Opentk/Source/OpenTK/Math/Matrix3d.cs

816 lines
33 KiB
C#

#region --- License ---
/* Licensed under the MIT/X11 license.
* Copyright (c) 2006-2008 the OpenTK Team.
* This notice may not be removed from any source distribution.
* See license.txt for licensing detailed licensing details.
*
* Contributions by James Talton.
*/
#endregion
using System;
using System.Runtime.InteropServices;
namespace OpenTK.Math
{
// Todo: Remove this warning when the code goes public.
#pragma warning disable 3019
[Serializable]
[StructLayout(LayoutKind.Sequential)]
internal struct Matrix3d : IEquatable<Matrix3d>
{
#region Fields & Access
/// <summary>Row 0, Column 0</summary>
public double R0C0;
/// <summary>Row 0, Column 1</summary>
public double R0C1;
/// <summary>Row 0, Column 2</summary>
public double R0C2;
/// <summary>Row 1, Column 0</summary>
public double R1C0;
/// <summary>Row 1, Column 1</summary>
public double R1C1;
/// <summary>Row 1, Column 2</summary>
public double R1C2;
/// <summary>Row 2, Column 0</summary>
public double R2C0;
/// <summary>Row 2, Column 1</summary>
public double R2C1;
/// <summary>Row 2, Column 2</summary>
public double R2C2;
/// <summary>Gets the component at the given row and column in the matrix.</summary>
/// <param name="row">The row of the matrix.</param>
/// <param name="column">The column of the matrix.</param>
/// <returns>The component at the given row and column in the matrix.</returns>
public double this[int row, int column]
{
get
{
switch( row )
{
case 0:
switch (column)
{
case 0: return R0C0;
case 1: return R0C1;
case 2: return R0C2;
}
break;
case 1:
switch (column)
{
case 0: return R1C0;
case 1: return R1C1;
case 2: return R1C2;
}
break;
case 2:
switch (column)
{
case 0: return R2C0;
case 1: return R2C1;
case 2: return R2C2;
}
break;
}
throw new IndexOutOfRangeException();
}
set
{
switch( row )
{
case 0:
switch (column)
{
case 0: R0C0 = value; return;
case 1: R0C1 = value; return;
case 2: R0C2 = value; return;
}
break;
case 1:
switch (column)
{
case 0: R1C0 = value; return;
case 1: R1C1 = value; return;
case 2: R1C2 = value; return;
}
break;
case 2:
switch (column)
{
case 0: R2C0 = value; return;
case 1: R2C1 = value; return;
case 2: R2C2 = value; return;
}
break;
}
throw new IndexOutOfRangeException();
}
}
/// <summary>Gets the component at the index into the matrix.</summary>
/// <param name="index">The index into the components of the matrix.</param>
/// <returns>The component at the given index into the matrix.</returns>
public double this[int index]
{
get
{
switch (index)
{
case 0: return R0C0;
case 1: return R0C1;
case 2: return R0C2;
case 3: return R1C0;
case 4: return R1C1;
case 5: return R1C2;
case 6: return R2C0;
case 7: return R2C1;
case 8: return R2C2;
default: throw new IndexOutOfRangeException();
}
}
set
{
switch (index)
{
case 0: R0C0 = value; return;
case 1: R0C1 = value; return;
case 2: R0C2 = value; return;
case 3: R1C0 = value; return;
case 4: R1C1 = value; return;
case 5: R1C2 = value; return;
case 6: R2C0 = value; return;
case 7: R2C1 = value; return;
case 8: R2C2 = value; return;
default: throw new IndexOutOfRangeException();
}
}
}
/// <summary>Converts the matrix into an IntPtr.</summary>
/// <param name="matrix">The matrix to convert.</param>
/// <returns>An IntPtr for the matrix.</returns>
