mirror of
https://github.com/Ryujinx/Opentk.git
synced 2025-01-25 01:01:18 +00:00
cb461d90b0
Renamed XYZ property to Xyz, in accordance to the guidelines for class libraries. Added the SerializableAttribute.
1200 lines
82 KiB
C#
1200 lines
82 KiB
C#
#region --- License ---
|
||
/*
|
||
Copyright (c) 2006 - 2008 The Open Toolkit library.
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
this software and associated documentation files (the "Software"), to deal in
|
||
the Software without restriction, including without limitation the rights to
|
||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||
of the Software, and to permit persons to whom the Software is furnished to do
|
||
so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in all
|
||
copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
SOFTWARE.
|
||
*/
|
||
#endregion
|
||
|
||
using System;
|
||
using System.Runtime.InteropServices;
|
||
using System.ComponentModel;
|
||
using System.Xml.Serialization;
|
||
|
||
namespace OpenTK.Math
|
||
{
|
||
/// <summary>
|
||
/// Represents a double-precision Quaternion.
|
||
/// </summary>
|
||
[Serializable]
|
||
[StructLayout(LayoutKind.Sequential)]
|
||
public struct Quaterniond : IEquatable<Quaterniond>
|
||
{
|
||
#region Fields
|
||
|
||
Vector3d xyz;
|
||
double w;
|
||
|
||
#endregion
|
||
|
||
#region Constructors
|
||
|
||
/// <summary>
|
||
/// Construct a new Quaterniond from vector and w components
|
||
/// </summary>
|
||
/// <param name="v">The vector part</param>
|
||
/// <param name="w">The w part</param>
|
||
public Quaterniond(Vector3d v, double w)
|
||
{
|
||
this.xyz = v;
|
||
this.w = w;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Construct a new Quaterniond
|
||
/// </summary>
|
||
/// <param name="x">The x component</param>
|
||
/// <param name="y">The y component</param>
|
||
/// <param name="z">The z component</param>
|
||
/// <param name="w">The w component</param>
|
||
public Quaterniond(double x, double y, double z, double w)
|
||
: this(new Vector3d(x, y, z), w)
|
||
{ }
|
||
|
||
#endregion
|
||
|
||
#region Public Members
|
||
|
||
#region Properties
|
||
|
||
/// <summary>
|
||
/// Gets or sets an OpenTK.Math.Vector3d with the X, Y and Z components of this instance.
|
||
/// </summary>
|
||
[Obsolete("Use Xyz property instead.")]
|
||
[CLSCompliant(false)]
|
||
[EditorBrowsable(EditorBrowsableState.Never)]
|
||
[XmlIgnore]
|
||
public Vector3d XYZ { get { return Xyz; } set { Xyz = value; } }
|
||
|
||
/// <summary>
|
||
/// Gets or sets an OpenTK.Math.Vector3d with the X, Y and Z components of this instance.
|
||
/// </summary>
|
||
public Vector3d Xyz { get { return xyz; } set { xyz = value; } }
|
||
|
||
/// <summary>
|
||
/// Gets or sets the X component of this instance.
|
||
/// </summary>
|
||
[XmlIgnore]
|
||
public double X { get { return xyz.X; } set { xyz.X = value; } }
|
||
|
||
/// <summary>
|
||
/// Gets or sets the Y component of this instance.
|
||
/// </summary>
|
||
[XmlIgnore]
|
||
public double Y { get { return xyz.Y; } set { xyz.Y = value; } }
|
||
|
||
/// <summary>
|
||
/// Gets or sets the Z component of this instance.
|
||
/// </summary>
|
||
[XmlIgnore]
|
||
public double Z { get { return xyz.Z; } set { xyz.Z = value; } }
|
||
|
||
/// <summary>
|
||
/// Gets or sets the W component of this instance.
|
||
/// </summary>
|
||
public double W { get { return w; } set { w = value; } }
|
||
|
||
#endregion
|
||
|
||
#region Instance
|
||
|
||
#region ToAxisAngle
|
||
|
||
/// <summary>
|
||
/// Convert the current quaternion to axis angle representation
|
||
/// </summary>
|
||
/// <param name="axis">The resultant axis</param>
|
||
/// <param name="angle">The resultant angle</param>
|
||
public void ToAxisAngle(out Vector3d axis, out double angle)
|
||
{
|
||
Vector4d result = ToAxisAngle();
|
||
axis = result.Xyz;
|
||
angle = result.W;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Convert this instance to an axis-angle representation.
|
||
/// </summary>
|
||
/// <returns>A Vector4 that is the axis-angle representation of this quaternion.</returns>
|
||
public Vector4d ToAxisAngle()
|
||
{
|
||
Quaterniond q = this;
|
||
if (q.W > 1.0f)
|
||
q.Normalize();
|
||
|
||
Vector4d result = new Vector4d();
|
||
|
||
result.W = 2.0f * (float)System.Math.Acos(q.W); // angle
|
||
float den = (float)System.Math.Sqrt(1.0 - q.W * q.W);
|
||
if (den > 0.0001f)
|
||
{
|
||
result.Xyz = q.Xyz / den;
|
||
}
|
||
else
|
||
{
|
||
// This occurs when the angle is zero.
