mirror of
https://github.com/Ryujinx/Opentk.git
synced 2025-01-05 00:35:47 +00:00
164 lines
5 KiB
C#
164 lines
5 KiB
C#
#region --- License ---
|
|
/* Licensed under the MIT/X11 license.
|
|
* Copyright (c) 2006-2008 the OpenTK Team.
|
|
* This notice may not be removed from any source distribution.
|
|
* See license.txt for licensing detailed licensing details.
|
|
*
|
|
* Contributions by Georg Wächter.
|
|
*/
|
|
#endregion
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Text;
|
|
|
|
namespace OpenTK.Math
|
|
{
|
|
/// <summary>
|
|
/// Represents a cubic bezier curve with two anchor and two control points.
|
|
/// </summary>
|
|
[Serializable]
|
|
public struct BezierCurveCubic
|
|
{
|
|
#region Fields
|
|
|
|
/// <summary>
|
|
/// Start anchor point.
|
|
/// </summary>
|
|
public Vector2 StartAnchor;
|
|
|
|
/// <summary>
|
|
/// End anchor point.
|
|
/// </summary>
|
|
public Vector2 EndAnchor;
|
|
|
|
/// <summary>
|
|
/// First control point, controls the direction of the curve start.
|
|
/// </summary>
|
|
public Vector2 FirstControlPoint;
|
|
|
|
/// <summary>
|
|
/// Second control point, controls the direction of the curve end.
|
|
/// </summary>
|
|
public Vector2 SecondControlPoint;
|
|
|
|
/// <summary>
|
|
/// Gets or sets the parallel value.
|
|
/// </summary>
|
|
/// <remarks>This value defines whether the curve should be calculated as a
|
|
/// parallel curve to the original bezier curve. A value of 0.0f represents
|
|
/// the original curve, 5.0f i.e. stands for a curve that has always a distance
|
|
/// of 5.f to the orignal curve at any point.</remarks>
|
|
public float Parallel;
|
|
|
|
#endregion
|
|
|
|
#region Constructors
|
|
|
|
/// <summary>
|
|
/// Constructs a new <see cref="BezierCurveCubic"/>.
|
|
/// </summary>
|
|
/// <param name="startAnchor">The start anchor point.</param>
|
|
/// <param name="endAnchor">The end anchor point.</param>
|
|
/// <param name="firstControlPoint">The first control point.</param>
|
|
/// <param name="secondControlPoint">The second control point.</param>
|
|
public BezierCurveCubic(Vector2 startAnchor, Vector2 endAnchor, Vector2 firstControlPoint, Vector2 secondControlPoint)
|
|
{
|
|
this.StartAnchor = startAnchor;
|
|
this.EndAnchor = endAnchor;
|
|
this.FirstControlPoint = firstControlPoint;
|
|
this.SecondControlPoint = secondControlPoint;
|
|
this.Parallel = 0.0f;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Constructs a new <see cref="BezierCurveCubic"/>.
|
|
/// </summary>
|
|
/// <param name="parallel">The parallel value.</param>
|
|
/// <param name="startAnchor">The start anchor point.</param>
|
|
/// <param name="endAnchor">The end anchor point.</param>
|
|
/// <param name="firstControlPoint">The first control point.</param>
|
|
/// <param name="secondControlPoint">The second control point.</param>
|
|
public BezierCurveCubic(float parallel, Vector2 startAnchor, Vector2 endAnchor, Vector2 firstControlPoint, Vector2 secondControlPoint)
|
|
{
|
|
this.Parallel = parallel;
|
|
this.StartAnchor = startAnchor;
|
|
this.EndAnchor = endAnchor;
|
|
this.FirstControlPoint = firstControlPoint;
|
|
this.SecondControlPoint = secondControlPoint;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Functions
|
|
|
|
/// <summary>
|
|
/// Calculates the point with the specified t.
|
|
/// </summary>
|
|
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
|
|
/// <returns>Resulting point.</returns>
|
|
public Vector2 CalculatePoint(float t)
|
|
{
|
|
Vector2 r = new Vector2();
|
|
float c = 1.0f - t;
|
|
|
|
r.X = (StartAnchor.X * c * c * c) + (FirstControlPoint.X * 3 * t * c * c) + (SecondControlPoint.X * 3 * t * t * c)
|
|
+ EndAnchor.X * t * t * t;
|
|
r.Y = (StartAnchor.Y * c * c * c) + (FirstControlPoint.Y * 3 * t * c * c) + (SecondControlPoint.Y * 3 * t * t * c)
|
|
+ EndAnchor.Y * t * t * t;
|
|
|
|
if (Parallel == 0.0f)
|
|
return r;
|
|
|
|
Vector2 perpendicular = new Vector2();
|
|
|
|
if (t == 0.0f)
|
|
perpendicular = FirstControlPoint - StartAnchor;
|
|
else
|
|
perpendicular = r - CalculatePointOfDerivative(t);
|
|
|
|
return r + Vector2.Normalize(perpendicular).PerpendicularRight * Parallel;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the point with the specified t of the derivative of this function.
|
|
/// </summary>
|
|
/// <param name="t">The t, value between 0.0f and 1.0f.</param>
|
|
/// <returns>Resulting point.</returns>
|
|
private Vector2 CalculatePointOfDerivative(float t)
|
|
{
|
|
Vector2 r = new Vector2();
|
|
float c = 1.0f - t;
|
|
|
|
r.X = (c * c * StartAnchor.X) + (2 * t * c * FirstControlPoint.X) + (t * t * SecondControlPoint.X);
|
|
r.Y = (c * c * StartAnchor.Y) + (2 * t * c * FirstControlPoint.Y) + (t * t * SecondControlPoint.Y);
|
|
|
|
return r;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the length of this bezier curve.
|
|
/// </summary>
|
|
/// <param name="precision">The precision.</param>
|
|
/// <returns>Length of the curve.</returns>
|
|
/// <remarks>The precision gets better when the <paramref name="precision"/>
|
|
/// value gets smaller.</remarks>
|
|
public float CalculateLength(float precision)
|
|
{
|
|
float length = 0.0f;
|
|
Vector2 old = CalculatePoint(0.0f);
|
|
|
|
for (float i = precision; i < (1.0f + precision); i += precision)
|
|
{
|
|
Vector2 n = CalculatePoint(i);
|
|
length += (n - old).Length;
|
|
old = n;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
#endregion
|
|
}
|
|
}
|