public static explicit operator IntPtr(Matrix3d matrix)
{
unsafe
{
return (IntPtr)(&matrix.R0C0);
}
}
/// <summary>Converts the matrix into left double*.</summary>
/// <param name="matrix">The matrix to convert.</param>
/// <returns>A double* for the matrix.</returns>
[CLSCompliant(false)]
unsafe public static explicit operator double*(Matrix3d matrix)
{
return &matrix.R0C0;
}
/// <summary>Converts the matrix into an array of doubles.</summary>
/// <param name="matrix">The matrix to convert.</param>
/// <returns>An array of doubles for the matrix.</returns>
public static explicit operator double[](Matrix3d matrix)
{
return new double[9]
{
matrix.R0C0,
matrix.R0C1,
matrix.R0C2,
matrix.R1C0,
matrix.R1C1,
matrix.R1C2,
matrix.R2C0,
matrix.R2C1,
matrix.R2C2
};
}
#endregion
#region Constructors
/// <summary>Constructs left matrix with the same components as the given matrix.</summary>
/// <param name="vector">The matrix whose components to copy.</param>
public Matrix3d(ref Matrix3d matrix)
{
this.R0C0 = matrix.R0C0;
this.R0C1 = matrix.R0C1;
this.R0C2 = matrix.R0C2;
this.R1C0 = matrix.R1C0;
this.R1C1 = matrix.R1C1;
this.R1C2 = matrix.R1C2;
this.R2C0 = matrix.R2C0;
this.R2C1 = matrix.R2C1;
this.R2C2 = matrix.R2C2;
}
/// <summary>Constructs left matrix with the given values.</summary>
/// <param name="r0c0">The value for row 0 column 0.</param>
/// <param name="r0c1">The value for row 0 column 1.</param>
/// <param name="r0c2">The value for row 0 column 2.</param>
/// <param name="r1c0">The value for row 1 column 0.</param>
/// <param name="r1c1">The value for row 1 column 1.</param>
/// <param name="r1c2">The value for row 1 column 2.</param>
/// <param name="r2c0">The value for row 2 column 0.</param>
/// <param name="r2c1">The value for row 2 column 1.</param>
/// <param name="r2c2">The value for row 2 column 2.</param>
public Matrix3d
(
double r0c0,
double r0c1,
double r0c2,
double r1c0,
double r1c1,
double r1c2,
double r2c0,
double r2c1,
double r2c2
)
{
this.R0C0 = r0c0;
this.R0C1 = r0c1;
this.R0C2 = r0c2;
this.R1C0 = r1c0;
this.R1C1 = r1c1;
this.R1C2 = r1c2;
this.R2C0 = r2c0;
this.R2C1 = r2c1;
this.R2C2 = r2c2;
}
/// <summary>Constructs left matrix from the given array of double-precision floating point numbers.</summary>
/// <param name="doubleArray">The array of doubles for the components of the matrix.</param>
public Matrix3d(double[] doubleArray)
{
if (doubleArray == null || doubleArray.GetLength(0) < 9) throw new MissingFieldException();
this.R0C0 = doubleArray[0];
this.R0C1 = doubleArray[1];
this.R0C2 = doubleArray[2];
this.R1C0 = doubleArray[3];
this.R1C1 = doubleArray[4];
this.R1C2 = doubleArray[5];
this.R2C0 = doubleArray[6];
this.R2C1 = doubleArray[7];
this.R2C2 = doubleArray[8];
}
/// <summary>Constructs left matrix from the given quaternion.</summary>
/// <param name="quaternion">The quaternion to use to construct the martix.</param>
public Matrix3d(ref Quaterniond quaternion)
{
Quaterniond quaternionNormalized;
quaternion.Normalize(out quaternionNormalized);
double xx = quaternionNormalized.X * quaternionNormalized.X;
double yy = quaternionNormalized.Y * quaternionNormalized.Y;
double zz = quaternionNormalized.Z * quaternionNormalized.Z;
double xy = quaternionNormalized.X * quaternionNormalized.Y;
double xz = quaternionNormalized.X * quaternionNormalized.Z;