|
||
// Not a problem: just set an arbitrary normalized axis.
|
||
result.Xyz = Vector3d.UnitX;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public double Length
|
||
|
||
/// <summary>
|
||
/// Gets the length (magnitude) of the Quaterniond.
|
||
/// </summary>
|
||
/// <seealso cref="LengthSquared"/>
|
||
public double Length
|
||
{
|
||
get
|
||
{
|
||
return (double)System.Math.Sqrt(W * W + XYZ.LengthSquared);
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public double LengthSquared
|
||
|
||
/// <summary>
|
||
/// Gets the square of the Quaterniond length (magnitude).
|
||
/// </summary>
|
||
public double LengthSquared
|
||
{
|
||
get
|
||
{
|
||
return W * W + XYZ.LengthSquared;
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public void Normalize()
|
||
|
||
/// <summary>
|
||
/// Scales the Quaterniond to unit length.
|
||
/// </summary>
|
||
public void Normalize()
|
||
{
|
||
double scale = 1.0f / this.Length;
|
||
Xyz *= scale;
|
||
W *= scale;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public void Conjugate()
|
||
|
||
/// <summary>
|
||
/// Convert this Quaterniond to its conjugate
|
||
/// </summary>
|
||
public void Conjugate()
|
||
{
|
||
Xyz = -Xyz;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#region Static
|
||
|
||
#region Fields
|
||
|
||
/// <summary>
|
||
/// Defines the identity quaternion.
|
||
/// </summary>
|
||
public readonly static Quaterniond Identity = new Quaterniond(0, 0, 0, 1);
|
||
|
||
#endregion
|
||
|
||
#region Add
|
||
|
||
/// <summary>
|
||
/// Add two quaternions
|
||
/// </summary>
|
||
/// <param name="left">The first operand</param>
|
||
/// <param name="right">The second operand</param>
|
||
/// <returns>The result of the addition</returns>
|
||
public static Quaterniond Add(Quaterniond left, Quaterniond right)
|
||
{
|
||
return new Quaterniond(
|
||
left.Xyz + right.Xyz,
|
||
left.W + right.W);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Add two quaternions
|
||
/// </summary>
|
||
/// <param name="left">The first operand</param>
|
||
/// <param name="right">The second operand</param>
|
||
/// <param name="result">The result of the addition</param>
|
||
public static void Add(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result = new Quaterniond(
|
||
left.Xyz + right.Xyz,
|
||
left.W + right.W);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Sub
|
||
|
||
public static Quaterniond Sub(Quaterniond left, Quaterniond right)
|
||
{
|
||
return new Quaterniond(
|
||
left.Xyz - right.Xyz,
|
||
left.W - right.W);
|
||
}
|
||
|
||
public static void Sub(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result = new Quaterniond(
|
||
left.Xyz - right.Xyz,
|
||
left.W - right.W);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Mult
|
||
|
||
public static Quaterniond Mult(Quaterniond left, Quaterniond right)
|
||
{
|
||
return new Quaterniond(
|
||
right.W * left.Xyz + left.W * right.Xyz + Vector3d.Cross(left.Xyz, right.Xyz),
|
||
left.W * right.W - Vector3d.Dot(left.Xyz, right.Xyz));
|
||
}
|
||
|
||
public static void Mult(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result = new Quaterniond(
|
||
right.W * left.Xyz + left.W * right.Xyz + Vector3d.Cross(left.Xyz, right.Xyz),
|
||
left.W * right.W - Vector3d.Dot(left.Xyz, right.Xyz));
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Conjugate
|
||
|
||
/// <summary>
|
||
/// Get the conjugate of the given Quaterniond
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond</param>
|
||
/// <returns>The conjugate of the given Quaterniond</returns>
|
||
public static Quaterniond Conjugate(Quaterniond q)
|
||
{
|
||
return new Quaterniond(-q.Xyz, q.W);
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get the conjugate of the given Quaterniond
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond</param>
|
||
/// <param name="result">The conjugate of the given Quaterniond</param>
|
||
public static void Conjugate(ref Quaterniond q, out Quaterniond result)
|
||
{
|
||
result = new Quaterniond(-q.Xyz, q.W);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Invert
|
||
|
||
/// <summary>
|
||
/// Get the inverse of the given Quaterniond
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond to invert</param>
|
||
/// <returns>The inverse of the given Quaterniond</returns>
|
||
public static Quaterniond Invert(Quaterniond q)
|
||
{
|
||
Quaterniond result;
|
||
Invert(ref q, out result);
|
||
return result;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Get the inverse of the given Quaterniond
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond to invert</param>
|
||
/// <param name="result">The inverse of the given Quaterniond</param>
|
||
public static void Invert(ref Quaterniond q, out Quaterniond result)
|
||
{
|
||
