mirror of
https://github.com/Ryujinx/Opentk.git
synced 2024-12-30 21:45:35 +00:00
829 lines
32 KiB
C#
829 lines
32 KiB
C#
#region --- License ---
|
|
/*
|
|
Copyright (c) 2006 - 2008 The Open Toolkit library.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
#endregion
|
|
|
|
using System;
|
|
using System.Runtime.InteropServices;
|
|
|
|
namespace OpenTK.Math
|
|
{
|
|
// Todo: Remove this warning when the code goes public.
|
|
#pragma warning disable 3019
|
|
#if false
|
|
[Serializable]
|
|
[StructLayout(LayoutKind.Sequential)]
|
|
public struct Matrix3d : IEquatable<Matrix3d>
|
|
{
|
|
#region Fields & Access
|
|
|
|
/// <summary>Row 0, Column 0</summary>
|
|
public double R0C0;
|
|
|
|
/// <summary>Row 0, Column 1</summary>
|
|
public double R0C1;
|
|
|
|
/// <summary>Row 0, Column 2</summary>
|
|
public double R0C2;
|
|
|
|
/// <summary>Row 1, Column 0</summary>
|
|
public double R1C0;
|
|
|
|
/// <summary>Row 1, Column 1</summary>
|
|
public double R1C1;
|
|
|
|
/// <summary>Row 1, Column 2</summary>
|
|
public double R1C2;
|
|
|
|
/// <summary>Row 2, Column 0</summary>
|
|
public double R2C0;
|
|
|
|
/// <summary>Row 2, Column 1</summary>
|
|
public double R2C1;
|
|
|
|
/// <summary>Row 2, Column 2</summary>
|
|
public double R2C2;
|
|
|
|
/// <summary>Gets the component at the given row and column in the matrix.</summary>
|
|
/// <param name="row">The row of the matrix.</param>
|
|
/// <param name="column">The column of the matrix.</param>
|
|
/// <returns>The component at the given row and column in the matrix.</returns>
|
|
public double this[int row, int column]
|
|
{
|
|
get
|
|
{
|
|
switch( row )
|
|
{
|
|
case 0:
|
|
switch (column)
|
|
{
|
|
case 0: return R0C0;
|
|
case 1: return R0C1;
|
|
case 2: return R0C2;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
switch (column)
|
|
{
|
|
case 0: return R1C0;
|
|
case 1: return R1C1;
|
|
case 2: return R1C2;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
switch (column)
|
|
{
|
|
case 0: return R2C0;
|
|
case 1: return R2C1;
|
|
case 2: return R2C2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
throw new IndexOutOfRangeException();
|
|
}
|
|
set
|
|
{
|
|
switch( row )
|
|
{
|
|
case 0:
|
|
switch (column)
|
|
{
|
|
case 0: R0C0 = value; return;
|
|
case 1: R0C1 = value; return;
|
|
case 2: R0C2 = value; return;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
switch (column)
|
|
{
|
|
case 0: R1C0 = value; return;
|
|
case 1: R1C1 = value; return;
|
|
case 2: R1C2 = value; return;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
switch (column)
|
|
{
|
|
case 0: R2C0 = value; return;
|
|
case 1: R2C1 = value; return;
|
|
case 2: R2C2 = value; return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
throw new IndexOutOfRangeException();
|
|
}
|
|
}
|
|
|
|
/// <summary>Gets the component at the index into the matrix.</summary>
|
|
/// <param name="index">The index into the components of the matrix.</param>
|
|
/// <returns>The component at the given index into the matrix.</returns>
|
|
public double this[int index]
|
|
{
|
|
get
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0: return R0C0;
|
|
case 1: return R0C1;
|
|
case 2: return R0C2;
|
|
case 3: return R1C0;
|
|
case 4: return R1C1;
|
|
case 5: return R1C2;
|
|
case 6: return R2C0;
|
|
case 7: return R2C1;
|
|
case 8: return R2C2;