double yz = quaternionNormalized.Y * quaternionNormalized.Z;
double wx = quaternionNormalized.W * quaternionNormalized.X;
double wy = quaternionNormalized.W * quaternionNormalized.Y;
double wz = quaternionNormalized.W * quaternionNormalized.Z;
R0C0 = 1 - 2 * (yy + zz);
R0C1 = 2 * (xy - wz);
R0C2 = 2 * (xz + wy);
R1C0 = 2 * (xy + wz);
R1C1 = 1 - 2 * (xx + zz);
R1C2 = 2 * (yz - wx);
R2C0 = 2 * (xz - wy);
R2C1 = 2 * (yz + wx);
R2C2 = 1 - 2 * (xx + yy);
}
#endregion
#region Equality
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare with.</param>
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
[CLSCompliant(false)]
public bool Equals(Matrix3d matrix)
{
return
R0C0 == matrix.R0C0 &&
R0C1 == matrix.R0C1 &&
R0C2 == matrix.R0C2 &&
R1C0 == matrix.R1C0 &&
R1C1 == matrix.R1C1 &&
R1C2 == matrix.R1C2 &&
R2C0 == matrix.R2C0 &&
R2C1 == matrix.R2C1 &&
R2C2 == matrix.R2C2;
}
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare to.</param>
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
public bool Equals(ref Matrix3d matrix)
{
return
R0C0 == matrix.R0C0 &&
R0C1 == matrix.R0C1 &&
R0C2 == matrix.R0C2 &&
R1C0 == matrix.R1C0 &&
R1C1 == matrix.R1C1 &&
R1C2 == matrix.R1C2 &&
R2C0 == matrix.R2C0 &&
R2C1 == matrix.R2C1 &&
R2C2 == matrix.R2C2;
}
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
/// <param name="left">The left-hand operand.</param>
/// <param name="right">The right-hand operand.</param>
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
public static bool Equals(ref Matrix3d left, ref Matrix3d right)
{
return
left.R0C0 == right.R0C0 &&
left.R0C1 == right.R0C1 &&
left.R0C2 == right.R0C2 &&
left.R1C0 == right.R1C0 &&
left.R1C1 == right.R1C1 &&
left.R1C2 == right.R1C2 &&
left.R2C0 == right.R2C0 &&
left.R2C1 == right.R2C1 &&
left.R2C2 == right.R2C2;
}
/// <summary>Indicates whether the current matrix is approximately equal to another matrix.</summary>
/// <param name="matrix">The OpenTK.Math.Matrix3d structure to compare with.</param>
/// <param name="tolerance">The limit below which the matrices are considered equal.</param>
/// <returns>true if the current matrix is approximately equal to the matrix parameter; otherwise, false.</returns>
public bool EqualsApprox(ref Matrix3d matrix, double tolerance)
{
return
System.Math.Abs(R0C0 - matrix.R0C0) <= tolerance &&
System.Math.Abs(R0C1 - matrix.R0C1) <= tolerance &&
System.Math.Abs(R0C2 - matrix.R0C2) <= tolerance &&
System.Math.Abs(R1C0 - matrix.R1C0) <= tolerance &&
System.Math.Abs(R1C1 - matrix.R1C1) <= tolerance &&
System.Math.Abs(R1C2 - matrix.R1C2) <= tolerance &&
System.Math.Abs(R2C0 - matrix.R2C0) <= tolerance &&
System.Math.Abs(R2C1 - matrix.R2C1) <= tolerance &&
System.Math.Abs(R2C2 - matrix.R2C2) <= tolerance;
}
/// <summary>Indicates whether the current matrix is approximately equal to another matrix.</summary>
/// <param name="left">The left-hand operand.</param>
/// <param name="right">The right-hand operand.</param>
/// <param name="tolerance">The limit below which the matrices are considered equal.</param>
/// <returns>true if the current matrix is approximately equal to the matrix parameter; otherwise, false.</returns>
public static bool EqualsApprox(ref Matrix3d left, ref Matrix3d right, double tolerance)
{
return
System.Math.Abs(left.R0C0 - right.R0C0) <= tolerance &&