double lengthSq = q.LengthSquared;
|
||
if (lengthSq != 0.0)
|
||
{
|
||
double i = 1.0f / lengthSq;
|
||
result = new Quaterniond(q.Xyz * -i, q.W * i);
|
||
}
|
||
else
|
||
{
|
||
result = q;
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Normalize
|
||
|
||
/// <summary>
|
||
/// Scale the given Quaterniond to unit length
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond to normalize</param>
|
||
/// <returns>The normalized Quaterniond</returns>
|
||
public static Quaterniond Normalize(Quaterniond q)
|
||
{
|
||
Quaterniond result;
|
||
Normalize(ref q, out result);
|
||
return result;
|
||
}
|
||
|
||
/// <summary>
|
||
/// Scale the given Quaterniond to unit length
|
||
/// </summary>
|
||
/// <param name="q">The Quaterniond to normalize</param>
|
||
/// <param name="result">The normalized Quaterniond</param>
|
||
public static void Normalize(ref Quaterniond q, out Quaterniond result)
|
||
{
|
||
double scale = 1.0f / q.Length;
|
||
result = new Quaterniond(q.Xyz * scale, q.W * scale);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region FromAxisAngle
|
||
|
||
/// <summary>
|
||
/// Build a Quaterniond from the given axis and angle
|
||
/// </summary>
|
||
/// <param name="axis">The axis to rotate about</param>
|
||
/// <param name="angle">The rotation angle in radians</param>
|
||
/// <returns></returns>
|
||
public static Quaterniond FromAxisAngle(Vector3d axis, double angle)
|
||
{
|
||
if (axis.LengthSquared == 0.0f)
|
||
return Identity;
|
||
|
||
Quaterniond result = Identity;
|
||
|
||
angle *= 0.5f;
|
||
axis.Normalize();
|
||
result.Xyz = axis * (double)System.Math.Sin(angle);
|
||
result.W = (double)System.Math.Cos(angle);
|
||
|
||
return Normalize(result);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Slerp
|
||
|
||
/// <summary>
|
||
/// Do Spherical linear interpolation between two quaternions
|
||
/// </summary>
|
||
/// <param name="q1">The first Quaterniond</param>
|
||
/// <param name="q2">The second Quaterniond</param>
|
||
/// <param name="blend">The blend factor</param>
|
||
/// <returns>A smooth blend between the given quaternions</returns>
|
||
public static Quaterniond Slerp(Quaterniond q1, Quaterniond q2, double blend)
|
||
{
|
||
// if either input is zero, return the other.
|
||
if (q1.LengthSquared == 0.0f)
|
||
{
|
||
if (q2.LengthSquared == 0.0f)
|
||
{
|
||
return Identity;
|
||
}
|
||
return q2;
|
||
}
|
||
else if (q2.LengthSquared == 0.0f)
|
||
{
|
||
return q1;
|
||
}
|
||
|
||
|
||
double cosHalfAngle = q1.W * q2.W + Vector3d.Dot(q1.Xyz, q2.Xyz);
|
||
|
||
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f)
|
||
{
|
||
// angle = 0.0f, so just return one input.
|
||
return q1;
|
||
}
|
||
else if (cosHalfAngle < 0.0f)
|
||
{
|
||
q2.Xyz = -q2.Xyz;
|
||
q2.W = -q2.W;
|
||
cosHalfAngle = -cosHalfAngle;
|
||
}
|
||
|
||
double blendA;
|
||
double blendB;
|
||
if (cosHalfAngle < 0.99f)
|
||
{
|
||
// do proper slerp for big angles
|
||
double halfAngle = (double)System.Math.Acos(cosHalfAngle);
|
||
double sinHalfAngle = (double)System.Math.Sin(halfAngle);
|
||
double oneOverSinHalfAngle = 1.0f / sinHalfAngle;
|
||
blendA = (double)System.Math.Sin(halfAngle * (1.0f - blend)) * oneOverSinHalfAngle;
|
||
blendB = (double)System.Math.Sin(halfAngle * blend) * oneOverSinHalfAngle;
|
||
}
|
||
else
|
||
{
|
||
// do lerp if angle is really small.
|
||
blendA = 1.0f - blend;
|
||
blendB = blend;
|
||
}
|
||
|
||
Quaterniond result = new Quaterniond(blendA * q1.Xyz + blendB * q2.Xyz, blendA * q1.W + blendB * q2.W);
|
||
if (result.LengthSquared > 0.0f)
|
||
return Normalize(result);
|
||
else
|
||
return Identity;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#region Operators
|
||
|
||
public static Quaterniond operator +(Quaterniond left, Quaterniond right)
|
||
{
|
||
left.Xyz += right.Xyz;
|
||
left.W += right.W;
|
||
return left;
|
||
}
|
||
|
||
public static Quaterniond operator -(Quaterniond left, Quaterniond right)
|
||
{
|
||
left.Xyz -= right.Xyz;
|
||
left.W -= right.W;
|
||
return left;
|
||
}
|
||
|
||
public static Quaterniond operator *(Quaterniond left, Quaterniond right)
|
||
{
|
||
double w = left.W * right.W - Vector3d.Dot(left.Xyz, right.Xyz);
|
||
left.Xyz = right.W * left.Xyz + left.W * right.Xyz + Vector3d.Cross(left.Xyz, right.Xyz);
|
||
left.W = w;
|
||
return left;
|
||
}
|
||
|
||
public static bool operator ==(Quaterniond left, Quaterniond right)
|
||
{
|
||
return left.Equals(right);
|
||
}
|
||
|
||
public static bool operator !=(Quaterniond left, Quaterniond right)
|
||
{
|
||
return !left.Equals(right);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Overrides
|
||
|
||
#region public override string ToString()
|
||
|
||
/// <summary>
|
||
/// Returns a System.String that represents the current Quaterniond.