|
|
default: throw new IndexOutOfRangeException();
|
|
}
|
|
}
|
|
set
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0: R0C0 = value; return;
|
|
case 1: R0C1 = value; return;
|
|
case 2: R0C2 = value; return;
|
|
case 3: R1C0 = value; return;
|
|
case 4: R1C1 = value; return;
|
|
case 5: R1C2 = value; return;
|
|
case 6: R2C0 = value; return;
|
|
case 7: R2C1 = value; return;
|
|
case 8: R2C2 = value; return;
|
|
default: throw new IndexOutOfRangeException();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>Converts the matrix into an IntPtr.</summary>
|
|
/// <param name="matrix">The matrix to convert.</param>
|
|
/// <returns>An IntPtr for the matrix.</returns>
|
|
public static explicit operator IntPtr(Matrix3d matrix)
|
|
{
|
|
unsafe
|
|
{
|
|
return (IntPtr)(&matrix.R0C0);
|
|
}
|
|
}
|
|
|
|
/// <summary>Converts the matrix into left double*.</summary>
|
|
/// <param name="matrix">The matrix to convert.</param>
|
|
/// <returns>A double* for the matrix.</returns>
|
|
[CLSCompliant(false)]
|
|
unsafe public static explicit operator double*(Matrix3d matrix)
|
|
{
|
|
return &matrix.R0C0;
|
|
}
|
|
|
|
/// <summary>Converts the matrix into an array of doubles.</summary>
|
|
/// <param name="matrix">The matrix to convert.</param>
|
|
/// <returns>An array of doubles for the matrix.</returns>
|
|
public static explicit operator double[](Matrix3d matrix)
|
|
{
|
|
return new double[9]
|
|
{
|
|
matrix.R0C0,
|
|
matrix.R0C1,
|
|
matrix.R0C2,
|
|
matrix.R1C0,
|
|
matrix.R1C1,
|
|
matrix.R1C2,
|
|
matrix.R2C0,
|
|
matrix.R2C1,
|
|
matrix.R2C2
|
|
};
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Constructors
|
|
|
|
/// <summary>Constructs left matrix with the same components as the given matrix.</summary>
|
|
/// <param name="vector">The matrix whose components to copy.</param>
|
|
public Matrix3d(ref Matrix3d matrix)
|
|
{
|
|
this.R0C0 = matrix.R0C0;
|
|
this.R0C1 = matrix.R0C1;
|
|
this.R0C2 = matrix.R0C2;
|
|
this.R1C0 = matrix.R1C0;
|
|
this.R1C1 = matrix.R1C1;
|
|
this.R1C2 = matrix.R1C2;
|
|
this.R2C0 = matrix.R2C0;
|
|
this.R2C1 = matrix.R2C1;
|
|
this.R2C2 = matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Constructs left matrix with the given values.</summary>
|
|
/// <param name="r0c0">The value for row 0 column 0.</param>
|
|
/// <param name="r0c1">The value for row 0 column 1.</param>
|
|
/// <param name="r0c2">The value for row 0 column 2.</param>
|
|
/// <param name="r1c0">The value for row 1 column 0.</param>
|
|
/// <param name="r1c1">The value for row 1 column 1.</param>
|
|
/// <param name="r1c2">The value for row 1 column 2.</param>
|
|
/// <param name="r2c0">The value for row 2 column 0.</param>
|
|
/// <param name="r2c1">The value for row 2 column 1.</param>
|
|
/// <param name="r2c2">The value for row 2 column 2.</param>
|
|
public Matrix3d
|
|
(
|
|
double r0c0,
|
|
double r0c1,
|
|
double r0c2,
|
|
double r1c0,
|
|
double r1c1,
|
|
double r1c2,
|
|
double r2c0,
|
|
double r2c1,
|
|
double r2c2
|
|
)
|
|
{
|
|
this.R0C0 = r0c0;
|
|
this.R0C1 = r0c1;
|
|
this.R0C2 = r0c2;
|
|
this.R1C0 = r1c0;
|
|
this.R1C1 = r1c1;
|
|
this.R1C2 = r1c2;
|
|
this.R2C0 = r2c0;
|
|
this.R2C1 = r2c1;
|
|
this.R2C2 = r2c2;
|
|
}
|
|
|
|
/// <summary>Constructs left matrix from the given array of double-precision floating point numbers.</summary>
|
