mirror of
https://github.com/Ryujinx/Opentk.git
synced 2025-01-26 12:01:16 +00:00
1244 lines
89 KiB
C#
1244 lines
89 KiB
C#
#region --- License ---
|
||
/* Licensed under the MIT/X11 license.
|
||
* Copyright (c) 2006-2008 the OpenTK Team.
|
||
* This notice may not be removed from any source distribution.
|
||
* See license.txt for licensing detailed licensing details.
|
||
*
|
||
* Contributions by James Talton and Georg Wächter.
|
||
*/
|
||
#endregion
|
||
|
||
using System;
|
||
using System.Diagnostics;
|
||
using System.Collections.Generic;
|
||
using System.Runtime.InteropServices;
|
||
using System.Text.RegularExpressions;
|
||
|
||
namespace OpenTK.Math
|
||
{
|
||
/// <summary>A 3-dimensional vector using double-precision floating point numbers.</summary>
|
||
[Serializable]
|
||
[StructLayout(LayoutKind.Sequential)]
|
||
internal struct Vector3d : IEquatable<Vector3d>, IComparer<Vector3d>, IComparable<Vector3d>
|
||
{
|
||
#region Fields & Access
|
||
|
||
/// <summary>The X coordinate of the vector.</summary>
|
||
public double X;
|
||
|
||
/// <summary>The Y coordinate of the vector.</summary>
|
||
public double Y;
|
||
|
||
/// <summary>The Z coordinate of the vector.</summary>
|
||
public double Z;
|
||
|
||
/// <summary>The coordinate at the index of the vector.</summary>
|
||
public double this[int index]
|
||
{
|
||
get
|
||
{
|
||
switch( index )
|
||
{
|
||
case 0:
|
||
return X;
|
||
|
||
case 1:
|
||
return Y;
|
||
|
||
case 2:
|
||
return Z;
|
||
}
|
||
|
||
throw new IndexOutOfRangeException();
|
||
}
|
||
set
|
||
{
|
||
switch( index )
|
||
{
|
||
case 0:
|
||
X = value;
|
||
return;
|
||
|
||
case 1:
|
||
Y = value;
|
||
return;
|
||
|
||
case 2:
|
||
Z = value;
|
||
return;
|
||
}
|
||
|
||
throw new IndexOutOfRangeException();
|
||
}
|
||
}
|
||
|
||
/// <summary>Converts the vector into an array of double-precision floating point numbers.</summary>
|
||
/// <param name="vector">The vector being converted.</param>
|
||
/// <returns>An array of double-precision floating point numbers representing the vector coordinates.</returns>
|
||
public static explicit operator double[](Vector3d vector)
|
||
{
|
||
return new double[3]{vector.X, vector.Y, vector.Z};
|
||
}
|
||
|
||
/// <summary>Converts the vector into left double-precision floating point number pointer.</summary>
|
||
/// <param name="vector">The vector being converted.</param>
|
||
/// <returns>A double-precision floating point number pointer to the vector coordinates.</returns>
|
||
//unsafe public static explicit operator double*(Vector3d vector)
|
||
//{
|
||
// return &vector.X;
|
||
//}
|
||
|
||
/// <summary>Converts the vector into an IntPtr.</summary>
|
||
/// <param name="vector">The vector being converted.</param>
|
||
/// <returns>An IntPtr to the vector coordinates.</returns>
|
||
//public static explicit operator IntPtr(Vector3d vector)
|
||
//{
|
||
// unsafe
|
||
// {
|
||
// return (IntPtr)(&vector.X);
|
||
// }
|
||
//}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Constructors
|
||
|
||
/// <summary>Constructs left vector with the given coordinates.</summary>
|
||
/// <param name="x">The X coordinate.</param>
|
||
/// <param name="y">The Y coordinate.</param>
|
||
/// <param name="z">The Z coordinate.</param>
|
||
public Vector3d(double x, double y, double z)
|
||
{
|
||
this.X = x;
|
||
this.Y = y;
|
||
this.Z = z;
|
||
}
|
||
|
||
/// <summary>Constructs left vector with the same coordinates as the given vector.</summary>
|
||
/// <param name="vector">The vector whose coordinates to copy.</param>
|
||
public Vector3d(ref Vector2d vector)
|
||
{
|
||
this.X = vector.X;
|
||
this.Y = vector.Y;
|
||
this.Z = 0;
|
||
}
|
||
|
||
/// <summary>Constructs left vector with the same coordinates as the given vector.</summary>
|
||
/// <param name="vector">The vector whose coordinates to copy.</param>
|
||
public Vector3d(ref Vector3d vector)
|
||
{
|
||
this.X = vector.X;
|
||
this.Y = vector.Y;
|
||
this.Z = vector.Z;
|
||
}
|
||
|
||
/// <summary>Constructs left vector from the given array of double-precision floating point numbers.</summary>
|
||
/// <param name="doubleArray">The array of doubles for the coordinates of the vector.</param>
|
||
public Vector3d(double[] coordinateArray)
|
||
{
|
||
if( coordinateArray == null || coordinateArray.GetLength(0) < 3 ) throw new Exception("Invalid parameter.");
|
||
|
||
this.X = coordinateArray[0];
|
||
this.Y = coordinateArray[1];
|
||
this.Z = coordinateArray[2];
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Equality
|
||
|
||
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
|
||
/// <param name="vector">An vector to compare with this vector.</param>
|
||
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
|
||
[CLSCompliant(false)]
|
||