System.Math.Abs(left.R0C1 - right.R0C1) <= tolerance &&
System.Math.Abs(left.R0C2 - right.R0C2) <= tolerance &&
System.Math.Abs(left.R1C0 - right.R1C0) <= tolerance &&
System.Math.Abs(left.R1C1 - right.R1C1) <= tolerance &&
System.Math.Abs(left.R1C2 - right.R1C2) <= tolerance &&
System.Math.Abs(left.R2C0 - right.R2C0) <= tolerance &&
System.Math.Abs(left.R2C1 - right.R2C1) <= tolerance &&
System.Math.Abs(left.R2C2 - right.R2C2) <= tolerance;
}
#endregion
#region Arithmetic Operators
/// <summary>Add left matrix to this matrix.</summary>
/// <param name="matrix">The matrix to add.</param>
public void Add(ref Matrix3d matrix)
{
R0C0 = R0C0 + matrix.R0C0;
R0C1 = R0C1 + matrix.R0C1;
R0C2 = R0C2 + matrix.R0C2;
R1C0 = R1C0 + matrix.R1C0;
R1C1 = R1C1 + matrix.R1C1;
R1C2 = R1C2 + matrix.R1C2;
R2C0 = R2C0 + matrix.R2C0;
R2C1 = R2C1 + matrix.R2C1;
R2C2 = R2C2 + matrix.R2C2;
}
/// <summary>Add left matrix to this matrix.</summary>
/// <param name="matrix">The matrix to add.</param>
/// <param name="result">The resulting matrix of the addition.</param>
public void Add(ref Matrix3d matrix, out Matrix3d result)
{
result.R0C0 = R0C0 + matrix.R0C0;
result.R0C1 = R0C1 + matrix.R0C1;
result.R0C2 = R0C2 + matrix.R0C2;
result.R1C0 = R1C0 + matrix.R1C0;
result.R1C1 = R1C1 + matrix.R1C1;
result.R1C2 = R1C2 + matrix.R1C2;
result.R2C0 = R2C0 + matrix.R2C0;
result.R2C1 = R2C1 + matrix.R2C1;
result.R2C2 = R2C2 + matrix.R2C2;
}
/// <summary>Add left matrix to left matrix.</summary>
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
/// <param name="right">The matrix on the right side of the equation</param>
/// <param name="result">The resulting matrix of the addition.</param>
public static void Add(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
{
result.R0C0 = left.R0C0 + right.R0C0;
result.R0C1 = left.R0C1 + right.R0C1;
result.R0C2 = left.R0C2 + right.R0C2;
result.R1C0 = left.R1C0 + right.R1C0;
result.R1C1 = left.R1C1 + right.R1C1;
result.R1C2 = left.R1C2 + right.R1C2;
result.R2C0 = left.R2C0 + right.R2C0;
result.R2C1 = left.R2C1 + right.R2C1;
result.R2C2 = left.R2C2 + right.R2C2;
}
/// <summary>Subtract left matrix from this matrix.</summary>
/// <param name="matrix">The matrix to subtract.</param>
public void Subtract(ref Matrix3d matrix)
{
R0C0 = R0C0 + matrix.R0C0;
R0C1 = R0C1 + matrix.R0C1;
R0C2 = R0C2 + matrix.R0C2;
R1C0 = R1C0 + matrix.R1C0;
R1C1 = R1C1 + matrix.R1C1;
R1C2 = R1C2 + matrix.R1C2;
R2C0 = R2C0 + matrix.R2C0;
R2C1 = R2C1 + matrix.R2C1;
R2C2 = R2C2 + matrix.R2C2;
}
/// <summary>Subtract left matrix from this matrix.</summary>
/// <param name="matrix">The matrix to subtract.</param>
/// <param name="result">The resulting matrix of the subtraction.</param>
public void Subtract(ref Matrix3d matrix, out Matrix3d result)
{
result.R0C0 = R0C0 + matrix.R0C0;
result.R0C1 = R0C1 + matrix.R0C1;
result.R0C2 = R0C2 + matrix.R0C2;
result.R1C0 = R1C0 + matrix.R1C0;
result.R1C1 = R1C1 + matrix.R1C1;
result.R1C2 = R1C2 + matrix.R1C2;
result.R2C0 = R2C0 + matrix.R2C0;
result.R2C1 = R2C1 + matrix.R2C1;
result.R2C2 = R2C2 + matrix.R2C2;
}
/// <summary>Subtract left matrix from left matrix.</summary>
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
/// <param name="right">The matrix on the right side of the equation</param>
/// <param name="result">The resulting matrix of the subtraction.</param>