|
||
/// </summary>
|
||
/// <returns></returns>
|
||
public override string ToString()
|
||
{
|
||
return String.Format("V: {0}, W: {1}", Xyz, W);
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public override bool Equals (object o)
|
||
|
||
/// <summary>
|
||
/// Compares this object instance to another object for equality.
|
||
/// </summary>
|
||
/// <param name="other">The other object to be used in the comparison.</param>
|
||
/// <returns>True if both objects are Quaternions of equal value. Otherwise it returns false.</returns>
|
||
public override bool Equals(object o)
|
||
{
|
||
if (o is Quaterniond == false) return false;
|
||
return this == (Quaterniond)o;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region public override int GetHashCode ()
|
||
|
||
/// <summary>
|
||
/// Provides the hash code for this object.
|
||
/// </summary>
|
||
/// <returns>A hash code formed from the bitwise XOR of this objects members.</returns>
|
||
public override int GetHashCode()
|
||
{
|
||
return Xyz.GetHashCode() ^ W.GetHashCode();
|
||
}
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#endregion
|
||
|
||
#if false
|
||
|
||
#region Fields
|
||
|
||
/// <summary>The W component of the Quaterniond.</summary>
|
||
public double W;
|
||
|
||
/// <summary>The X component of the Quaterniond.</summary>
|
||
public double X;
|
||
|
||
/// <summary>The Y component of the Quaterniond.</summary>
|
||
public double Y;
|
||
|
||
/// <summary>The Z component of the Quaterniond.</summary>
|
||
public double Z;
|
||
|
||
#endregion
|
||
|
||
#region Constructors
|
||
|
||
/// <summary>Constructs left Quaterniond that is left copy of the given Quaterniond.</summary>
|
||
/// <param name="quaterniond">The Quaterniond to copy.</param>
|
||
public Quaterniond(ref Quaterniond Quaterniond) : this(Quaterniond.W, Quaterniond.X, Quaterniond.Y, Quaterniond.Z) { }
|
||
|
||
/// <summary>Constructs left Quaterniond from the given components.</summary>
|
||
/// <param name="w">The W component for the Quaterniond.</param>
|
||
/// <param name="vector3d">A Vector representing the X, Y, and Z componets for the quaterion.</param>
|
||
public Quaterniond(double w, ref Vector3d vector3d) : this(w, vector3d.X, vector3d.Y, vector3d.Z) { }
|
||
|
||
/// <summary>Constructs left Quaterniond from the given axis and angle.</summary>
|
||
/// <param name="axis">The axis for the Quaterniond.</param>
|
||
/// <param name="angle">The angle for the quaternione.</param>
|
||
public Quaterniond(ref Vector3d axis, double angle)
|
||
{
|
||
double halfAngle = Functions.DTOR * angle / 2;
|
||
|
||
this.W = System.Math.Cos(halfAngle);
|
||
|
||
double sin = System.Math.Sin(halfAngle);
|
||
Vector3d axisNormalized;
|
||
Vector3d.Normalize(ref axis, out axisNormalized);
|
||
this.X = axisNormalized.X * sin;
|
||
this.Y = axisNormalized.Y * sin;
|
||
this.Z = axisNormalized.Z * sin;
|
||
}
|
||
|
||
/// <summary>Constructs left Quaterniond from the given components.</summary>
|
||
/// <param name="w">The W component for the Quaterniond.</param>
|
||
/// <param name="x">The X component for the Quaterniond.</param>
|
||
/// <param name="y">The Y component for the Quaterniond.</param>
|
||
/// <param name="z">The Z component for the Quaterniond.</param>
|
||
public Quaterniond(double w, double x, double y, double z)
|
||
{
|
||
this.W = w;
|
||
this.X = x;
|
||
this.Y = y;
|
||
this.Z = z;
|
||
}
|
||
|
||
/// <summary>Constructs left Quaterniond from the given array of double-precision floating point numbers.</summary>
|
||
/// <param name="doubleArray">The array of doubles for the components of the Quaterniond.</param>
|
||
public Quaterniond(double[] doubleArray)
|
||
{
|
||
if (doubleArray == null || doubleArray.GetLength(0) < 4) throw new MissingFieldException();
|
||
|
||
this.W = doubleArray[0];
|
||
this.X = doubleArray[1];
|
||
this.Y = doubleArray[2];
|
||
this.Z = doubleArray[3];
|
||
}
|
||
|
||
/// <summary>Constructs left Quaterniond from the given matrix. Only contains rotation information.</summary>
|
||
/// <param name="matrix">The matrix for the components of the Quaterniond.</param>
|
||
public Quaterniond(ref Matrix4d matrix)
|
||
{
|
||
double scale = System.Math.Pow(matrix.Determinant, 1.0d/3.0d);
|
||
|
||
W = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] + matrix[1, 1] + matrix[2, 2])) / 2;