public bool Equals(Vector3d vector)
|
||
{
|
||
return
|
||
X == vector.X &&
|
||
Y == vector.Y &&
|
||
Z == vector.Z;
|
||
}
|
||
|
||
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
|
||
/// <param name="vector">An vector to compare with this vector.</param>
|
||
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
|
||
public bool Equals(ref Vector3d vector)
|
||
{
|
||
return
|
||
X == vector.X &&
|
||
Y == vector.Y &&
|
||
Z == vector.Z;
|
||
}
|
||
|
||
/// <summary>Indicates whether two vectors are approximately equal to each other.</summary>
|
||
/// <param name="matrix">The first vector.</param>
|
||
/// <param name="right">The second vector.</param>
|
||
/// <returns>true if the vectors are approximately equal; otherwise, false.</returns>
|
||
public static bool Equals(ref Vector3d left, ref Vector3d right)
|
||
{
|
||
return
|
||
left.X == right.X &&
|
||
left.Y == right.Y &&
|
||
left.Z == right.Z;
|
||
}
|
||
|
||
/// <summary>Indicates whether the current vector is equal to another vector.</summary>
|
||
/// <param name="vector">An vector to compare with this vector.</param>
|
||
/// <returns>true if the current vector is equal to the vector parameter; otherwise, false.</returns>
|
||
public bool EqualsApprox(ref Vector3d vector, double tolerance)
|
||
{
|
||
return
|
||
System.Math.Abs(X - vector.X) <= tolerance &&
|
||
System.Math.Abs(Y - vector.Y) <= tolerance &&
|
||
System.Math.Abs(Z - vector.Z) <= tolerance;
|
||
}
|
||
|
||
/// <summary>Indicates whether two vectors are approximately equal to each other within left given tolerance.</summary>
|
||
/// <param name="matrix">The first vector.</param>
|
||
/// <param name="right">The second vector.</param>
|
||
/// <param name="tolerance">The tolerance for the approximation.</param>
|
||
/// <returns>true if the vectors are approximately equal; otherwise, false.</returns>
|
||
public static bool EqualsApprox(ref Vector3d left, ref Vector3d right, double tolerance)
|
||
{
|
||
return
|
||
System.Math.Abs(left.X - right.X) <= tolerance &&
|
||
System.Math.Abs(left.Y - right.Y) <= tolerance &&
|
||
System.Math.Abs(left.Z - right.Z) <= tolerance;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region IComparer
|
||
|
||
/// <summary>Compares two vectors and returns left value indicating whether one is less than, equal to, or greater than the other.</summary>
|
||
public int Compare(Vector3d left, Vector3d right)
|
||
{
|
||
if (left.X != right.X)
|
||
{
|
||
if (left.X < right.X) return -1;
|
||
else return 1;
|
||
}
|
||
else if (left.Y != right.Y)
|
||
{
|
||
if (left.Y < right.Y) return -1;
|
||
else return 1;
|
||
}
|
||
else if (left.Z != right.Z)
|
||
{
|
||
if (left.Z < right.Z) return -1;
|
||
else return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region IComparable
|
||
|
||
/// <summary>Compares the vector with another vector and returns left value indicating whether it is less than, equal to, or greater than the other vector.</summary>
|
||
public int CompareTo(Vector3d vector) { return Compare(this, vector); }
|
||
|
||
#endregion
|
||
|
||
|
||
#region Length
|
||
|
||
/// <summary>Gets the length of the vector.</summary>
|
||
public double Length
|
||
{
|
||
get
|
||
{
|
||
double lengthSquared = LengthSquared;
|
||
|
||
if (lengthSquared == 1)
|
||
{
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
return System.Math.Sqrt(lengthSquared);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// <summary>Gets the squared length of the vector.</summary>
|
||
public double LengthSquared
|
||
{
|
||
get
|
||
{
|
||
return X * X + Y * Y + Z * Z;
|
||
}
|
||
}
|
||
|
||
/// <summary>Gets the approimate length of the vector.</summary>
|
||
public double LengthApprox
|
||
{
|
||
get
|
||
{
|
||
return 1.0d / Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Distance
|
||
|
||
/// <summary>Gets the distance from this vector to the given vector.</summary>
|
||
/// <param name="vector">The vector to which to find the distance.</param>
|
||
/// <returns>The distance from this vector to the given vector.</returns>
|
||
public double DistanceTo(ref Vector3d vector)
|
||
{
|
||
double deltaX = vector.X - X;
|
||
double deltaY = vector.Y - Y;
|
||
double deltaZ = vector.Z - Z;
|
||
return System.Math.Sqrt(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ);
|
||
}
|
||
|
||
/// <summary>Gets the squared distance from this vector to the given vector.</summary>
|
||
/// <param name="vector">The vector to which to find the squared distance.</param>
|
||
/// <returns>The squared distance from this vector to the given vector.</returns>
|
||
public double DistanceSquaredTo(ref Vector3d vector)
|
||
{
|
||
double deltaX = vector.X - X;
|
||
double deltaY = vector.Y - Y;
|
||
double deltaZ = vector.Z - Z;
|
||
return deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ;
|
||
}
|
||
|
||
/// <summary>Gets the approximate distance from this vector to the given vector.</summary>
|
||
/// <param name="vector">The vector to which to find the approximate distance.</param>
|
||
/// <returns>The approximate distance from this vector to the given vector.</returns>
|
||
public double DistanceApproxTo(ref Vector3d vector)
|
||
{
|
||
double deltaX = vector.X - X;
|
||
double deltaY = vector.Y - Y;
|
||
double deltaZ = vector.Z - Z;
|
||
return 1.0d / Functions.InverseSqrtFast(deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ);
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Normalize
|
||
|
||
/// <summary>Normalize this vector.</summary>
|
||
public void Normalize()
|
||
{
|
||
double lengthSquared = LengthSquared;
|
||
|
||
if (lengthSquared != 1 && lengthSquared != 0)
|
||
{
|
||
double length = System.Math.Sqrt(lengthSquared);
|
||
X = X / length;
|
||
Y = Y / length;
|
||
Z = Z / length;
|
||
}
|
||
}
|
||
|
||
/// <summary>Get the normalized version of this vector.</summary>
|
||
/// <param name="result">The resulting normalized vector.</param>
|
||
public void Normalize(out Vector3d result)
|
||
{
|
||
double lengthSquared = LengthSquared;
|
||
|
||
if (lengthSquared == 1)
|
||
{
|
||
result.X = X;
|
||
result.Y = Y;
|
||
result.Z = Z;
|
||
}
|
||
else if (lengthSquared == 0)
|
||
{
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
else
|
||
{
|
||
double length = System.Math.Sqrt(lengthSquared);
|
||
result.X = X / length;
|
||
result.Y = Y / length;
|
||
result.Z = Z / length;
|
||
}
|
||
}
|
||
|
||
public static void Normalize(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
double lengthSquared = vector.LengthSquared;
|
||
|
||
if (lengthSquared == 1)
|
||
{
|
||
result.X = vector.X;
|
||
result.Y = vector.Y;
|
||
result.Z = vector.Z;
|
||
}
|
||
else if (lengthSquared == 0)
|
||
{
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
else
|
||
{
|
||
double length = System.Math.Sqrt(lengthSquared);
|
||
result.X = vector.X / length;
|
||
result.Y = vector.Y / length;
|
||
result.Z = vector.Z / length;
|
||
}
|
||
}
|
||
|
||
public void NormalizeApprox()
|
||
{
|
||
double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
|
||
X = X * inverseSquare;
|
||
Y = Y * inverseSquare;
|
||
Z = Z * inverseSquare;
|
||
}
|
||
|
||
/// <summary>Gets left approximately normalized vector of the vector.</summary>
|
||
public void NormalizedApprox(out Vector3d result)
|
||
{
|
||
double inverseSquare = Functions.InverseSqrtFast(X * X + Y * Y + Z * Z);
|
||
result.X = X * inverseSquare;
|
||
result.Y = Y * inverseSquare;
|
||
result.Z = Z * inverseSquare;
|
||
}
|
||
|
||
public static void NormalizeApprox(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
double inverseSquare = Functions.InverseSqrtFast(vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z);
|
||
result.X = vector.X * inverseSquare;
|
||
result.Y = vector.Y * inverseSquare;
|
||
result.Z = vector.Z * inverseSquare;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
/// <summary>Gets the dot product of two vectors.</summary>
|
||
/// <param name="matrix">The first vector.</param>
|
||
/// <param name="right">The second vector.</param>
|
||
/// <returns>The dot product of two vectors.</returns>
|
||
public static double DotProduct(ref Vector3d left, ref Vector3d right)
|
||
{
|
||
return left.X * right.X + left.Y * right.Y + left.Z * right.Z;
|
||
}
|
||
|
||
/// <summary>Gets the cross product of two vectors.</summary>
|
||
/// <param name="matrix">The first vector.</param>
|
||
/// <param name="right">The second vector.</param>
|
||
/// <returns>The cross product of two vectors.</returns>
|
||
public static void CrossProduct(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.Y * right.Z - left.Z * right.Y;
|
||
result.Y = left.Z * right.X - left.X * right.Z;
|
||
result.Z = left.X * right.Y - left.Y * right.X;
|
||
}
|
||
|
||
#region Abs
|
||
|
||
public void Abs()
|
||
{
|
||
X = System.Math.Abs(X);
|
||
Y = System.Math.Abs(Y);
|
||
Z = System.Math.Abs(Z);
|
||
}
|
||
public void Abs(out Vector3d result)
|
||
{
|
||
result.X = System.Math.Abs(X);
|
||
result.Y = System.Math.Abs(Y);
|
||
result.Z = System.Math.Abs(Z);
|
||
}
|
||
public static void Abs(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Abs(vector.X);
|
||
result.Y = System.Math.Abs(vector.Y);
|
||
result.Z = System.Math.Abs(vector.Z);
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Inverse
|
||
|
||
public void Inverse()
|
||
{
|
||
X = -X;
|
||
Y = -Y;
|
||
Z = -Z;
|
||
}
|
||
public void Inverse(out Vector3d result)
|
||
{
|
||
result.X = -X;
|
||
result.Y = -Y;
|
||
result.Z = -Z;
|
||
}
|
||
public static void Inverse(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = -vector.X;