public static void Subtract(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
{
result.R0C0 = left.R0C0 + right.R0C0;
result.R0C1 = left.R0C1 + right.R0C1;
result.R0C2 = left.R0C2 + right.R0C2;
result.R1C0 = left.R1C0 + right.R1C0;
result.R1C1 = left.R1C1 + right.R1C1;
result.R1C2 = left.R1C2 + right.R1C2;
result.R2C0 = left.R2C0 + right.R2C0;
result.R2C1 = left.R2C1 + right.R2C1;
result.R2C2 = left.R2C2 + right.R2C2;
}
/// <summary>Multiply left martix times this matrix.</summary>
/// <param name="matrix">The matrix to multiply.</param>
public void Multiply(ref Matrix3d matrix)
{
double r0c0 = matrix.R0C0 * R0C0 + matrix.R0C1 * R1C0 + matrix.R0C2 * R2C0;
double r0c1 = matrix.R0C0 * R0C1 + matrix.R0C1 * R1C1 + matrix.R0C2 * R2C1;
double r0c2 = matrix.R0C0 * R0C2 + matrix.R0C1 * R1C2 + matrix.R0C2 * R2C2;
double r1c0 = matrix.R1C0 * R0C0 + matrix.R1C1 * R1C0 + matrix.R1C2 * R2C0;
double r1c1 = matrix.R1C0 * R0C1 + matrix.R1C1 * R1C1 + matrix.R1C2 * R2C1;
double r1c2 = matrix.R1C0 * R0C2 + matrix.R1C1 * R1C2 + matrix.R1C2 * R2C2;
R2C0 = matrix.R2C0 * R0C0 + matrix.R2C1 * R1C0 + matrix.R2C2 * R2C0;
R2C1 = matrix.R2C0 * R0C1 + matrix.R2C1 * R1C1 + matrix.R2C2 * R2C1;
R2C2 = matrix.R2C0 * R0C2 + matrix.R2C1 * R1C2 + matrix.R2C2 * R2C2;
R0C0 = r0c0;
R0C1 = r0c1;
R0C2 = r0c2;
R1C0 = r1c0;
R1C1 = r1c1;
R1C2 = r1c2;
}
/// <summary>Multiply matrix times this matrix.</summary>
/// <param name="matrix">The matrix to multiply.</param>
/// <param name="result">The resulting matrix of the multiplication.</param>
public void Multiply(ref Matrix3d matrix, out Matrix3d result)
{
result.R0C0 = matrix.R0C0 * R0C0 + matrix.R0C1 * R1C0 + matrix.R0C2 * R2C0;
result.R0C1 = matrix.R0C0 * R0C1 + matrix.R0C1 * R1C1 + matrix.R0C2 * R2C1;
result.R0C2 = matrix.R0C0 * R0C2 + matrix.R0C1 * R1C2 + matrix.R0C2 * R2C2;
result.R1C0 = matrix.R1C0 * R0C0 + matrix.R1C1 * R1C0 + matrix.R1C2 * R2C0;
result.R1C1 = matrix.R1C0 * R0C1 + matrix.R1C1 * R1C1 + matrix.R1C2 * R2C1;
result.R1C2 = matrix.R1C0 * R0C2 + matrix.R1C1 * R1C2 + matrix.R1C2 * R2C2;
result.R2C0 = matrix.R2C0 * R0C0 + matrix.R2C1 * R1C0 + matrix.R2C2 * R2C0;
result.R2C1 = matrix.R2C0 * R0C1 + matrix.R2C1 * R1C1 + matrix.R2C2 * R2C1;
result.R2C2 = matrix.R2C0 * R0C2 + matrix.R2C1 * R1C2 + matrix.R2C2 * R2C2;
}
/// <summary>Multiply left matrix times left matrix.</summary>
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
/// <param name="right">The matrix on the right side of the equation</param>
/// <param name="result">The resulting matrix of the multiplication.</param>
public static void Multiply(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
{
result.R0C0 = right.R0C0 * left.R0C0 + right.R0C1 * left.R1C0 + right.R0C2 * left.R2C0;
result.R0C1 = right.R0C0 * left.R0C1 + right.R0C1 * left.R1C1 + right.R0C2 * left.R2C1;
result.R0C2 = right.R0C0 * left.R0C2 + right.R0C1 * left.R1C2 + right.R0C2 * left.R2C2;
result.R1C0 = right.R1C0 * left.R0C0 + right.R1C1 * left.R1C0 + right.R1C2 * left.R2C0;
result.R1C1 = right.R1C0 * left.R0C1 + right.R1C1 * left.R1C1 + right.R1C2 * left.R2C1;
result.R1C2 = right.R1C0 * left.R0C2 + right.R1C1 * left.R1C2 + right.R1C2 * left.R2C2;
result.R2C0 = right.R2C0 * left.R0C0 + right.R2C1 * left.R1C0 + right.R2C2 * left.R2C0;
result.R2C1 = right.R2C0 * left.R0C1 + right.R2C1 * left.R1C1 + right.R2C2 * left.R2C1;