|
||
X = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] - matrix[1, 1] - matrix[2, 2])) / 2;
|
||
Y = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] + matrix[1, 1] - matrix[2, 2])) / 2;
|
||
Z = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] - matrix[1, 1] + matrix[2, 2])) / 2;
|
||
if( matrix[2,1] - matrix[1,2] < 0 ) X = -X;
|
||
if( matrix[0,2] - matrix[2,0] < 0 ) Y = -Y;
|
||
if( matrix[1,0] - matrix[0,1] < 0 ) Z = -Z;
|
||
}
|
||
|
||
public Quaterniond(ref Matrix3d matrix)
|
||
{
|
||
double scale = System.Math.Pow(matrix.Determinant, 1.0d / 3.0d);
|
||
|
||
W = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] + matrix[1, 1] + matrix[2, 2])) / 2;
|
||
X = System.Math.Sqrt(System.Math.Max(0, scale + matrix[0, 0] - matrix[1, 1] - matrix[2, 2])) / 2;
|
||
Y = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] + matrix[1, 1] - matrix[2, 2])) / 2;
|
||
Z = System.Math.Sqrt(System.Math.Max(0, scale - matrix[0, 0] - matrix[1, 1] + matrix[2, 2])) / 2;
|
||
if (matrix[2, 1] - matrix[1, 2] < 0) X = -X;
|
||
if (matrix[0, 2] - matrix[2, 0] < 0) Y = -Y;
|
||
if (matrix[1, 0] - matrix[0, 1] < 0) Z = -Z;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Arithmetic Operators
|
||
|
||
public void Add(ref Quaterniond Quaterniond)
|
||
{
|
||
W = W + Quaterniond.W;
|
||
X = X + Quaterniond.X;
|
||
Y = Y + Quaterniond.Y;
|
||
Z = Z + Quaterniond.Z;
|
||
}
|
||
public void Add(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
result.W = W + Quaterniond.W;
|
||
result.X = X + Quaterniond.X;
|
||
result.Y = Y + Quaterniond.Y;
|
||
result.Z = Z + Quaterniond.Z;
|
||
}
|
||
public static void Add(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result.W = left.W + right.W;
|
||
result.X = left.X + right.X;
|
||
result.Y = left.Y + right.Y;
|
||
result.Z = left.Z + right.Z;
|
||
}
|
||
|
||
public void Subtract(ref Quaterniond Quaterniond)
|
||
{
|
||
W = W - Quaterniond.W;
|
||
X = X - Quaterniond.X;
|
||
Y = Y - Quaterniond.Y;
|
||
Z = Z - Quaterniond.Z;
|
||
}
|
||
public void Subtract(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
result.W = W - Quaterniond.W;
|
||
result.X = X - Quaterniond.X;
|
||
result.Y = Y - Quaterniond.Y;
|
||
result.Z = Z - Quaterniond.Z;
|
||
}
|
||
public static void Subtract(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result.W = left.W - right.W;
|
||
result.X = left.X - right.X;
|
||
result.Y = left.Y - right.Y;
|
||
result.Z = left.Z - right.Z;
|
||
}
|
||
|
||
public void Multiply(ref Quaterniond Quaterniond)
|
||
{
|
||
double w = W * Quaterniond.W - X * Quaterniond.X - Y * Quaterniond.Y - Z * Quaterniond.Z;
|
||
double x = W * Quaterniond.X + X * Quaterniond.W + Y * Quaterniond.Z - Z * Quaterniond.Y;
|
||
double y = W * Quaterniond.Y + Y * Quaterniond.W + Z * Quaterniond.X - X * Quaterniond.Z;
|
||
Z = W * Quaterniond.Z + Z * Quaterniond.W + X * Quaterniond.Y - Y * Quaterniond.X;
|
||
W = w;
|
||
X = x;
|
||
Y = y;
|
||
}
|
||
public void Multiply(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
result.W = W * Quaterniond.W - X * Quaterniond.X - Y * Quaterniond.Y - Z * Quaterniond.Z;
|
||
result.X = W * Quaterniond.X + X * Quaterniond.W + Y * Quaterniond.Z - Z * Quaterniond.Y;
|
||
result.Y = W * Quaterniond.Y + Y * Quaterniond.W + Z * Quaterniond.X - X * Quaterniond.Z;
|
||
result.Z = W * Quaterniond.Z + Z * Quaterniond.W + X * Quaterniond.Y - Y * Quaterniond.X;
|
||
}
|
||
public static void Multiply(ref Quaterniond left, ref Quaterniond right, out Quaterniond result)
|
||
{
|
||
result.W = left.W * right.W - left.X * right.X - left.Y * right.Y - left.Z * right.Z;
|
||
result.X = left.W * right.X + left.X * right.W + left.Y * right.Z - left.Z * right.Y;
|
||
result.Y = left.W * right.Y + left.Y * right.W + left.Z * right.X - left.X * right.Z;
|
||
result.Z = left.W * right.Z + left.Z * right.W + left.X * right.Y - left.Y * right.X;
|
||
}
|
||
|
||
public void Multiply(double scalar)
|
||
{
|
||
W = W * scalar;
|
||
X = X * scalar;
|
||
Y = Y * scalar;
|
||
Z = Z * scalar;
|
||
}
|
||
public void Multiply(double scalar, out Quaterniond result)
|
||
{
|
||
result.W = W * scalar;
|
||
result.X = X * scalar;
|
||
result.Y = Y * scalar;
|
||
result.Z = Z * scalar;
|
||
}
|
||
public static void Multiply(ref Quaterniond Quaterniond, double scalar, out Quaterniond result)