|
||
result.Y = -vector.Y;
|
||
result.Z = -vector.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Arithmatic
|
||
|
||
public void Add(ref Vector3d vector)
|
||
{
|
||
X = X + vector.X;
|
||
Y = Y + vector.Y;
|
||
Z = Z + vector.Z;
|
||
}
|
||
public void Add(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X + vector.X;
|
||
result.Y = Y + vector.Y;
|
||
result.Z = Z + vector.Z;
|
||
}
|
||
public static void Add(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X + right.X;
|
||
result.Y = left.Y + right.Y;
|
||
result.Z = left.Z + right.Z;
|
||
}
|
||
|
||
public void Add(double x, double y, double z)
|
||
{
|
||
X = X + x;
|
||
Y = Y + y;
|
||
Z = Z + z;
|
||
}
|
||
public void Add(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X + x;
|
||
result.Y = Y + y;
|
||
result.Z = Z + z;
|
||
}
|
||
public static void Add(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X + x;
|
||
result.Y = vector.Y + y;
|
||
result.Z = vector.Z + z;
|
||
}
|
||
|
||
public void Subtract(ref Vector3d vector)
|
||
{
|
||
X = X - vector.X;
|
||
Y = Y - vector.Y;
|
||
Z = Z - vector.Z;
|
||
}
|
||
public void Subtract(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X - vector.X;
|
||
result.Y = Y - vector.Y;
|
||
result.Z = Z - vector.Z;
|
||
}
|
||
public static void Subtract(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X - right.X;
|
||
result.Y = left.Y - right.Y;
|
||
result.Z = left.Z - right.Z;
|
||
}
|
||
|
||
public void Subtract(double x, double y, double z)
|
||
{
|
||
X = X - x;
|
||
Y = Y - y;
|
||
Z = Z - z;
|
||
}
|
||
public void Subtract(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X - x;
|
||
result.Y = Y - y;
|
||
result.Z = Z - z;
|
||
}
|
||
public static void Subtract(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X - x;
|
||
result.Y = vector.Y - y;
|
||
result.Z = vector.Z - z;
|
||
}
|
||
|
||
public void Multiply(double scalar)
|
||
{
|
||
X = X * scalar;
|
||
Y = Y * scalar;
|
||
Z = Z * scalar;
|
||
}
|
||
public void Multiply(double scalar, out Vector3d result)
|
||
{
|
||
result.X = X * scalar;
|
||
result.Y = Y * scalar;
|
||
result.Z = Z * scalar;
|
||
}
|
||
public static void Multiply(ref Vector3d vector, double scalar, out Vector3d result)
|
||
{
|
||
result.X = vector.X * scalar;
|
||
result.Y = vector.Y * scalar;
|
||
result.Z = vector.Z * scalar;
|
||
}
|
||
|
||
public void Multiply(ref Vector3d vector)
|
||
{
|
||
X = X * vector.X;
|
||
Y = Y * vector.Y;
|
||
Z = Z * vector.Z;
|
||
}
|
||
public void Multiply(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X * vector.X;
|
||
result.Y = Y * vector.Y;
|
||
result.Z = Z * vector.Z;
|
||
}
|
||
public static void Multiply(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X * right.X;
|
||
result.Y = left.Y * right.Y;
|
||
result.Z = left.Z * right.Z;
|
||
}
|
||
|
||
public void Multiply(double x, double y, double z)
|
||
{
|
||
X = X * x;
|
||
Y = Y * y;
|
||
Z = Z * z;
|
||
}
|
||
public void Multiply(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X * x;
|
||
result.Y = Y * y;
|
||
result.Z = Z * z;
|
||
}
|
||
public static void Multiply(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X * x;
|
||
result.Y = vector.Y * y;
|
||
result.Z = vector.Z * z;
|
||
}
|
||
|
||
public void Divide(double scalar)
|
||
{
|
||
X = X / scalar;
|
||
Y = Y / scalar;
|
||
Z = X / scalar;
|
||
}
|
||
public void Divide(double scalar, out Vector3d result)
|
||
{
|
||
result.X = X / scalar;
|
||
result.Y = Y / scalar;
|
||
result.Z = X / scalar;
|
||
}
|
||
public static void Divide(ref Vector3d vector, double scalar, out Vector3d result)
|
||
{
|
||
result.X = vector.X / scalar;
|
||
result.Y = vector.Y / scalar;
|
||
result.Z = vector.Z / scalar;
|
||
}
|
||
|
||
public void Divide(ref Vector3d vector)
|
||
{
|
||
X = X / vector.X;
|
||
Y = Y / vector.Y;
|
||
Z = Z / vector.Z;
|
||
}
|
||
public void Divide(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X / vector.X;
|
||
result.Y = Y / vector.Y;
|
||
result.Z = Z / vector.Z;
|
||
}
|
||
public static void Divide(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X / right.X;
|
||
result.Y = left.Y / right.Y;
|
||
result.Z = left.Z / right.Z;
|
||
}
|
||
|
||
public void Divide(double x, double y, double z)
|
||
{
|
||
X = X / x;
|
||
Y = Y / y;
|
||
Z = Z / z;
|
||
}
|
||
public void Divide(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X / x;
|
||
result.Y = Y / y;
|
||
result.Z = Z / z;
|
||
}
|
||
public static void Divide(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X / x;
|
||
result.Y = vector.Y / y;
|
||
result.Z = vector.Z / z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region CalculateAngle
|
||
|
||
/// <summary>
|
||
/// Calculates the angle (in radians) between two vectors.