result.R2C2 = right.R2C0 * left.R0C2 + right.R2C1 * left.R1C2 + right.R2C2 * left.R2C2;
}
/// <summary>Multiply matrix times this matrix.</summary>
/// <param name="matrix">The matrix to multiply.</param>
public void Multiply(double scalar)
{
R0C0 = scalar * R0C0;
R0C1 = scalar * R0C1;
R0C2 = scalar * R0C2;
R1C0 = scalar * R1C0;
R1C1 = scalar * R1C1;
R1C2 = scalar * R1C2;
R2C0 = scalar * R2C0;
R2C1 = scalar * R2C1;
R2C2 = scalar * R2C2;
}
/// <summary>Multiply matrix times this matrix.</summary>
/// <param name="matrix">The matrix to multiply.</param>
/// <param name="result">The resulting matrix of the multiplication.</param>
public void Multiply(double scalar, out Matrix3d result)
{
result.R0C0 = scalar * R0C0;
result.R0C1 = scalar * R0C1;
result.R0C2 = scalar * R0C2;
result.R1C0 = scalar * R1C0;
result.R1C1 = scalar * R1C1;
result.R1C2 = scalar * R1C2;
result.R2C0 = scalar * R2C0;
result.R2C1 = scalar * R2C1;
result.R2C2 = scalar * R2C2;
}
/// <summary>Multiply left matrix times left matrix.</summary>
/// <param name="matrix">The matrix on the matrix side of the equation.</param>
/// <param name="right">The matrix on the right side of the equation</param>
/// <param name="result">The resulting matrix of the multiplication.</param>
public static void Multiply(ref Matrix3d matrix, double scalar, out Matrix3d result)
{
result.R0C0 = scalar * matrix.R0C0;
result.R0C1 = scalar * matrix.R0C1;
result.R0C2 = scalar * matrix.R0C2;
result.R1C0 = scalar * matrix.R1C0;
result.R1C1 = scalar * matrix.R1C1;
result.R1C2 = scalar * matrix.R1C2;
result.R2C0 = scalar * matrix.R2C0;
result.R2C1 = scalar * matrix.R2C1;
result.R2C2 = scalar * matrix.R2C2;
}
#endregion
#region Functions
public double Determinant
{
get
{
return R0C0 * R1C1 * R2C2 - R0C0 * R1C2 * R2C1 - R0C1 * R1C0 * R2C2 + R0C2 * R1C0 * R2C1 + R0C1 * R1C2 * R2C0 - R0C2 * R1C1 * R2C0;
}
}
public void Transpose()
{
Functions.Swap(ref R0C1, ref R1C0);
Functions.Swap(ref R0C2, ref R2C0);
Functions.Swap(ref R1C2, ref R2C1);
}
public void Transpose(out Matrix3d result)
{
result.R0C0 = R0C0;
result.R0C1 = R1C0;
result.R0C2 = R2C0;
result.R1C0 = R0C1;
result.R1C1 = R1C1;
result.R1C2 = R2C1;
result.R2C0 = R0C2;
result.R2C1 = R1C2;
result.R2C2 = R2C2;
}
public static void Transpose(ref Matrix3d matrix, out Matrix3d result)
{
result.R0C0 = matrix.R0C0;
result.R0C1 = matrix.R1C0;
result.R0C2 = matrix.R2C0;
result.R1C0 = matrix.R0C1;
result.R1C1 = matrix.R1C1;
result.R1C2 = matrix.R2C1;
result.R2C0 = matrix.R0C2;
result.R2C1 = matrix.R1C2;
result.R2C2 = matrix.R2C2;
}
#endregion
#region Transformation Functions
public void Transform(ref Vector3d vector)
{
double x = R0C0 * vector.X + R0C1 * vector.Y + R0C2 * vector.Z;
double y = R1C0 * vector.X + R1C1 * vector.Y + R1C2 * vector.Z;
vector.Z = R2C0 * vector.X + R2C1 * vector.Y + R2C2 * vector.Z;
vector.X = x;
vector.Y = y;
}
public static void Transform(ref Matrix3d matrix, ref Vector3d vector)
{
double x = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z;
double y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z;
vector.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z;
vector.X = x;
vector.Y = y;
}
public void Transform(ref Vector3d vector, out Vector3d result)
{
result.X = R0C0 * vector.X + R0C1 * vector.Y + R0C2 * vector.Z;