|
||
{
|
||
result.W = Quaterniond.W * scalar;
|
||
result.X = Quaterniond.X * scalar;
|
||
result.Y = Quaterniond.Y * scalar;
|
||
result.Z = Quaterniond.Z * scalar;
|
||
}
|
||
|
||
public void Divide(double scalar)
|
||
{
|
||
if (scalar == 0) throw new DivideByZeroException();
|
||
W = W / scalar;
|
||
X = X / scalar;
|
||
Y = Y / scalar;
|
||
Z = Z / scalar;
|
||
}
|
||
public void Divide(double scalar, out Quaterniond result)
|
||
{
|
||
if (scalar == 0) throw new DivideByZeroException();
|
||
result.W = W / scalar;
|
||
result.X = X / scalar;
|
||
result.Y = Y / scalar;
|
||
result.Z = Z / scalar;
|
||
}
|
||
public static void Divide(ref Quaterniond Quaterniond, double scalar, out Quaterniond result)
|
||
{
|
||
if (scalar == 0) throw new DivideByZeroException();
|
||
result.W = Quaterniond.W / scalar;
|
||
result.X = Quaterniond.X / scalar;
|
||
result.Y = Quaterniond.Y / scalar;
|
||
result.Z = Quaterniond.Z / scalar;
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Functions
|
||
|
||
public double Modulus
|
||
{
|
||
get
|
||
{
|
||
return System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
}
|
||
}
|
||
public double ModulusSquared
|
||
{
|
||
get
|
||
{
|
||
return W * W + X * X + Y * Y + Z * Z;
|
||
}
|
||
}
|
||
|
||
public static double DotProduct(Quaterniond left, Quaterniond right)
|
||
{
|
||
return left.W * right.W + left.X * right.X + left.Y * right.Y + left.Z * right.Z;
|
||
}
|
||
|
||
public void Normalize()
|
||
{
|
||
double modulus = System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
if (modulus == 0) throw new DivideByZeroException();
|
||
W = W / modulus;
|
||
X = X / modulus;
|
||
Y = Y / modulus;
|
||
Z = Z / modulus;
|
||
}
|
||
public void Normalize( out Quaterniond result )
|
||
{
|
||
double modulus = System.Math.Sqrt(W * W + X * X + Y * Y + Z * Z);
|
||
if (modulus == 0) throw new DivideByZeroException();
|
||
result.W = W / modulus;
|
||
result.X = X / modulus;
|
||
result.Y = Y / modulus;
|
||
result.Z = Z / modulus;
|
||
}
|
||
public static void Normalize(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
double modulus = System.Math.Sqrt(Quaterniond.W * Quaterniond.W + Quaterniond.X * Quaterniond.X + Quaterniond.Y * Quaterniond.Y + Quaterniond.Z * Quaterniond.Z);
|
||
if (modulus == 0) throw new DivideByZeroException();
|
||
result.W = Quaterniond.W / modulus;
|
||
result.X = Quaterniond.X / modulus;
|
||
result.Y = Quaterniond.Y / modulus;
|
||
result.Z = Quaterniond.Z / modulus;
|
||
}
|
||
|
||
public void Conjugate()
|
||
{
|
||
X = -X;
|
||
Y = -Y;
|
||
Z = -Z;
|
||
}
|
||
public void Conjugate( out Quaterniond result )
|
||
{
|
||
result.W = W;
|
||
result.X = -X;
|
||
result.Y = -Y;
|
||
result.Z = -Z;
|
||
}
|
||
public static void Conjugate(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
result.W = Quaterniond.W;
|
||
result.X = -Quaterniond.X;
|
||
result.Y = -Quaterniond.Y;
|
||
result.Z = -Quaterniond.Z;
|
||
}
|
||
|
||
public void Inverse()
|
||
{
|
||
double modulusSquared = W * W + X * X + Y * Y + Z * Z;
|
||
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
W = W * inverseModulusSquared;
|
||
X = X * -inverseModulusSquared;
|
||
Y = Y * -inverseModulusSquared;
|
||
Z = Z * -inverseModulusSquared;
|
||
}
|
||
public void Inverse( out Quaterniond result )
|
||
{
|
||
double modulusSquared = W * W + X * X + Y * Y + Z * Z;
|
||
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
result.W = W * inverseModulusSquared;
|
||
result.X = X * -inverseModulusSquared;
|
||
result.Y = Y * -inverseModulusSquared;
|
||
result.Z = Z * -inverseModulusSquared;
|
||
}
|
||
public static void Inverse(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
double modulusSquared = Quaterniond.W * Quaterniond.W + Quaterniond.X * Quaterniond.X + Quaterniond.Y * Quaterniond.Y + Quaterniond.Z * Quaterniond.Z;
|
||
if (modulusSquared <= 0) throw new InvalidOperationException();
|
||
double inverseModulusSquared = 1.0 / modulusSquared;
|
||
result.W = Quaterniond.W * inverseModulusSquared;
|
||
result.X = Quaterniond.X * -inverseModulusSquared;
|
||
result.Y = Quaterniond.Y * -inverseModulusSquared;
|
||
result.Z = Quaterniond.Z * -inverseModulusSquared;
|
||
}
|
||
|
||
public void Log()
|
||
{
|
||
if (System.Math.Abs(W) < 1.0)
|
||
{
|
||