|
||
/// </summary>
|
||
/// <param name="first">The first vector.</param>
|
||
/// <param name="second">The second vector.</param>
|
||
/// <returns>Angle (in radians) between the vectors.</returns>
|
||
/// <remarks>Note that the returned angle is never bigger than the constant Pi.</remarks>
|
||
public static double CalculateAngle(Vector3d first, Vector3d second)
|
||
{
|
||
return System.Math.Acos((Vector3d.DotProduct(ref first, ref second)) / (first.Length * second.Length));
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Transformations
|
||
|
||
public void Transform(ref Matrix4d matrix)
|
||
{
|
||
double x = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z;
|
||
double y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z;
|
||
Z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z;
|
||
X = x;
|
||
Y = y;
|
||
}
|
||
public void Transform(ref Matrix4d matrix, out Vector3d result)
|
||
{
|
||
result.X = matrix.R0C0 * X + matrix.R0C1 * Y + matrix.R0C2 * Z;
|
||
result.Y = matrix.R1C0 * X + matrix.R1C1 * Y + matrix.R1C2 * Z;
|
||
result.Z = matrix.R2C0 * X + matrix.R2C1 * Y + matrix.R2C2 * Z;
|
||
}
|
||
public static void Transform(ref Vector3d vector, ref Matrix4d matrix, out Vector3d result)
|
||
{
|
||
result.X = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z;
|
||
result.Y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z;
|
||
result.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z;
|
||
}
|
||
|
||
public void Translate(ref Vector3d vector)
|
||
{
|
||
X = X + vector.X;
|
||
Y = Y + vector.Y;
|
||
Z = Z + vector.Z;
|
||
}
|
||
public void Translate(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X + vector.X;
|
||
result.Y = Y + vector.Y;
|
||
result.Z = Z + vector.Z;
|
||
}
|
||
public static void Translate(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X + right.X;
|
||
result.Y = left.Y + right.Y;
|
||
result.Z = left.Z + right.Z;
|
||
}
|
||
|
||
public void Translate(double x, double y, double z)
|
||
{
|
||
X = X + x;
|
||
Y = Y + y;
|
||
Z = Z + z;
|
||
}
|
||
public void Translate(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X + x;
|
||
result.Y = Y + y;
|
||
result.Z = Z + z;
|
||
}
|
||
public static void Translate(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X + x;
|
||
result.Y = vector.Y + y;
|
||
result.Z = vector.Z + z;
|
||
}
|
||
|
||
public void Scale(ref Vector3d vector)
|
||
{
|
||
X = X * vector.X;
|
||
Y = Y * vector.Y;
|
||
Z = Z * vector.Z;
|
||
}
|
||
public void Scale(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = X * vector.X;
|
||
result.Y = Y * vector.Y;
|
||
result.Z = Z * vector.Z;
|
||
}
|
||
public static void Scale(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = left.X * right.X;
|
||
result.Y = left.Y * right.Y;
|
||
result.Z = left.Z * right.Z;
|
||
}
|
||
|
||
public void Scale(double x, double y, double z)
|
||
{
|
||
X = X * x;
|
||
Y = Y * y;
|
||
Z = Z * z;
|
||
}
|
||
public void Scale(double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = X * x;
|
||
result.Y = Y * y;
|
||
result.Z = Z * z;
|
||
}
|
||
public static void Scale(ref Vector3d vector, double x, double y, double z, out Vector3d result)
|
||
{
|
||
result.X = vector.X * x;
|
||
result.Y = vector.Y * y;
|
||
result.Z = vector.Z * z;
|
||
}
|
||
|
||
public void RotateX(double angle)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
double y = cos * Y + sin * Z;
|
||
Z = cos * Z - sin * Y;
|
||
Y = y;
|
||
}
|
||
public void RotateX(double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = X;
|
||
result.Y = cos * Y + sin * Z;
|
||
result.Z = cos * Z - sin * Y;
|
||
}
|
||
public static void RotateX(ref Vector3d vector, double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = vector.X;
|
||
result.Y = cos * vector.Y + sin * vector.Z;
|
||
result.Z = cos * vector.Z - sin * vector.Y;
|
||
}
|
||
|
||
public void RotateY(double angle)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
double x = cos * X - sin * Z;
|
||
Z = sin * X + cos * Z;
|
||
X = x;
|
||
}
|
||
public void RotateY(double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = cos * X - sin * Z;
|
||
result.Y = Y;
|
||
result.Z = sin * X + cos * Z;
|
||
}
|
||