result.Y = R1C0 * vector.X + R1C1 * vector.Y + R1C2 * vector.Z;
result.Z = R2C0 * vector.X + R2C1 * vector.Y + R2C2 * vector.Z;
}
public static void Transform(ref Matrix3d matrix, ref Vector3d vector, out Vector3d result)
{
result.X = matrix.R0C0 * vector.X + matrix.R0C1 * vector.Y + matrix.R0C2 * vector.Z;
result.Y = matrix.R1C0 * vector.X + matrix.R1C1 * vector.Y + matrix.R1C2 * vector.Z;
result.Z = matrix.R2C0 * vector.X + matrix.R2C1 * vector.Y + matrix.R2C2 * vector.Z;
}
public void Rotate(double angle)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
double r0c0 = cos * R0C0 + sin * R1C0;
double r0c1 = cos * R0C1 + sin * R1C1;
double r0c2 = cos * R0C2 + sin * R1C2;
R1C0 = cos * R1C0 - sin * R0C0;
R1C1 = cos * R1C1 - sin * R0C1;
R1C2 = cos * R1C2 - sin * R0C2;
R0C0 = r0c0;
R0C1 = r0c1;
R0C2 = r0c2;
}
public void Rotate(double angle, out Matrix3d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.R0C0 = cos * R0C0 + sin * R1C0;
result.R0C1 = cos * R0C1 + sin * R1C1;
result.R0C2 = cos * R0C2 + sin * R1C2;
result.R1C0 = cos * R1C0 - sin * R0C0;
result.R1C1 = cos * R1C1 - sin * R0C1;
result.R1C2 = cos * R1C2 - sin * R0C2;
result.R2C0 = R2C0;
result.R2C1 = R2C1;
result.R2C2 = R2C2;
}
public static void Rotate(ref Matrix3d matrix, double angle, out Matrix3d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.R0C0 = cos * matrix.R0C0 + sin * matrix.R1C0;
result.R0C1 = cos * matrix.R0C1 + sin * matrix.R1C1;
result.R0C2 = cos * matrix.R0C2 + sin * matrix.R1C2;
result.R1C0 = cos * matrix.R1C0 - sin * matrix.R0C0;
result.R1C1 = cos * matrix.R1C1 - sin * matrix.R0C1;
result.R1C2 = cos * matrix.R1C2 - sin * matrix.R0C2;
result.R2C0 = matrix.R2C0;
result.R2C1 = matrix.R2C1;
result.R2C2 = matrix.R2C2;
}
public static void RotateMatrix(double angle, out Matrix3d result)
{
double angleRadians = Functions.DTOR * angle;
double sin = (double)System.Math.Sin(angleRadians);
double cos = (double)System.Math.Cos(angleRadians);
result.R0C0 = cos;
result.R0C1 = sin;
result.R0C2 = 0;
result.R1C0 = -sin;
result.R1C1 = cos;
result.R1C2 = 0;
result.R2C0 = 0;
result.R2C1 = 0;
result.R2C2 = 1;
}
public void Quaternion(out Quaterniond quaternion)
{
quaternion = new Quaterniond(ref this);
}
#endregion
#region Constants
/// <summary>The identity matrix.</summary>
public static readonly Matrix3d Identity = new Matrix3d
(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
/// <summary>A matrix of all zeros.</summary>
public static readonly Matrix3d Zero = new Matrix3d
(
0, 0, 0,
0, 0, 0,
0, 0, 0
);
#endregion
#region HashCode
/// <summary>Returns the hash code for this instance.</summary>
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
public override int GetHashCode()
{
return
R0C0.GetHashCode() ^ R0C1.GetHashCode() ^ R0C2.GetHashCode() ^
R1C0.GetHashCode() ^ R1C1.GetHashCode() ^ R1C2.GetHashCode() ^
R2C0.GetHashCode() ^ R2C1.GetHashCode() ^ R2C2.GetHashCode();
}
#endregion
#region String
/// <summary>Returns the fully qualified type name of this instance.</summary>
/// <returns>A System.String containing left fully qualified type name.</returns>
public override string ToString()
{
return String.Format(
"|{00}, {01}, {02}|\n" +
"|{03}, {04}, {05}|\n" +
"|{06}, {07}, {18}|\n" +
R0C0, R0C1, R0C2,
R1C0, R1C1, R1C2,
R2C0, R2C1, R2C2);
}
#endregion
}
#pragma warning restore 3019
}