|
/// <param name="doubleArray">The array of doubles for the components of the matrix.</param>
|
|
public Matrix3d(double[] doubleArray)
|
|
{
|
|
if (doubleArray == null || doubleArray.GetLength(0) < 9) throw new MissingFieldException();
|
|
|
|
this.R0C0 = doubleArray[0];
|
|
this.R0C1 = doubleArray[1];
|
|
this.R0C2 = doubleArray[2];
|
|
this.R1C0 = doubleArray[3];
|
|
this.R1C1 = doubleArray[4];
|
|
this.R1C2 = doubleArray[5];
|
|
this.R2C0 = doubleArray[6];
|
|
this.R2C1 = doubleArray[7];
|
|
this.R2C2 = doubleArray[8];
|
|
}
|
|
|
|
/// <summary>Constructs left matrix from the given quaternion.</summary>
|
|
/// <param name="quaternion">The quaternion to use to construct the martix.</param>
|
|
public Matrix3d(Quaterniond quaternion)
|
|
{
|
|
quaternion.Normalize();
|
|
|
|
double xx = quaternion.X * quaternion.X;
|
|
double yy = quaternion.Y * quaternion.Y;
|
|
double zz = quaternion.Z * quaternion.Z;
|
|
double xy = quaternion.X * quaternion.Y;
|
|
double xz = quaternion.X * quaternion.Z;
|
|
double yz = quaternion.Y * quaternion.Z;
|
|
double wx = quaternion.W * quaternion.X;
|
|
double wy = quaternion.W * quaternion.Y;
|
|
double wz = quaternion.W * quaternion.Z;
|
|
|
|
R0C0 = 1 - 2 * (yy + zz);
|
|
R0C1 = 2 * (xy - wz);
|
|
R0C2 = 2 * (xz + wy);
|
|
|
|
R1C0 = 2 * (xy + wz);
|
|
R1C1 = 1 - 2 * (xx + zz);
|
|
R1C2 = 2 * (yz - wx);
|
|
|
|
R2C0 = 2 * (xz - wy);
|
|
R2C1 = 2 * (yz + wx);
|
|
R2C2 = 1 - 2 * (xx + yy);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Equality
|
|
|
|
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
|
|
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare with.</param>
|
|
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
|
|
[CLSCompliant(false)]
|
|
public bool Equals(Matrix3d matrix)
|
|
{
|
|
return
|
|
R0C0 == matrix.R0C0 &&
|
|
R0C1 == matrix.R0C1 &&
|
|
R0C2 == matrix.R0C2 &&
|
|
R1C0 == matrix.R1C0 &&
|
|
R1C1 == matrix.R1C1 &&
|
|
R1C2 == matrix.R1C2 &&
|
|
R2C0 == matrix.R2C0 &&
|
|
R2C1 == matrix.R2C1 &&
|
|
R2C2 == matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
|
|
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare to.</param>
|
|
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
|
|
public bool Equals(ref Matrix3d matrix)
|
|
{
|
|
return
|
|
R0C0 == matrix.R0C0 &&
|
|
R0C1 == matrix.R0C1 &&
|
|
R0C2 == matrix.R0C2 &&
|
|
R1C0 == matrix.R1C0 &&
|
|
R1C1 == matrix.R1C1 &&
|
|
R1C2 == matrix.R1C2 &&
|
|
R2C0 == matrix.R2C0 &&
|
|
R2C1 == matrix.R2C1 &&
|
|
R2C2 == matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
|
|
/// <param name="left">The left-hand operand.</param>
|
|
/// <param name="right">The right-hand operand.</param>
|
|
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
|
|
public static bool Equals(ref Matrix3d left, ref Matrix3d right)
|
|
{
|
|
return
|
|
left.R0C0 == right.R0C0 &&
|
|
left.R0C1 == right.R0C1 &&
|
|
left.R0C2 == right.R0C2 &&
|
|
left.R1C0 == right.R1C0 &&
|
|
left.R1C1 == right.R1C1 &&
|
|
left.R1C2 == right.R1C2 &&
|
|
left.R2C0 == right.R2C0 &&
|
|
left.R2C1 == right.R2C1 &&
|
|
left.R2C2 == right.R2C2;
|
|
}
|
|
|
|
/// <summary>Indicates whether the current matrix is approximately equal to another matrix.</summary>
|
|
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare with.</param>
|
|
/// <param name="tolerance">The limit below which the matrices are considered equal.</param>