public static void RotateY(ref Vector3d vector, double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = cos * vector.X - sin * vector.Z;
|
||
result.Y = vector.Y;
|
||
result.Z = sin * vector.X + cos * vector.Z;
|
||
}
|
||
|
||
public void RotateZ(double angle)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
double x = cos * X + sin * Y;
|
||
Y = cos * Y - sin * X;
|
||
X = x;
|
||
}
|
||
public void RotateZ(double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = cos * X + sin * Y;
|
||
result.Y = cos * Y - sin * X;
|
||
result.Z = Z;
|
||
}
|
||
public static void RotateZ(ref Vector3d vector, double angle, out Vector3d result)
|
||
{
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
|
||
result.X = cos * vector.X + sin * vector.Y;
|
||
result.Y = cos * vector.Y - sin * vector.X;
|
||
result.Z = vector.Z;
|
||
}
|
||
|
||
public void Rotate(ref Vector3d axis, double angle)
|
||
{
|
||
Vector3d axisNormalized;
|
||
axis.Normalize(out axisNormalized);
|
||
double x = axisNormalized.X;
|
||
double y = axisNormalized.Y;
|
||
double z = axisNormalized.Z;
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double oneMinusCos = 1 - cos;
|
||
double xOneMinusCos = x * oneMinusCos;
|
||
double yOneMinusCos = y * oneMinusCos;
|
||
double zOneMinusCos = z * oneMinusCos;
|
||
double xxOneMinusCos = x * xOneMinusCos;
|
||
double xyOneMinusCos = x * yOneMinusCos;
|
||
double xzOneMinusCos = x * zOneMinusCos;
|
||
double yyOneMinusCos = y * yOneMinusCos;
|
||
double yzOneMinusCos = y * zOneMinusCos;
|
||
double zzOneMinusCos = z * zOneMinusCos;
|
||
double xSin = x * sin;
|
||
double ySin = y * sin;
|
||
double zSin = z * sin;
|
||
|
||
double tx = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z;
|
||
double ty = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z;
|
||
Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z;
|
||
X = tx;
|
||
Y = ty;
|
||
}
|
||
public void Rotate(ref Vector3d axis, double angle, out Vector3d result)
|
||
{
|
||
Vector3d axisNormalized;
|
||
axis.Normalize(out axisNormalized);
|
||
double x = axisNormalized.X;
|
||
double y = axisNormalized.Y;
|
||
double z = axisNormalized.Z;
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double oneMinusCos = 1 - cos;
|
||
double xOneMinusCos = x * oneMinusCos;
|
||
double yOneMinusCos = y * oneMinusCos;
|
||
double zOneMinusCos = z * oneMinusCos;
|
||
double xxOneMinusCos = x * xOneMinusCos;
|
||
double xyOneMinusCos = x * yOneMinusCos;
|
||
double xzOneMinusCos = x * zOneMinusCos;
|
||
double yyOneMinusCos = y * yOneMinusCos;
|
||
double yzOneMinusCos = y * zOneMinusCos;
|
||
double zzOneMinusCos = z * zOneMinusCos;
|
||
double xSin = x * sin;
|
||
double ySin = y * sin;
|
||
double zSin = z * sin;
|
||
|
||
result.X = (xxOneMinusCos + cos) * X + (xyOneMinusCos + zSin) * Y + (xzOneMinusCos - ySin) * Z;
|
||
result.Y = (xyOneMinusCos - zSin) * X + (yyOneMinusCos + cos) * Y + (yzOneMinusCos + xSin) * Z;
|
||
result.Z = (xzOneMinusCos + ySin) * X + (yzOneMinusCos - xSin) * Y + (zzOneMinusCos + cos) * Z;
|
||
}
|
||
public static void Rotate(ref Vector3d vector, ref Vector3d axis, double angle, out Vector3d result)
|
||
{
|
||
Vector3d axisNormalized;
|
||
axis.Normalize(out axisNormalized);
|
||
double x = axisNormalized.X;
|
||
double y = axisNormalized.Y;
|
||
double z = axisNormalized.Z;
|
||
double angleRadians = Functions.DTOR * angle;
|
||
double cos = (double)System.Math.Cos(angleRadians);
|
||
double sin = (double)System.Math.Sin(angleRadians);
|
||
double oneMinusCos = 1 - cos;
|
||
double xOneMinusCos = x * oneMinusCos;
|
||
double yOneMinusCos = y * oneMinusCos;
|
||
double zOneMinusCos = z * oneMinusCos;
|
||
double xxOneMinusCos = x * xOneMinusCos;
|
||
double xyOneMinusCos = x * yOneMinusCos;
|
||
double xzOneMinusCos = x * zOneMinusCos;
|
||
double yyOneMinusCos = y * yOneMinusCos;
|
||
double yzOneMinusCos = y * zOneMinusCos;
|
||
double zzOneMinusCos = z * zOneMinusCos;
|
||
double xSin = x * sin;
|
||
double ySin = y * sin;
|
||
double zSin = z * sin;
|
||
|
||
result.X = (xxOneMinusCos + cos) * vector.X + (xyOneMinusCos + zSin) * vector.Y + (xzOneMinusCos - ySin) * vector.Z;
|
||
result.Y = (xyOneMinusCos - zSin) * vector.X + (yyOneMinusCos + cos) * vector.Y + (yzOneMinusCos + xSin) * vector.Z;
