mirror of
https://github.com/Ryujinx/Opentk.git
synced 2025-01-05 20:25:38 +00:00
966 lines
33 KiB
C#
966 lines
33 KiB
C#
#region --- License ---
|
|
/*
|
|
Copyright (c) 2006 - 2008 The Open Toolkit library.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
#endregion
|
|
|
|
using System;
|
|
using System.Runtime.InteropServices;
|
|
|
|
namespace OpenTK
|
|
{
|
|
/// <summary>
|
|
/// Represents a 3x3 matrix containing 3D rotation and scale with double-precision components.
|
|
/// </summary>
|
|
[Serializable]
|
|
[StructLayout(LayoutKind.Sequential)]
|
|
public struct Matrix3d : IEquatable<Matrix3d>
|
|
{
|
|
#region Fields
|
|
|
|
/// <summary>
|
|
/// First row of the matrix.
|
|
/// </summary>
|
|
public Vector3d Row0;
|
|
|
|
/// <summary>
|
|
/// Second row of the matrix.
|
|
/// </summary>
|
|
public Vector3d Row1;
|
|
|
|
/// <summary>
|
|
/// Third row of the matrix.
|
|
/// </summary>
|
|
public Vector3d Row2;
|
|
|
|
/// <summary>
|
|
/// The identity matrix.
|
|
/// </summary>
|
|
public static Matrix3d Identity = new Matrix3d(Vector3d.UnitX, Vector3d.UnitY, Vector3d.UnitZ);
|
|
|
|
#endregion
|
|
|
|
#region Constructors
|
|
|
|
/// <summary>
|
|
/// Constructs a new instance.
|
|
/// </summary>
|
|
/// <param name="row0">Top row of the matrix</param>
|
|
/// <param name="row1">Second row of the matrix</param>
|
|
/// <param name="row2">Bottom row of the matrix</param>
|
|
public Matrix3d(Vector3d row0, Vector3d row1, Vector3d row2)
|
|
{
|
|
Row0 = row0;
|
|
Row1 = row1;
|
|
Row2 = row2;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Constructs a new instance.
|
|
/// </summary>
|
|
/// <param name="m00">First item of the first row of the matrix.</param>
|
|
/// <param name="m01">Second item of the first row of the matrix.</param>
|
|
/// <param name="m02">Third item of the first row of the matrix.</param>
|
|
/// <param name="m10">First item of the second row of the matrix.</param>
|
|
/// <param name="m11">Second item of the second row of the matrix.</param>
|
|
/// <param name="m12">Third item of the second row of the matrix.</param>
|
|
/// <param name="m20">First item of the third row of the matrix.</param>
|
|
/// <param name="m21">Second item of the third row of the matrix.</param>
|
|
/// <param name="m22">Third item of the third row of the matrix.</param>
|
|
public Matrix3d(
|
|
double m00, double m01, double m02,
|
|
double m10, double m11, double m12,
|
|
double m20, double m21, double m22)
|
|
{
|
|
Row0 = new Vector3d(m00, m01, m02);
|
|
Row1 = new Vector3d(m10, m11, m12);
|
|
Row2 = new Vector3d(m20, m21, m22);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Constructs a new instance.
|
|
/// </summary>
|
|
/// <param name="matrix">A Matrix4d to take the upper-left 3x3 from.</param>
|
|
public Matrix3d(Matrix4d matrix)
|
|
{
|
|
Row0 = matrix.Row0.Xyz;
|
|
Row1 = matrix.Row1.Xyz;
|
|
Row2 = matrix.Row2.Xyz;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Public Members
|
|
|
|
#region Properties
|
|
|
|
/// <summary>
|
|
/// Gets the determinant of this matrix.
|
|
/// </summary>
|
|
public double Determinant
|
|
{
|
|
get
|
|
{
|
|
double m11 = Row0.X, m12 = Row0.Y, m13 = Row0.Z,
|
|
m21 = Row1.X, m22 = Row1.Y, m23 = Row1.Z,
|
|
m31 = Row2.X, m32 = Row2.Y, m33 = Row2.Z;
|
|
|
|
return
|
|
m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32
|
|
- m13 * m22 * m31 - m11 * m23 * m32 - m12 * m21 * m33;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the first column of this matrix.
|
|
/// </summary>
|
|
public Vector3d Column0
|
|
{
|
|
get { return new Vector3d(Row0.X, Row1.X, Row2.X); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the second column of this matrix.
|
|
/// </summary>
|
|
public Vector3d Column1
|
|
{
|
|
get { return new Vector3d(Row0.Y, Row1.Y, Row2.Y); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the third column of this matrix.