|
|
/// <returns>true if the current matrix is approximately equal to the matrix parameter; otherwise, false.</returns>
|
|
public bool EqualsApprox(ref Matrix3d matrix, double tolerance)
|
|
{
|
|
return
|
|
System.Math.Abs(R0C0 - matrix.R0C0) <= tolerance &&
|
|
System.Math.Abs(R0C1 - matrix.R0C1) <= tolerance &&
|
|
System.Math.Abs(R0C2 - matrix.R0C2) <= tolerance &&
|
|
System.Math.Abs(R1C0 - matrix.R1C0) <= tolerance &&
|
|
System.Math.Abs(R1C1 - matrix.R1C1) <= tolerance &&
|
|
System.Math.Abs(R1C2 - matrix.R1C2) <= tolerance &&
|
|
System.Math.Abs(R2C0 - matrix.R2C0) <= tolerance &&
|
|
System.Math.Abs(R2C1 - matrix.R2C1) <= tolerance &&
|
|
System.Math.Abs(R2C2 - matrix.R2C2) <= tolerance;
|
|
}
|
|
|
|
/// <summary>Indicates whether the current matrix is approximately equal to another matrix.</summary>
|
|
/// <param name="left">The left-hand operand.</param>
|
|
/// <param name="right">The right-hand operand.</param>
|
|
/// <param name="tolerance">The limit below which the matrices are considered equal.</param>
|
|
/// <returns>true if the current matrix is approximately equal to the matrix parameter; otherwise, false.</returns>
|
|
public static bool EqualsApprox(ref Matrix3d left, ref Matrix3d right, double tolerance)
|
|
{
|
|
return
|
|
System.Math.Abs(left.R0C0 - right.R0C0) <= tolerance &&
|
|
System.Math.Abs(left.R0C1 - right.R0C1) <= tolerance &&
|
|
System.Math.Abs(left.R0C2 - right.R0C2) <= tolerance &&
|
|
System.Math.Abs(left.R1C0 - right.R1C0) <= tolerance &&
|
|
System.Math.Abs(left.R1C1 - right.R1C1) <= tolerance &&
|
|
System.Math.Abs(left.R1C2 - right.R1C2) <= tolerance &&
|
|
System.Math.Abs(left.R2C0 - right.R2C0) <= tolerance &&
|
|
System.Math.Abs(left.R2C1 - right.R2C1) <= tolerance &&
|
|
System.Math.Abs(left.R2C2 - right.R2C2) <= tolerance;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Arithmetic Operators
|
|
|
|
|
|
/// <summary>Add left matrix to this matrix.</summary>
|
|
/// <param name="matrix">The matrix to add.</param>
|
|
public void Add(ref Matrix3d matrix)
|
|
{
|
|
R0C0 = R0C0 + matrix.R0C0;
|
|
R0C1 = R0C1 + matrix.R0C1;
|
|
R0C2 = R0C2 + matrix.R0C2;
|
|
R1C0 = R1C0 + matrix.R1C0;
|
|
R1C1 = R1C1 + matrix.R1C1;
|
|
R1C2 = R1C2 + matrix.R1C2;
|
|
R2C0 = R2C0 + matrix.R2C0;
|
|
R2C1 = R2C1 + matrix.R2C1;
|
|
R2C2 = R2C2 + matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Add left matrix to this matrix.</summary>
|
|
/// <param name="matrix">The matrix to add.</param>
|
|
/// <param name="result">The resulting matrix of the addition.</param>
|
|
public void Add(ref Matrix3d matrix, out Matrix3d result)
|
|
{
|
|
result.R0C0 = R0C0 + matrix.R0C0;
|
|
result.R0C1 = R0C1 + matrix.R0C1;
|
|
result.R0C2 = R0C2 + matrix.R0C2;
|
|
result.R1C0 = R1C0 + matrix.R1C0;
|
|
result.R1C1 = R1C1 + matrix.R1C1;
|
|
result.R1C2 = R1C2 + matrix.R1C2;
|
|
result.R2C0 = R2C0 + matrix.R2C0;
|
|
result.R2C1 = R2C1 + matrix.R2C1;
|
|
result.R2C2 = R2C2 + matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Add left matrix to left matrix.</summary>
|
|
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
|
|
/// <param name="right">The matrix on the right side of the equation</param>
|
|
/// <param name="result">The resulting matrix of the addition.</param>
|
|
public static void Add(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