|
||
result.Z = (xzOneMinusCos + ySin) * vector.X + (yzOneMinusCos - xSin) * vector.Y + (zzOneMinusCos + cos) * vector.Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Min & Max
|
||
|
||
public void Min(ref Vector3d vector)
|
||
{
|
||
double lengthSquared = X * X + Y * Y + Z * Z;
|
||
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z;
|
||
|
||
if (vectorLengthSquared < lengthSquared)
|
||
{
|
||
X = vector.X;
|
||
Y = vector.Y;
|
||
Z = vector.Z;
|
||
}
|
||
}
|
||
public void Min(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
double lengthSquared = X * X + Y * Y + Z * Z;
|
||
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z;
|
||
|
||
if (vectorLengthSquared < lengthSquared)
|
||
{
|
||
result.X = vector.X;
|
||
result.Y = vector.Y;
|
||
result.Z = vector.Z;
|
||
}
|
||
else
|
||
{
|
||
result.X = X;
|
||
result.Y = Y;
|
||
result.Z = Z;
|
||
}
|
||
}
|
||
public static void Min(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z;
|
||
double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z;
|
||
|
||
if (rightLengthSquared < leftLengthSquared)
|
||
{
|
||
result.X = right.X;
|
||
result.Y = right.Y;
|
||
result.Z = right.Z;
|
||
}
|
||
else
|
||
{
|
||
result.X = left.X;
|
||
result.Y = left.Y;
|
||
result.Z = left.Z;
|
||
}
|
||
}
|
||
|
||
public void Max(ref Vector3d vector)
|
||
{
|
||
double lengthSquared = X * X + Y * Y + Z * Z;
|
||
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z;
|
||
|
||
if (vectorLengthSquared > lengthSquared)
|
||
{
|
||
X = vector.X;
|
||
Y = vector.Y;
|
||
Z = vector.Z;
|
||
}
|
||
}
|
||
public void Max(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
double lengthSquared = X * X + Y * Y + Z * Z;
|
||
double vectorLengthSquared = vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z;
|
||
|
||
if (vectorLengthSquared > lengthSquared)
|
||
{
|
||
result.X = vector.X;
|
||
result.Y = vector.Y;
|
||
result.Z = vector.Z;
|
||
}
|
||
else
|
||
{
|
||
result.X = X;
|
||
result.Y = Y;
|
||
result.Z = Z;
|
||
}
|
||
}
|
||
public static void Max(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
double leftLengthSquared = left.X * left.X + left.Y * left.Y + left.Z * left.Z;
|
||
double rightLengthSquared = right.X * right.X + right.Y * right.Y + right.Z * right.Z;
|
||
|
||
if (rightLengthSquared > leftLengthSquared)
|
||
{
|
||
result.X = right.X;
|
||
result.Y = right.Y;
|
||
result.Z = right.Z;
|
||
}
|
||
else
|
||
{
|
||
result.X = left.X;
|
||
result.Y = left.Y;
|
||
result.Z = left.Z;
|
||
}
|
||
}
|
||
|
||
public void CoordinateMin(ref Vector3d vector)
|
||
{
|
||
X = System.Math.Min(X, vector.X);
|
||
Y = System.Math.Min(Y, vector.Y);
|
||
Z = System.Math.Min(Z, vector.Z);
|
||
}
|
||
public void CoordinateMin(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Min(X, vector.X);
|
||
result.Y = System.Math.Min(Y, vector.Y);
|
||
result.Z = System.Math.Min(Z, vector.Z);
|
||
}
|
||
public static void CoordinateMin(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Min(left.X, right.X);
|
||
result.Y = System.Math.Min(left.Y, right.Y);
|
||
result.Z = System.Math.Min(left.Z, right.Z);
|
||
}
|
||
|
||
public void CoordinateMax(ref Vector3d vector)
|
||
{
|
||
X = System.Math.Max(X, vector.X);
|
||
Y = System.Math.Max(Y, vector.Y);
|
||
Z = System.Math.Max(Z, vector.Z);
|
||
}
|
||
public void CoordinateMax(ref Vector3d vector, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Max(X, vector.X);
|
||
result.Y = System.Math.Max(Y, vector.Y);
|
||
result.Z = System.Math.Max(Z, vector.Z);
|
||
}
|
||
public static void CoordinateMax(ref Vector3d left, ref Vector3d right, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Max(left.X, right.X);
|
||
result.Y = System.Math.Max(left.Y, right.Y);
|
||
result.Z = System.Math.Max(left.Z, right.Z);
|
||
}
|
||
|
||
public void Clamp(ref Vector3d min, ref Vector3d max)
|
||
{
|
||
X = System.Math.Max(System.Math.Min(X, min.X), max.X);
|
||
Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y);
|
||
Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z);
|
||
}
|
||
public void Clamp(ref Vector3d min, ref Vector3d max, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Max(System.Math.Min(X, min.X), max.X);
|
||