|
|
/// </summary>
|
|
public Vector3d Column2
|
|
{
|
|
get { return new Vector3d(Row0.Z, Row1.Z, Row2.Z); }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 1, column 1 of this instance.
|
|
/// </summary>
|
|
public double M11 { get { return Row0.X; } set { Row0.X = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 1, column 2 of this instance.
|
|
/// </summary>
|
|
public double M12 { get { return Row0.Y; } set { Row0.Y = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 1, column 3 of this instance.
|
|
/// </summary>
|
|
public double M13 { get { return Row0.Z; } set { Row0.Z = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 2, column 1 of this instance.
|
|
/// </summary>
|
|
public double M21 { get { return Row1.X; } set { Row1.X = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 2, column 2 of this instance.
|
|
/// </summary>
|
|
public double M22 { get { return Row1.Y; } set { Row1.Y = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 2, column 3 of this instance.
|
|
/// </summary>
|
|
public double M23 { get { return Row1.Z; } set { Row1.Z = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 3, column 1 of this instance.
|
|
/// </summary>
|
|
public double M31 { get { return Row2.X; } set { Row2.X = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 3, column 2 of this instance.
|
|
/// </summary>
|
|
public double M32 { get { return Row2.Y; } set { Row2.Y = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at row 3, column 3 of this instance.
|
|
/// </summary>
|
|
public double M33 { get { return Row2.Z; } set { Row2.Z = value; } }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the values along the main diagonal of the matrix.
|
|
/// </summary>
|
|
public Vector3d Diagonal
|
|
{
|
|
get
|
|
{
|
|
return new Vector3d(Row0.X, Row1.Y, Row2.Z);
|
|
}
|
|
set
|
|
{
|
|
Row0.X = value.X;
|
|
Row1.Y = value.Y;
|
|
Row2.Z = value.Z;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the trace of the matrix, the sum of the values along the diagonal.
|
|
/// </summary>
|
|
public double Trace { get { return Row0.X + Row1.Y + Row2.Z; } }
|
|
|
|
#endregion
|
|
|
|
#region Indexers
|
|
|
|
/// <summary>
|
|
/// Gets or sets the value at a specified row and column.
|
|
/// </summary>
|
|
public double this[int rowIndex, int columnIndex]
|
|
{
|
|
get
|
|
{
|
|
if (rowIndex == 0) return Row0[columnIndex];
|
|
else if (rowIndex == 1) return Row1[columnIndex];
|
|
else if (rowIndex == 2) return Row2[columnIndex];
|
|
throw new IndexOutOfRangeException("You tried to access this matrix at: (" + rowIndex + ", " + columnIndex + ")");
|
|
}
|
|
set
|
|
{
|
|
if (rowIndex == 0) Row0[columnIndex] = value;
|
|
else if (rowIndex == 1) Row1[columnIndex] = value;
|
|
else if (rowIndex == 2) Row2[columnIndex] = value;
|
|
else throw new IndexOutOfRangeException("You tried to set this matrix at: (" + rowIndex + ", " + columnIndex + ")");
|
|
}
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Instance
|
|
|
|
#region public void Invert()
|
|
|
|
/// <summary>
|
|
/// Converts this instance into its inverse.
|
|
/// </summary>
|
|
public void Invert()
|
|
{
|
|
this = Matrix3d.Invert(this);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region public void Transpose()
|
|
|
|
/// <summary>
|
|
/// Converts this instance into its transpose.
|
|
/// </summary>
|
|
public void Transpose()
|
|
{
|
|
this = Matrix3d.Transpose(this);
|
|
}
|
|
|
|
#endregion
|
|
|
|
/// <summary>
|
|
/// Returns a normalised copy of this instance.
|
|
/// </summary>
|
|
public Matrix3d Normalized()
|
|
{
|
|
Matrix3d m = this;
|
|
m.Normalize();
|
|
return m;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Divides each element in the Matrix by the <see cref="Determinant"/>.
|
|
/// </summary>
|
|
public void Normalize()
|
|
{
|
|
var determinant = this.Determinant;
|
|
Row0 /= determinant;
|
|
Row1 /= determinant;
|
|
Row2 /= determinant;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns an inverted copy of this instance.
|
|
/// </summary>
|
|
public Matrix3d Inverted()
|
|
{
|
|
Matrix3d m = this;
|
|
if (m.Determinant != 0)
|
|
m.Invert();
|
|
return m;
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
/// Returns a copy of this Matrix3 without scale.