|
|
{
|
|
result.R0C0 = left.R0C0 + right.R0C0;
|
|
result.R0C1 = left.R0C1 + right.R0C1;
|
|
result.R0C2 = left.R0C2 + right.R0C2;
|
|
result.R1C0 = left.R1C0 + right.R1C0;
|
|
result.R1C1 = left.R1C1 + right.R1C1;
|
|
result.R1C2 = left.R1C2 + right.R1C2;
|
|
result.R2C0 = left.R2C0 + right.R2C0;
|
|
result.R2C1 = left.R2C1 + right.R2C1;
|
|
result.R2C2 = left.R2C2 + right.R2C2;
|
|
}
|
|
|
|
|
|
/// <summary>Subtract left matrix from this matrix.</summary>
|
|
/// <param name="matrix">The matrix to subtract.</param>
|
|
public void Subtract(ref Matrix3d matrix)
|
|
{
|
|
R0C0 = R0C0 + matrix.R0C0;
|
|
R0C1 = R0C1 + matrix.R0C1;
|
|
R0C2 = R0C2 + matrix.R0C2;
|
|
R1C0 = R1C0 + matrix.R1C0;
|
|
R1C1 = R1C1 + matrix.R1C1;
|
|
R1C2 = R1C2 + matrix.R1C2;
|
|
R2C0 = R2C0 + matrix.R2C0;
|
|
R2C1 = R2C1 + matrix.R2C1;
|
|
R2C2 = R2C2 + matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Subtract left matrix from this matrix.</summary>
|
|
/// <param name="matrix">The matrix to subtract.</param>
|
|
/// <param name="result">The resulting matrix of the subtraction.</param>
|
|
public void Subtract(ref Matrix3d matrix, out Matrix3d result)
|
|
{
|
|
result.R0C0 = R0C0 + matrix.R0C0;
|
|
result.R0C1 = R0C1 + matrix.R0C1;
|
|
result.R0C2 = R0C2 + matrix.R0C2;
|
|
result.R1C0 = R1C0 + matrix.R1C0;
|
|
result.R1C1 = R1C1 + matrix.R1C1;
|
|
result.R1C2 = R1C2 + matrix.R1C2;
|
|
result.R2C0 = R2C0 + matrix.R2C0;
|
|
result.R2C1 = R2C1 + matrix.R2C1;
|
|
result.R2C2 = R2C2 + matrix.R2C2;
|
|
}
|
|
|
|
/// <summary>Subtract left matrix from left matrix.</summary>
|
|
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
|
|
/// <param name="right">The matrix on the right side of the equation</param>
|
|
/// <param name="result">The resulting matrix of the subtraction.</param>
|
|
public static void Subtract(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
|
|
{
|
|
result.R0C0 = left.R0C0 + right.R0C0;
|
|
result.R0C1 = left.R0C1 + right.R0C1;
|
|
result.R0C2 = left.R0C2 + right.R0C2;
|
|
result.R1C0 = left.R1C0 + right.R1C0;
|
|
result.R1C1 = left.R1C1 + right.R1C1;
|
|
result.R1C2 = left.R1C2 + right.R1C2;
|
|
result.R2C0 = left.R2C0 + right.R2C0;
|
|
result.R2C1 = left.R2C1 + right.R2C1;
|
|
result.R2C2 = left.R2C2 + right.R2C2;
|
|
}
|
|
|
|
|
|
/// <summary>Multiply left martix times this matrix.</summary>
|
|
/// <param name="matrix">The matrix to multiply.</param>
|
|
public void Multiply(ref Matrix3d matrix)
|
|
{
|
|
double r0c0 = matrix.R0C0 * R0C0 + matrix.R0C1 * R1C0 + matrix.R0C2 * R2C0;
|
|
double r0c1 = matrix.R0C0 * R0C1 + matrix.R0C1 * R1C1 + matrix.R0C2 * R2C1;
|
|
double r0c2 = matrix.R0C0 * R0C2 + matrix.R0C1 * R1C2 + matrix.R0C2 * R2C2;
|
|
|
|
double r1c0 = matrix.R1C0 * R0C0 + matrix.R1C1 * R1C0 + matrix.R1C2 * R2C0;
|
|
double r1c1 = matrix.R1C0 * R0C1 + matrix.R1C1 * R1C1 + matrix.R1C2 * R2C1;
|
|
double r1c2 = matrix.R1C0 * R0C2 + matrix.R1C1 * R1C2 + matrix.R1C2 * R2C2;
|
|
|
|
R2C0 = matrix.R2C0 * R0C0 + matrix.R2C1 * R1C0 + matrix.R2C2 * R2C0;
|
|
R2C1 = matrix.R2C0 * R0C1 + matrix.R2C1 * R1C1 + matrix.R2C2 * R2C1;
|
|
R2C2 = matrix.R2C0 * R0C2 + matrix.R2C1 * R1C2 + matrix.R2C2 * R2C2;
|
|
|
|
|
|
R0C0 = r0c0;
|
|
R0C1 = r0c1;
|
|
R0C2 = r0c2;
|
|
|
|
R1C0 = r1c0;
|
|
R1C1 = r1c1;
|
|
R1C2 = r1c2;
|
|
}
|
|
|
|