double angle = System.Math.Acos(W);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) >= 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
X = X * coefficient;
|
||
Y = Y * coefficient;
|
||
Z = Z * coefficient;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
X = 0;
|
||
Y = 0;
|
||
Z = 0;
|
||
}
|
||
|
||
W = 0;
|
||
}
|
||
public void Log( out Quaterniond result )
|
||
{
|
||
if (System.Math.Abs(W) < 1.0)
|
||
{
|
||
double angle = System.Math.Acos(W);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) >= 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
result.X = X * coefficient;
|
||
result.Y = Y * coefficient;
|
||
result.Z = Z * coefficient;
|
||
}
|
||
else
|
||
{
|
||
result.X = X;
|
||
result.Y = Y;
|
||
result.Z = Z;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
|
||
result.W = 0;
|
||
}
|
||
public static void Log(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
if (System.Math.Abs(Quaterniond.W) < 1.0)
|
||
{
|
||
double angle = System.Math.Acos(Quaterniond.W);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) >= 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
result.X = Quaterniond.X * coefficient;
|
||
result.Y = Quaterniond.Y * coefficient;
|
||
result.Z = Quaterniond.Z * coefficient;
|
||
}
|
||
else
|
||
{
|
||
result.X = Quaterniond.X;
|
||
result.Y = Quaterniond.Y;
|
||
result.Z = Quaterniond.Z;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
|
||
result.W = 0;
|
||
}
|
||
|
||
public void Exp()
|
||
{
|
||
double angle = System.Math.Sqrt(X * X + Y * Y + Z * Z);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) > 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
W = 0;
|
||
X = X * coefficient;
|
||
Y = Y * coefficient;
|
||
Z = Z * coefficient;
|
||
}
|
||
else
|
||
{
|
||
W = 0;
|
||
}
|
||
}
|
||
public void Exp(out Quaterniond result)
|
||
{
|
||
double angle = System.Math.Sqrt(X * X + Y * Y + Z * Z);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) > 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
result.W = 0;
|
||
result.X = X * coefficient;
|
||
result.Y = Y * coefficient;
|
||
result.Z = Z * coefficient;
|
||
}
|
||
else
|
||
{
|
||
result.W = 0;
|
||
result.X = X;
|
||
result.Y = Y;
|
||
result.Z = Z;
|
||
}
|
||
}
|
||
public static void Exp(ref Quaterniond Quaterniond, out Quaterniond result)
|
||
{
|
||
double angle = System.Math.Sqrt(Quaterniond.X * Quaterniond.X + Quaterniond.Y * Quaterniond.Y + Quaterniond.Z * Quaterniond.Z);
|
||
double sin = System.Math.Sin(angle);
|
||
|
||
if (System.Math.Abs(sin) > 0)
|
||
{
|
||
double coefficient = angle / sin;
|
||
result.W = 0;
|
||
result.X = Quaterniond.X * coefficient;
|
||
result.Y = Quaterniond.Y * coefficient;
|
||
result.Z = Quaterniond.Z * coefficient;
|
||
}
|
||
else
|
||
{
|
||
result.W = 0;
|
||
result.X = Quaterniond.X;
|
||
result.Y = Quaterniond.Y;
|
||
result.Z = Quaterniond.Z;
|
||
}
|
||
}
|
||
|
||
/// <summary>Returns left matrix for this Quaterniond.</summary>
|
||
public void Matrix4d(out Matrix4d result)
|
||
{
|
||
// TODO Expand
|
||
result = new Matrix4d(ref this);
|
||
}
|
||
|
||
public void GetAxisAndAngle(out Vector3d axis, out double angle)
|
||
{
|
||
Quaterniond Quaterniond;
|
||
Normalize(out Quaterniond);
|
||
double cos = Quaterniond.W;
|
||
angle = System.Math.Acos(cos) * 2 * Functions.RTOD;
|
||
double sin = System.Math.Sqrt( 1.0d - cos * cos );
|
||
if ( System.Math.Abs( sin ) < 0.0001 ) sin = 1;
|
||
axis = new Vector3d(X / sin, Y / sin, Z / sin);
|
||
}
|
||
|
||
public static void Slerp(ref Quaterniond start, ref Quaterniond end, double blend, out Quaterniond result)
|
||
{
|
||
if (start.W == 0 && start.X == 0 && start.Y == 0 && start.Z == 0)
|
||
{
|
||
if (end.W == 0 && end.X == 0 && end.Y == 0 && end.Z == 0)
|
||
{
|
||
result.W = 1;
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
else
|
||
{
|
||
result = end;
|
||
}
|
||
}
|
||
else if (end.W == 0 && end.X == 0 && end.Y == 0 && end.Z == 0)
|
||
{
|
||
result = start;
|
||
}
|
||
|
||
Vector3d startVector = new Vector3d(start.X, start.Y, start.Z);
|
||
Vector3d endVector = new Vector3d(end.X, end.Y, end.Z);
|
||
double cosHalfAngle = start.W * end.W + Vector3d.Dot(startVector, endVector);
|
||
|
||
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f)
|
||
{
|
||
// angle = 0.0f, so just return one input.