|
|
/// </summary>
|
|
public Matrix3d ClearScale()
|
|
{
|
|
Matrix3d m = this;
|
|
m.Row0 = m.Row0.Normalized();
|
|
m.Row1 = m.Row1.Normalized();
|
|
m.Row2 = m.Row2.Normalized();
|
|
return m;
|
|
}
|
|
/// <summary>
|
|
/// Returns a copy of this Matrix3 without rotation.
|
|
/// </summary>
|
|
public Matrix3d ClearRotation()
|
|
{
|
|
Matrix3d m = this;
|
|
m.Row0 = new Vector3d(m.Row0.Length, 0, 0);
|
|
m.Row1 = new Vector3d(0, m.Row1.Length, 0);
|
|
m.Row2 = new Vector3d(0, 0, m.Row2.Length);
|
|
return m;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the scale component of this instance.
|
|
/// </summary>
|
|
public Vector3d ExtractScale() { return new Vector3d(Row0.Length, Row1.Length, Row2.Length); }
|
|
|
|
/// <summary>
|
|
/// Returns the rotation component of this instance. Quite slow.
|
|
/// </summary>
|
|
/// <param name="row_normalise">Whether the method should row-normalise (i.e. remove scale from) the Matrix. Pass false if you know it's already normalised.</param>
|
|
public Quaterniond ExtractRotation(bool row_normalise = true)
|
|
{
|
|
var row0 = Row0;
|
|
var row1 = Row1;
|
|
var row2 = Row2;
|
|
|
|
if (row_normalise)
|
|
{
|
|
row0 = row0.Normalized();
|
|
row1 = row1.Normalized();
|
|
row2 = row2.Normalized();
|
|
}
|
|
|
|
// code below adapted from Blender
|
|
|
|
Quaterniond q = new Quaterniond();
|
|
double trace = 0.25 * (row0[0] + row1[1] + row2[2] + 1.0);
|
|
|
|
if (trace > 0)
|
|
{
|
|
double sq = Math.Sqrt(trace);
|
|
|
|
q.W = sq;
|
|
sq = 1.0 / (4.0 * sq);
|
|
q.X = (row1[2] - row2[1]) * sq;
|
|
q.Y = (row2[0] - row0[2]) * sq;
|
|
q.Z = (row0[1] - row1[0]) * sq;
|
|
}
|
|
else if (row0[0] > row1[1] && row0[0] > row2[2])
|
|
{
|
|
double sq = 2.0 * Math.Sqrt(1.0 + row0[0] - row1[1] - row2[2]);
|
|
|
|
q.X = 0.25 * sq;
|
|
sq = 1.0 / sq;
|
|
q.W = (row2[1] - row1[2]) * sq;
|
|
q.Y = (row1[0] + row0[1]) * sq;
|
|
q.Z = (row2[0] + row0[2]) * sq;
|
|
}
|
|
else if (row1[1] > row2[2])
|
|
{
|
|
double sq = 2.0 * Math.Sqrt(1.0 + row1[1] - row0[0] - row2[2]);
|
|
|
|
q.Y = 0.25 * sq;
|
|
sq = 1.0 / sq;
|
|
q.W = (row2[0] - row0[2]) * sq;
|
|
q.X = (row1[0] + row0[1]) * sq;
|
|
q.Z = (row2[1] + row1[2]) * sq;
|
|
}
|
|
else
|
|
{
|
|
double sq = 2.0 * Math.Sqrt(1.0 + row2[2] - row0[0] - row1[1]);
|
|
|
|
q.Z = 0.25 * sq;
|
|
sq = 1.0 / sq;
|
|
q.W = (row1[0] - row0[1]) * sq;
|
|
q.X = (row2[0] + row0[2]) * sq;
|
|
q.Y = (row2[1] + row1[2]) * sq;
|
|
}
|
|
|
|
q.Normalize();
|
|
return q;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Static
|
|
|
|
#region CreateFromAxisAngle
|
|
|
|
/// <summary>
|
|
/// Build a rotation matrix from the specified axis/angle rotation.
|
|
/// </summary>
|
|
/// <param name="axis">The axis to rotate about.</param>
|
|
/// <param name="angle">Angle in radians to rotate counter-clockwise (looking in the direction of the given axis).</param>
|
|
/// <param name="result">A matrix instance.</param>
|
|
public static void CreateFromAxisAngle(Vector3d axis, double angle, out Matrix3d result)
|
|
{
|
|
//normalize and create a local copy of the vector.