/// <summary>Multiply matrix times this matrix.</summary>
|
|
/// <param name="matrix">The matrix to multiply.</param>
|
|
/// <param name="result">The resulting matrix of the multiplication.</param>
|
|
public void Multiply(ref Matrix3d matrix, out Matrix3d result)
|
|
{
|
|
result.R0C0 = matrix.R0C0 * R0C0 + matrix.R0C1 * R1C0 + matrix.R0C2 * R2C0;
|
|
result.R0C1 = matrix.R0C0 * R0C1 + matrix.R0C1 * R1C1 + matrix.R0C2 * R2C1;
|
|
result.R0C2 = matrix.R0C0 * R0C2 + matrix.R0C1 * R1C2 + matrix.R0C2 * R2C2;
|
|
result.R1C0 = matrix.R1C0 * R0C0 + matrix.R1C1 * R1C0 + matrix.R1C2 * R2C0;
|
|
result.R1C1 = matrix.R1C0 * R0C1 + matrix.R1C1 * R1C1 + matrix.R1C2 * R2C1;
|
|
result.R1C2 = matrix.R1C0 * R0C2 + matrix.R1C1 * R1C2 + matrix.R1C2 * R2C2;
|
|
result.R2C0 = matrix.R2C0 * R0C0 + matrix.R2C1 * R1C0 + matrix.R2C2 * R2C0;
|
|
result.R2C1 = matrix.R2C0 * R0C1 + matrix.R2C1 * R1C1 + matrix.R2C2 * R2C1;
|
|
result.R2C2 = matrix.R2C0 * R0C2 + matrix.R2C1 * R1C2 + matrix.R2C2 * R2C2;
|
|
}
|
|
|
|
/// <summary>Multiply left matrix times left matrix.</summary>
|
|
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
|
|
/// <param name="right">The matrix on the right side of the equation</param>
|
|
/// <param name="result">The resulting matrix of the multiplication.</param>
|
|
public static void Multiply(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
|
|
{
|
|
result.R0C0 = right.R0C0 * left.R0C0 + right.R0C1 * left.R1C0 + right.R0C2 * left.R2C0;
|
|
result.R0C1 = right.R0C0 * left.R0C1 + right.R0C1 * left.R1C1 + right.R0C2 * left.R2C1;
|
|
result.R0C2 = right.R0C0 * left.R0C2 + right.R0C1 * left.R1C2 + right.R0C2 * left.R2C2;
|
|
result.R1C0 = right.R1C0 * left.R0C0 + right.R1C1 * left.R1C0 + right.R1C2 * left.R2C0;
|
|
result.R1C1 = right.R1C0 * left.R0C1 + right.R1C1 * left.R1C1 + right.R1C2 * left.R2C1;
|
|
result.R1C2 = right.R1C0 * left.R0C2 + right.R1C1 * left.R1C2 + right.R1C2 * left.R2C2;
|
|
result.R2C0 = right.R2C0 * left.R0C0 + right.R2C1 * left.R1C0 + right.R2C2 * left.R2C0;
|
|
result.R2C1 = right.R2C0 * left.R0C1 + right.R2C1 * left.R1C1 + right.R2C2 * left.R2C1;
|
|
result.R2C2 = right.R2C0 * left.R0C2 + right.R2C1 * left.R1C2 + right.R2C2 * left.R2C2;
|
|
}
|
|
|
|
|
|
/// <summary>Multiply matrix times this matrix.</summary>
|
|
/// <param name="matrix">The matrix to multiply.</param>
|
|
public void Multiply(double scalar)
|
|
{
|
|
R0C0 = scalar * R0C0;
|
|
R0C1 = scalar * R0C1;
|
|
R0C2 = scalar * R0C2;
|
|
R1C0 = scalar * R1C0;
|
|
R1C1 = scalar * R1C1;
|
|
R1C2 = scalar * R1C2;
|
|
R2C0 = scalar * R2C0;
|
|
R2C1 = scalar * R2C1;
|
|
R2C2 = scalar * R2C2;
|
|
}
|
|
|
|
/// <summary>Multiply matrix times this matrix.</summary>
|
|
/// <param name="matrix">The matrix to multiply.</param>
|
|
/// <param name="result">The resulting matrix of the multiplication.</param>
|
|
public void Multiply(double scalar, out Matrix3d result)
|
|
{
|
|
result.R0C0 = scalar * R0C0;
|
|
result.R0C1 = scalar * R0C1;
|
|
result.R0C2 = scalar * R0C2;
|
|
result.R1C0 = scalar * R1C0;
|
|
result.R1C1 = scalar * R1C1;
|
|
result.R1C2 = scalar * R1C2;
|
|
result.R2C0 = scalar * R2C0;
|
|
result.R2C1 = scalar * R2C1;
|
|
result.R2C2 = scalar * R2C2;
|
|
}
|
|
|
|
/// <summary>Multiply left matrix times left matrix.</summary>
|
|
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
|
|
