1
0
Fork 0
mirror of https://github.com/Ryujinx/Opentk.git synced 2025-01-14 19:15:39 +00:00
Opentk/Source/Compatibility/Math/BezierCurveCubic.cs

165 lines
5.8 KiB
C#
Raw Blame History

#region --- License ---
/* Licensed under the MIT/X11 license.
* Copyright (c) 2006-2008 the OpenTK Team.
* This notice may not be removed from any source distribution.
* See license.txt for licensing detailed licensing details.
*
* Contributions by Georg W<>chter.
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
namespace OpenTK.Math
{
/// <summary>
/// Represents a cubic bezier curve with two anchor and two control points.
/// </summary>
[Obsolete("OpenTK.Math functions have been moved to the root OpenTK namespace (reason: XNA compatibility")]
[Serializable]
public struct BezierCurveCubic
{
#region Fields
/// <summary>
/// Start anchor point.
/// </summary>
public Vector2 StartAnchor;
/// <summary>
/// End anchor point.
/// </summary>
public Vector2 EndAnchor;
/// <summary>
/// First control point, controls the direction of the curve start.
/// </summary>
public Vector2 FirstControlPoint;
/// <summary>
/// Second control point, controls the direction of the curve end.
/// </summary>
public Vector2 SecondControlPoint;
/// <summary>
/// Gets or sets the parallel value.
/// </summary>
/// <remarks>This value defines whether the curve should be calculated as a
/// parallel curve to the original bezier curve. A value of 0.0f represents
/// the original curve, 5.0f i.e. stands for a curve that has always a distance
/// of 5.f to the orignal curve at any point.</remarks>
public float Parallel;
#endregion
#region Constructors
/// <summary>
/// Constructs a new <see cref="BezierCurveCubic"/>.
/// </summary>
/// <param name="startAnchor">The start anchor point.</param>
/// <param name="endAnchor">The end anchor point.</param>
/// <param name="firstControlPoint">The first control point.</param>
/// <param name="secondControlPoint">The second control point.</param>
public BezierCurveCubic(Vector2 startAnchor, Vector2 endAnchor, Vector2 firstControlPoint, Vector2 secondControlPoint)
{
this.StartAnchor = startAnchor;
this.EndAnchor = endAnchor;
this.FirstControlPoint = firstControlPoint;
this.SecondControlPoint = secondControlPoint;
this.Parallel = 0.0f;
}
/// <summary>
/// Constructs a new <see cref="BezierCurveCubic"/>.
/// </summary>
/// <param name="parallel">The parallel value.</param>
/// <param name="startAnchor">The start anchor point.</param>
/// <param name="endAnchor">The end anchor point.</param>
/// <param name="firstControlPoint">The first control point.</param>
/// <param name="secondControlPoint">The second control point.</param>
public BezierCurveCubic(float parallel, Vector2 startAnchor, Vector2 endAnchor, Vector2 firstControlPoint, Vector2 secondControlPoint)
{
this.Parallel = parallel;
this.StartAnchor = startAnchor;
this.EndAnchor = endAnchor;
this.FirstControlPoint = firstControlPoint;
this.SecondControlPoint = secondControlPoint;
}
#endregion
#region Functions
/// <summary>
/// Calculates the point with the specified t.
/// </summary>
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
public Vector2 CalculatePoint(float t)
{
Vector2 r = new Vector2();
float c = 1.0f - t;
r.X = (StartAnchor.X * c * c * c) + (FirstControlPoint.X * 3 * t * c * c) + (SecondControlPoint.X * 3 * t * t * c)
+ EndAnchor.X * t * t * t;
r.Y = (StartAnchor.Y * c * c * c) + (FirstControlPoint.Y * 3 * t * c * c) + (SecondControlPoint.Y * 3 * t * t * c)
+ EndAnchor.Y * t * t * t;
if (Parallel == 0.0f)
return r;
Vector2 perpendicular = new Vector2();
if (t == 0.0f)
perpendicular = FirstControlPoint - StartAnchor;
else
perpendicular = r - CalculatePointOfDerivative(t);
return r + Vector2.Normalize(perpendicular).PerpendicularRight * Parallel;
}
/// <summary>
/// Calculates the point with the specified t of the derivative of this function.
/// </summary>
/// <param name="t">The t, value between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
private Vector2 CalculatePointOfDerivative(float t)
{
Vector2 r = new Vector2();
float c = 1.0f - t;
r.X = (c * c * StartAnchor.X) + (2 * t * c * FirstControlPoint.X) + (t * t * SecondControlPoint.X);
r.Y = (c * c * StartAnchor.Y) + (2 * t * c * FirstControlPoint.Y) + (t * t * SecondControlPoint.Y);
return r;
}
/// <summary>
/// Calculates the length of this bezier curve.
/// </summary>
/// <param name="precision">The precision.</param>
/// <returns>Length of the curve.</returns>
/// <remarks>The precision gets better when the <paramref name="precision"/>
/// value gets smaller.</remarks>
public float CalculateLength(float precision)
{
float length = 0.0f;
Vector2 old = CalculatePoint(0.0f);
for (float i = precision; i < (1.0f + precision); i += precision)
{
Vector2 n = CalculatePoint(i);
length += (n - old).Length;
old = n;
}
return length;
}
#endregion
}
}