result.Y = System.Math.Max(System.Math.Min(Y, min.Y), max.Y);
|
||
result.Z = System.Math.Max(System.Math.Min(Z, min.Z), max.Z);
|
||
}
|
||
public static void Clamp(ref Vector3d vector, ref Vector3d min, ref Vector3d max, out Vector3d result)
|
||
{
|
||
result.X = System.Math.Max(System.Math.Min(vector.X, min.X), max.X);
|
||
result.Y = System.Math.Max(System.Math.Min(vector.Y, min.Y), max.Y);
|
||
result.Z = System.Math.Max(System.Math.Min(vector.Z, min.Z), max.Z);
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Interpolation
|
||
|
||
public void Lerp(ref Vector3d end, double blend)
|
||
{
|
||
X = X + (end.X - X) * blend;
|
||
Y = Y + (end.Y - Y) * blend;
|
||
Z = Z + (end.Z - Z) * blend;
|
||
}
|
||
public void Lerp(ref Vector3d end, double blend, out Vector3d result)
|
||
{
|
||
result.X = X + (end.X - X) * blend;
|
||
result.Y = Y + (end.Y - Y) * blend;
|
||
result.Z = Z + (end.Z - Z) * blend;
|
||
}
|
||
public static void Lerp(ref Vector3d start, ref Vector3d end, double blend, out Vector3d result)
|
||
{
|
||
result.X = start.X + (end.X - start.X) * blend;
|
||
result.Y = start.Y + (end.Y - start.Y) * blend;
|
||
result.Z = start.Z + (end.Z - start.Z) * blend;
|
||
}
|
||
|
||
public void BaryCentric(ref Vector3d endU, ref Vector3d endV, double u, double v)
|
||
{
|
||
X = X + (endU.X - X) * u + (endV.X - X) * v;
|
||
Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v;
|
||
Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v;
|
||
}
|
||
public void BaryCentric(ref Vector3d endU, ref Vector3d endV, double u, double v, out Vector3d result)
|
||
{
|
||
result.X = X + (endU.X - X) * u + (endV.X - X) * v;
|
||
result.Y = Y + (endU.Y - Y) * u + (endV.Y - Y) * v;
|
||
result.Z = Z + (endU.Z - Z) * u + (endV.Z - Z) * v;
|
||
}
|
||
public static void BaryCentric(ref Vector3d start, ref Vector3d endU, ref Vector3d endV, double u, double v, out Vector3d result)
|
||
{
|
||
result.X = start.X + (endU.X - start.X) * u + (endV.X - start.X) * v;
|
||
result.Y = start.Y + (endU.Y - start.Y) * u + (endV.Y - start.Y) * v;
|
||
result.Z = start.Z + (endU.Z - start.Z) * u + (endV.Z - start.Z) * v;
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region String and Parse
|
||
|
||
/// <summary>Returns the fully qualified type name of this instance.</summary>
|
||
/// <returns>A System.String containing left fully qualified type name.</returns>
|
||
public override string ToString()
|
||
{
|
||
return String.Format("{0} {1} {2}", X, Y, Z);
|
||
}
|
||
|
||
/// <summary>Parse left string to convert it to left vector.</summary>
|
||
/// <param name="str">The string to parse.</param>
|
||
/// <returns>The vector represented by the string.</returns>
|
||
public static void Parse(string str, out Vector3d result)
|
||
{
|
||
Match match = new Regex(@"(?<x>.*) (?<y>.*) (?<z>.*)", RegexOptions.None).Match(str);
|
||
if (!match.Success) throw new Exception("Parse failed!");
|
||
result.X = double.Parse(match.Result("${x}"));
|
||
result.Y = double.Parse(match.Result("${y}"));
|
||
result.Z = double.Parse(match.Result("${z}"));
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region HashCode
|
||
|
||
/// <summary>Returns the hash code for this instance.</summary>
|
||
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
|
||
public override int GetHashCode()
|
||
{
|
||
return X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode();
|
||
}
|
||
|
||
#endregion
|
||
|
||
|
||
#region Constants
|
||
|
||
/// <summary>A vector representing left zero vector.</summary>
|
||
public static readonly Vector3d Zero = new Vector3d(0, 0, 0);
|
||
|
||
/// <summary>A vector with all coordinates set to one.</summary>
|
||
public static readonly Vector3d One = new Vector3d(1, 1, 1);
|
||
|
||
/// <summary>A unit normal vector representing the positive X Axis.</summary>
|
||
public static readonly Vector3d XAxis = new Vector3d(1, 0, 0);
|
||
|
||
/// <summary>A unit normal vector representing the positive Y Axis.</summary>
|
||
public static readonly Vector3d YAxis = new Vector3d(0, 1, 0);
|
||
|
||
/// <summary>A unit normal vector representing the positive Z Axis.</summary>
|
||
public static readonly Vector3d ZAxis = new Vector3d(0, 0, 1);
|
||
|
||
#endregion
|
||
}
|
||
}
|