/// <param name="right">The matrix on the right side of the equation</param>
|
|
/// <param name="result">The resulting matrix of the multiplication.</param>
|
|
public static void Multiply(ref Matrix3d matrix, double scalar, out Matrix3d result)
|
|
{
|
|
result.R0C0 = scalar * matrix.R0C0;
|
|
result.R0C1 = scalar * matrix.R0C1;
|
|
result.R0C2 = scalar * matrix.R0C2;
|
|
result.R1C0 = scalar * matrix.R1C0;
|
|
result.R1C1 = scalar * matrix.R1C1;
|
|
result.R1C2 = scalar * matrix.R1C2;
|
|
result.R2C0 = scalar * matrix.R2C0;
|
|
result.R2C1 = scalar * matrix.R2C1;
|
|
result.R2C2 = scalar * matrix.R2C2;
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
#region Functions
|
|
|
|
public double Determinant
|
|
{
|
|
get
|
|
{
|
|
return R0C0 * R1C1 * R2C2 - R0C0 * R1C2 * R2C1 - R0C1 * R1C0 * R2C2 + R0C2 * R1C0 * R2C1 + R0C1 * R1C2 * R2C0 - R0C2 * R1C1 * R2C0;
|
|
}
|
|
}
|
|
|
|
public void Transpose()
|
|
{
|
|
Functions.Swap(ref R0C1, ref R1C0);
|
|
Functions.Swap(ref R0C2, ref R2C0);
|
|
Functions.Swap(ref R1C2, ref R2C1);
|
|
}
|
|
public void Transpose(out Matrix3d result)
|
|
{
|
|
result.R0C0 = R0C0;
|
|
result.R0C1 = R1C0;
|
|
result.R0C2 = R2C0;
|
|
result.R1C0 = R0C1;
|
|
result.R1C1 = R1C1;
|
|
result.R1C2 = R2C1;
|
|
result.R2C0 = R0C2;
|
|
result.R2C1 = R1C2;
|
|
result.R2C2 = R2C2;
|
|
}
|
|
public static void Transpose(ref Matrix3d matrix, out Matrix3d result)
|
|
{
|
|
result.R0C0 = matrix.R0C0;
|
|
result.R0C1 = matrix.R1C0;
|
|
result.R0C2 = matrix.R2C0;
|
|
result.R1C0 = matrix.R0C1;
|
|
result.R1C1 = matrix.R1C1;
|
|
result.R1C2 = matrix.R2C1;
|
|
result.R2C0 = matrix.R0C2;
|
|
result.R2C1 = matrix.R1C2;
|
|
result.R2C2 = matrix.R2C2;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Transformation Functions
|
|
|
|
public void Transform(ref Vector3d vector)
|
|
{
|
|
double x = R0C0 * vector.X + R0C1 * vector.Y + R0C2 * vector.Z;
|
|
double y = R1C0 * vector.X + R1C1 * vector.Y + R1C2 * vector.Z;
|
|
vector.Z = R2C0 * vector.X + R2C1 * vector.Y + R2C2 * vector.Z;
|
|
vector.X = x;
|
|
vector.Y = y;
|
|
}
|
|
public static void Transform(ref Matrix3d matrix, ref Vector3d vector)
|
|
{
|
|
double x = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z;
|
|
double y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z;
|
|
vector.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z;
|
|
vector.X = x;
|
|
vector.Y = y;
|
|
}
|
|
public void Transform(ref Vector3d vector, out Vector3d result)
|
|
{
|
|
result.X = R0C0 * vector.X + R0C1 * vector.Y + R0C2 * vector.Z;
|
|
result.Y = R1C0 * vector.X + R1C1 * vector.Y + R1C2 * vector.Z;
|
|
result.Z = R2C0 * vector.X + R2C1 * vector.Y + R2C2 * vector.Z;
|
|
}
|
|
public static void Transform(ref Matrix3d matrix, ref Vector3d vector, out Vector3d result)
|
|
{
|
|
result.X = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z;
|
|
result.Y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z;
|
|
result.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z;
|
|
}
|
|
|
|
public void Rotate(double angle)
|
|
{
|
|
double angleRadians = Functions.DTOR * angle;
|
|
double sin = (double)System.Math.Sin(angleRadians);
|
|
double cos = (double)System.Math.Cos(angleRadians);
|
|
|
|
double r0c0 = cos * R0C0 + sin * R1C0;
|
|
double r0c1 = cos * R0C1 + sin * R1C1;
|
|
double r0c2 = cos * R0C2 + sin * R1C2;
|
|
|
|
