exit = true; // Set a flag that the rendering thread should stop running.
rendering_thread.Join();
base.OnUnload(e);
}
#endregion
#region OnUpdateFrame
/// <summary>
/// Add your game logic here.
/// </summary>
/// <param name="e">Contains timing information.</param>
/// <remarks>There is no need to call the base implementation.</remarks>
protected override void OnUpdateFrame(FrameEventArgs e)
{
// Nothing to do!
}
#endregion
#region OnRenderFrame
/// <summary>
/// Ignored. All rendering is performed on our own rendering function.
/// </summary>
/// <param name="e">Contains timing information.</param>
/// <remarks>There is no need to call the base implementation.</remarks>
protected override void OnRenderFrame(FrameEventArgs e)
{
// Nothing to do. Release the CPU to other threads.
Thread.Sleep(1);
}
#endregion
#region RenderLoop
void RenderLoop()
{
MakeCurrent(); // The context now belongs to this thread. No other thread may use it!
VSync = VSyncMode.On;
for (int i = 0; i < 64; i++)
{
Particle p = new Particle();
p.Position = new Vector2((float)rand.NextDouble() * 2 - 1, (float)rand.NextDouble() * 2 - 1);
p.Color.R = (float)rand.NextDouble();
p.Color.G = (float)rand.NextDouble();
p.Color.B = (float)rand.NextDouble();
Particles.Add(p);
}
// Since we don't use OpenTK's timing mechanism, we need to keep time ourselves;
Stopwatch render_watch = new Stopwatch();
Stopwatch update_watch = new Stopwatch();
update_watch.Start();
render_watch.Start();
GL.ClearColor(Color.MidnightBlue);
GL.Enable(EnableCap.DepthTest);
GL.Enable(EnableCap.PointSmooth);
GL.PointSize(16);
while (!exit)
{
Update(update_watch.Elapsed.TotalSeconds);
update_watch.Reset();
update_watch.Start();
Render(render_watch.Elapsed.TotalSeconds);
render_watch.Reset(); // Stopwatch may be inaccurate over larger intervals.
render_watch.Start(); // Plus, timekeeping is easier if we always start counting from 0.
SwapBuffers();
}
Context.MakeCurrent(null);
}
#endregion
#region Update
void Update(double time)
{
lock (update_lock)
{
// When the user moves the window we make the particles react to
// this movement. The reaction is semi-random and not physically
// correct. It looks quite good, however.
if (position_changed)
{
for (int i = 0; i < Particles.Count; i++)
{
Particle p = Particles[i];
p.Velocity += new Vector2(
16 * (position_dx + 0.05f * (float)(rand.NextDouble() - 0.5)),
32 * (position_dy + 0.05f * (float)(rand.NextDouble() - 0.5)));
Particles[i] = p;
}
position_changed = false;
}
}
// For simplicity, we use simple Euler integration to simulate particle movement.
// This is not accurate, especially under varying timesteps (as is the case here).
// A better solution would have been time-corrected Verlet integration, as
// described here:
// http://www.gamedev.net/reference/programming/features/verlet/
for (int i = 0; i < Particles.Count; i++)
{
Particle p = Particles[i];
p.Velocity.X = Math.Abs(p.Position.X) >= 1 ?-p.Velocity.X * 0.92f : p.Velocity.X * 0.97f;
p.Velocity.Y = Math.Abs(p.Position.Y) >= 1 ? -p.Velocity.Y * 0.92f : p.Velocity.Y * 0.97f;
if (p.Position.Y > -0.99)
{
p.Velocity.Y += (float)(GravityAccel * time);
}
else
{
if (Math.Abs(p.Velocity.Y) < 0.02)
{
p.Velocity.Y = 0;
p.Position.Y = -1;
}
else
{
p.Velocity.Y *= 0.9f;
}
}
p.Position += p.Velocity * (float)time;
if (p.Position.Y <= -1)
p.Position.Y = -1;
Particles[i] = p;
}
}
#endregion
#region Render
/// <summary>
/// This is our main rendering function, which executes on the rendering thread.
/// </summary>
public void Render(double time)
{
lock (update_lock)
{
if (viewport_changed)
{
GL.Viewport(0, 0, viewport_width, viewport_height);
viewport_changed = false;
}
}
Matrix4 perspective =
Matrix4.CreateOrthographic(2, 2, -1, 1);
GL.MatrixMode(MatrixMode.Projection);
GL.LoadMatrix(ref perspective);
GL.MatrixMode(MatrixMode.Modelview);
GL.LoadIdentity();
GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit);
GL.Begin(PrimitiveType.Points);
foreach (Particle p in Particles)
{
GL.Color4(p.Color);
GL.Vertex2(p.Position);
}
GL.End();
}
#endregion
#region public static void Main()
/// <summary>
/// Entry point of this example.
/// </summary>
[STAThread]
public static void Main()
{
using (GameWindow example = new ThreadedRendering())
{
// Get the title and category of this example using reflection.
Utilities.SetWindowTitle(example);
example.Run();
}
}
#endregion
}
}