|
||
result = start;
|
||
}
|
||
else if (cosHalfAngle < 0.0f)
|
||
{
|
||
end.W = -end.W;
|
||
end.X = -end.X;
|
||
end.Y = -end.Y;
|
||
end.Z = -end.Z;
|
||
cosHalfAngle = -cosHalfAngle;
|
||
}
|
||
|
||
double blendA;
|
||
double blendB;
|
||
if (cosHalfAngle < 0.99f)
|
||
{
|
||
// do proper slerp for big angles
|
||
double halfAngle = (double)System.Math.Acos(cosHalfAngle);
|
||
double sinHalfAngle = (double)System.Math.Sin(halfAngle);
|
||
double oneOverSinHalfAngle = 1.0f / sinHalfAngle;
|
||
blendA = (double)System.Math.Sin(halfAngle * (1.0f - blend)) * oneOverSinHalfAngle;
|
||
blendB = (double)System.Math.Sin(halfAngle * blend) * oneOverSinHalfAngle;
|
||
}
|
||
else
|
||
{
|
||
// do lerp if angle is really small.
|
||
blendA = 1.0f - blend;
|
||
blendB = blend;
|
||
}
|
||
|
||
result.W = blendA * start.W + blendB * end.W;
|
||
result.X = blendA * start.X + blendB * end.X;
|
||
result.Y = blendA * start.Y + blendB * end.Y;
|
||
result.Z = blendA * start.Z + blendB * end.Z;
|
||
|
||
if (result.W != 0 || result.X != 0 || result.Y != 0 || result.Z != 0)
|
||
{
|
||
result.Normalize();
|
||
}
|
||
else
|
||
{
|
||
result.W = 1;
|
||
result.X = 0;
|
||
result.Y = 0;
|
||
result.Z = 0;
|
||
}
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region HashCode
|
||
|
||
/// <summary>Returns the hash code for this instance.</summary>
|
||
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
|
||
public override int GetHashCode()
|
||
{
|
||
base.GetHashCode();
|
||
return W.GetHashCode() ^ X.GetHashCode() ^ Y.GetHashCode() ^ Z.GetHashCode();
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region String and Parse
|
||
|
||
/// <summary>Returns the fully qualified type name of this instance.</summary>
|
||
/// <returns>A System.String containing left fully qualified type name.</returns>
|
||
public override string ToString()
|
||
{
|
||
return string.Format("({0}, {1}, {2}, {3})", W, X, Y, Z);
|
||
}
|
||
|
||
/// <summary>Parses left string, converting it to left Quaterniond.</summary>
|
||
/// <param name="str">The string to parse.</param>
|
||
/// <returns>The Quaterniond represented by the string.</returns>
|
||
public static void Parse(string str, out Quaterniond result)
|
||
{
|
||
Match match = new Regex(@"\((?<w>.*),(?<x>.*),(?<y>.*),(?<z>.*)\)", RegexOptions.None).Match(str);
|
||
if (!match.Success) throw new Exception("Parse failed!");
|
||
|
||
result.W = double.Parse(match.Result("${w}"));
|
||
result.X = double.Parse(match.Result("${x}"));
|
||
result.Y = double.Parse(match.Result("${y}"));
|
||
result.Z = double.Parse(match.Result("${z}"));
|
||
}
|
||
|
||
#endregion
|
||
|
||
#region Constants
|
||
|
||
/// <summary>A quaterion with all zero components.</summary>
|
||
public static readonly Quaterniond Zero = new Quaterniond(0, 0, 0, 0);
|
||
|
||
/// <summary>A quaterion representing an identity.</summary>
|
||
public static readonly Quaterniond Identity = new Quaterniond(1, 0, 0, 0);
|
||
|
||
/// <summary>A quaterion representing the W axis.</summary>
|
||
public static readonly Quaterniond WAxis = new Quaterniond(1, 0, 0, 0);
|
||
|
||
/// <summary>A quaterion representing the X axis.</summary>
|
||
public static readonly Quaterniond XAxis = new Quaterniond(0, 1, 0, 0);
|
||
|
||
/// <summary>A quaterion representing the Y axis.</summary>
|
||
public static readonly Quaterniond YAxis = new Quaterniond(0, 0, 1, 0);
|
||
|
||
/// <summary>A quaterion representing the Z axis.</summary>
|
||
public static readonly Quaterniond ZAxis = new Quaterniond(0, 0, 0, 1);
|
||
|
||
#endregion
|
||
|
||
#endif
|
||
|
||
#region IEquatable<Quaterniond> Members
|
||
|
||
/// <summary>
|
||
/// Compares this Quaterniond instance to another Quaterniond for equality.
|
||
/// </summary>
|
||
/// <param name="other">The other Quaterniond to be used in the comparison.</param>
|
||
/// <returns>True if both instances are equal; false otherwise.</returns>
|
||
public bool Equals(Quaterniond other)
|
||
{
|
||
return Xyz == other.Xyz && W == other.W;
|
||
}
|
||
|
||
#endregion
|
||
}
|
||
}
|