R1C0 = cos * R1C0 - sin * R0C0;
|
|
R1C1 = cos * R1C1 - sin * R0C1;
|
|
R1C2 = cos * R1C2 - sin * R0C2;
|
|
|
|
R0C0 = r0c0;
|
|
R0C1 = r0c1;
|
|
R0C2 = r0c2;
|
|
}
|
|
public void Rotate(double angle, out Matrix3d result)
|
|
{
|
|
double angleRadians = Functions.DTOR * angle;
|
|
double sin = (double)System.Math.Sin(angleRadians);
|
|
double cos = (double)System.Math.Cos(angleRadians);
|
|
|
|
result.R0C0 = cos * R0C0 + sin * R1C0;
|
|
result.R0C1 = cos * R0C1 + sin * R1C1;
|
|
result.R0C2 = cos * R0C2 + sin * R1C2;
|
|
result.R1C0 = cos * R1C0 - sin * R0C0;
|
|
result.R1C1 = cos * R1C1 - sin * R0C1;
|
|
result.R1C2 = cos * R1C2 - sin * R0C2;
|
|
result.R2C0 = R2C0;
|
|
result.R2C1 = R2C1;
|
|
result.R2C2 = R2C2;
|
|
}
|
|
public static void Rotate(ref Matrix3d matrix, double angle, out Matrix3d result)
|
|
{
|
|
double angleRadians = Functions.DTOR * angle;
|
|
double sin = (double)System.Math.Sin(angleRadians);
|
|
double cos = (double)System.Math.Cos(angleRadians);
|
|
|
|
result.R0C0 = cos * matrix.R0C0 + sin * matrix.R1C0;
|
|
result.R0C1 = cos * matrix.R0C1 + sin * matrix.R1C1;
|
|
result.R0C2 = cos * matrix.R0C2 + sin * matrix.R1C2;
|
|
result.R1C0 = cos * matrix.R1C0 - sin * matrix.R0C0;
|
|
result.R1C1 = cos * matrix.R1C1 - sin * matrix.R0C1;
|
|
result.R1C2 = cos * matrix.R1C2 - sin * matrix.R0C2;
|
|
result.R2C0 = matrix.R2C0;
|
|
result.R2C1 = matrix.R2C1;
|
|
result.R2C2 = matrix.R2C2;
|
|
}
|
|
public static void RotateMatrix(double angle, out Matrix3d result)
|
|
{
|
|
double angleRadians = Functions.DTOR * angle;
|
|
double sin = (double)System.Math.Sin(angleRadians);
|
|
double cos = (double)System.Math.Cos(angleRadians);
|
|
|
|
result.R0C0 = cos;
|
|
result.R0C1 = sin;
|
|
result.R0C2 = 0;
|
|
result.R1C0 = -sin;
|
|
result.R1C1 = cos;
|
|
result.R1C2 = 0;
|
|
result.R2C0 = 0;
|
|
result.R2C1 = 0;
|
|
result.R2C2 = 1;
|
|
}
|
|
|
|
public Quaterniond ToQuaternion()
|
|
{
|
|
//return new Quaterniond(ref this);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Constants
|
|
|
|
/// <summary>The identity matrix.</summary>
|
|
public static readonly Matrix3d Identity = new Matrix3d
|
|
(
|
|
1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1
|
|
);
|
|
|
|
/// <summary>A matrix of all zeros.</summary>
|
|
public static readonly Matrix3d Zero = new Matrix3d
|
|
(
|
|
0, 0, 0,
|
|
0, 0, 0,
|
|
0, 0, 0
|
|
);
|
|
|
|
#endregion
|
|
|
|
#region HashCode
|
|
|
|
/// <summary>Returns the hash code for this instance.</summary>
|
|
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
|
|
public override int GetHashCode()
|
|
{
|
|
return
|
|
R0C0.GetHashCode() ^ R0C1.GetHashCode() ^ R0C2.GetHashCode() ^
|
|
R1C0.GetHashCode() ^ R1C1.GetHashCode() ^ R1C2.GetHashCode() ^
|
|
R2C0.GetHashCode() ^ R2C1.GetHashCode() ^ R2C2.GetHashCode();
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region String
|
|
|
|
/// <summary>Returns the fully qualified type name of this instance.</summary>
|
|
/// <returns>A System.String containing left fully qualified type name.</returns>
|
|
public override string ToString()
|
|
{
|
|
return String.Format(
|
|
"|{00}, {01}, {02}|\n" +
|
|
"|{03}, {04}, {05}|\n" +
|
|
"|{06}, {07}, {18}|\n" +
|
|
R0C0, R0C1, R0C2,
|
|
R1C0, R1C1, R1C2,
|
|
R2C0, R2C1, R2C2);
|
|
}
|
|
|
|
#endregion
|
|
}
|
|
#endif
|
|
#pragma warning restore 3019
|
|
}
|