Opentk/Source/OpenTK/Platform/MacOS/QuartzDisplayDeviceDriver.cs
the_fiddler 7e344e2ac2 * EventInfo.cs:
* AglContext.cs:
* MacOSKeyMap.cs:
* CarbonInput.cs:
* Application.cs:
* MacOSFactory.cs:
* CarbonGLNative.cs:
* CarbonWindowInfo.cs:
* MacOSGraphicsMode.cs:
* QuartzDisplayDeviceDriver.cs: Normalized code formatting.
2010-11-02 19:49:24 +00:00

185 lines
7.4 KiB
C#

using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace OpenTK.Platform.MacOS
{
using System.Drawing;
using Carbon;
class QuartzDisplayDeviceDriver : IDisplayDeviceDriver
{
static object display_lock = new object();
static Dictionary<DisplayDevice, IntPtr> displayMap = new Dictionary<DisplayDevice, IntPtr>();
static IntPtr mainDisplay;
static internal IntPtr MainDisplay
{
get { return mainDisplay; }
}
static QuartzDisplayDeviceDriver()
{
lock (display_lock)
{
// To minimize the need to add static methods to OpenTK.Graphics.DisplayDevice
// we only allow settings to be set through its constructor.
// Thus, we save all necessary parameters in temporary variables
// and construct the device when every needed detail is available.
// The main DisplayDevice constructor adds the newly constructed device
// to the list of available devices.
const int maxDisplayCount = 20;
IntPtr[] displays = new IntPtr[maxDisplayCount];
int displayCount;
unsafe
{
fixed (IntPtr* displayPtr = displays)
{
CG.GetActiveDisplayList(maxDisplayCount, displayPtr, out displayCount);
}
}
Debug.Print("CoreGraphics reported {0} display(s).", displayCount);
Debug.Indent();
for (int i = 0; i < displayCount; i++)
{
IntPtr currentDisplay = displays[i];
// according to docs, first element in the array is always the
// main display.
bool primary = (i == 0);
if (primary)
mainDisplay = currentDisplay;
// gets current settings
int currentWidth = CG.DisplayPixelsWide(currentDisplay);
int currentHeight = CG.DisplayPixelsHigh(currentDisplay);
Debug.Print("Display {0} is at {1}x{2}", i, currentWidth, currentHeight);
IntPtr displayModesPtr = CG.DisplayAvailableModes(currentDisplay);
CFArray displayModes = new CFArray(displayModesPtr);
Debug.Print("Supports {0} display modes.", displayModes.Count);
DisplayResolution opentk_dev_current_res = null;
List<DisplayResolution> opentk_dev_available_res = new List<DisplayResolution>();
IntPtr currentModePtr = CG.DisplayCurrentMode(currentDisplay);
CFDictionary currentMode = new CFDictionary(currentModePtr);
for (int j = 0; j < displayModes.Count; j++)
{
CFDictionary dict = new CFDictionary(displayModes[j]);
int width = (int)dict.GetNumberValue("Width");
int height = (int)dict.GetNumberValue("Height");
int bpp = (int)dict.GetNumberValue("BitsPerPixel");
double freq = dict.GetNumberValue("RefreshRate");
bool current = currentMode.Ref == dict.Ref;
//if (current) Debug.Write(" * ");
//else Debug.Write(" ");
//Debug.Print("Mode {0} is {1}x{2}x{3} @ {4}.", j, width, height, bpp, freq);
DisplayResolution thisRes = new DisplayResolution(0, 0, width, height, bpp, (float)freq);
opentk_dev_available_res.Add(thisRes);
if (current)
opentk_dev_current_res = thisRes;
}
HIRect bounds = CG.DisplayBounds(currentDisplay);
Rectangle newRect = new Rectangle((int)bounds.Origin.X, (int)bounds.Origin.Y, (int)bounds.Size.Width, (int)bounds.Size.Height);
Debug.Print("Display {0} bounds: {1}", i, newRect);
DisplayDevice opentk_dev = new DisplayDevice(opentk_dev_current_res, primary, opentk_dev_available_res, newRect);
displayMap.Add(opentk_dev, currentDisplay);
}
Debug.Unindent();
}
}
static internal IntPtr HandleTo(DisplayDevice displayDevice)
{
if (displayMap.ContainsKey(displayDevice))
return displayMap[displayDevice];
else
return IntPtr.Zero;
}
#region IDisplayDeviceDriver Members
Dictionary<IntPtr, IntPtr> storedModes = new Dictionary<IntPtr, IntPtr>();
List<IntPtr> displaysCaptured = new List<IntPtr>();
public bool TryChangeResolution(DisplayDevice device, DisplayResolution resolution)
{
IntPtr display = displayMap[device];
IntPtr currentModePtr = CG.DisplayCurrentMode(display);
if (storedModes.ContainsKey(display) == false)
{
storedModes.Add(display, currentModePtr);
}
IntPtr displayModesPtr = CG.DisplayAvailableModes(display);
CFArray displayModes = new CFArray(displayModesPtr);
for (int j = 0; j < displayModes.Count; j++)
{
CFDictionary dict = new CFDictionary(displayModes[j]);
int width = (int)dict.GetNumberValue("Width");
int height = (int)dict.GetNumberValue("Height");
int bpp = (int)dict.GetNumberValue("BitsPerPixel");
double freq = dict.GetNumberValue("RefreshRate");
if (width == resolution.Width && height == resolution.Height && bpp == resolution.BitsPerPixel && System.Math.Abs(freq - resolution.RefreshRate) < 1e-6)
{
if (displaysCaptured.Contains(display) == false)
{
CG.DisplayCapture(display);
}
Debug.Print("Changing resolution to {0}x{1}x{2}@{3}.", width, height, bpp, freq);
CG.DisplaySwitchToMode(display, displayModes[j]);
return true;
}
}
return false;
}
public bool TryRestoreResolution(DisplayDevice device)
{
IntPtr display = displayMap[device];
if (storedModes.ContainsKey(display))
{
Debug.Print("Restoring resolution.");
CG.DisplaySwitchToMode(display, storedModes[display]);
CG.DisplayRelease(display);
displaysCaptured.Remove(display);
return true;
}
return false;
}
#endregion
}
}