|
|
axis.Normalize();
|
|
double axisX = axis.X, axisY = axis.Y, axisZ = axis.Z;
|
|
|
|
//calculate angles
|
|
double cos = System.Math.Cos(-angle);
|
|
double sin = System.Math.Sin(-angle);
|
|
double t = 1.0f - cos;
|
|
|
|
//do the conversion math once
|
|
double tXX = t * axisX * axisX,
|
|
tXY = t * axisX * axisY,
|
|
tXZ = t * axisX * axisZ,
|
|
tYY = t * axisY * axisY,
|
|
tYZ = t * axisY * axisZ,
|
|
tZZ = t * axisZ * axisZ;
|
|
|
|
double sinX = sin * axisX,
|
|
sinY = sin * axisY,
|
|
sinZ = sin * axisZ;
|
|
|
|
result.Row0.X = tXX + cos;
|
|
result.Row0.Y = tXY - sinZ;
|
|
result.Row0.Z = tXZ + sinY;
|
|
result.Row1.X = tXY + sinZ;
|
|
result.Row1.Y = tYY + cos;
|
|
result.Row1.Z = tYZ - sinX;
|
|
result.Row2.X = tXZ - sinY;
|
|
result.Row2.Y = tYZ + sinX;
|
|
result.Row2.Z = tZZ + cos;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Build a rotation matrix from the specified axis/angle rotation.
|
|
/// </summary>
|
|
/// <param name="axis">The axis to rotate about.</param>
|
|
/// <param name="angle">Angle in radians to rotate counter-clockwise (looking in the direction of the given axis).</param>
|
|
/// <returns>A matrix instance.</returns>
|
|
public static Matrix3d CreateFromAxisAngle(Vector3d axis, double angle)
|
|
{
|
|
Matrix3d result;
|
|
CreateFromAxisAngle(axis, angle, out result);
|
|
return result;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region CreateFromQuaternion
|
|
|
|
/// <summary>
|
|
/// Build a rotation matrix from the specified quaternion.
|
|
/// </summary>
|
|
/// <param name="q">Quaternion to translate.</param>
|
|
/// <param name="result">Matrix result.</param>
|
|
public static void CreateFromQuaternion(ref Quaterniond q, out Matrix3d result)
|
|
{
|
|
Vector3d axis;
|
|
double angle;
|
|
q.ToAxisAngle(out axis, out angle);
|
|
CreateFromAxisAngle(axis, angle, out result);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Build a rotation matrix from the specified quaternion.
|
|
/// </summary>
|
|
/// <param name="q">Quaternion to translate.</param>
|
|
/// <returns>A matrix instance.</returns>
|
|
public static Matrix3d CreateFromQuaternion(Quaterniond q)
|
|
{
|
|
Matrix3d result;
|
|
CreateFromQuaternion(ref q, out result);
|
|
return result;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region CreateRotation[XYZ]
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the x-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <param name="result">The resulting Matrix3d instance.</param>
|
|
public static void CreateRotationX(double angle, out Matrix3d result)
|
|
{
|
|
double cos = System.Math.Cos(angle);
|
|
double sin = System.Math.Sin(angle);
|
|
|
|
result = Identity;
|
|
result.Row1.Y = cos;
|
|
result.Row1.Z = sin;
|
|
result.Row2.Y = -sin;
|
|
result.Row2.Z = cos;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the x-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <returns>The resulting Matrix3d instance.</returns>
|
|
public static Matrix3d CreateRotationX(double angle)
|
|
{
|
|
Matrix3d result;
|
|
CreateRotationX(angle, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the y-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <param name="result">The resulting Matrix3d instance.</param>
|
|
public static void CreateRotationY(double angle, out Matrix3d result)
|
|
{
|
|
double cos = System.Math.Cos(angle);
|
|
double sin = System.Math.Sin(angle);
|
|
|
|
result = Identity;
|
|
result.Row0.X = cos;
|
|
result.Row0.Z = -sin;
|
|
result.Row2.X = sin;
|
|
result.Row2.Z = cos;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the y-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <returns>The resulting Matrix3d instance.</returns>
|
|
public static Matrix3d CreateRotationY(double angle)
|
|
{
|
|
Matrix3d result;
|
|
CreateRotationY(angle, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the z-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <param name="result">The resulting Matrix3d instance.</param>
|
|
public static void CreateRotationZ(double angle, out Matrix3d result)
|
|
{
|
|
double cos = System.Math.Cos(angle);
|
|
double sin = System.Math.Sin(angle);
|
|
|
|
result = Identity;
|
|
result.Row0.X = cos;
|
|
result.Row0.Y = sin;
|
|
result.Row1.X = -sin;
|
|
result.Row1.Y = cos;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Builds a rotation matrix for a rotation around the z-axis.
|
|
/// </summary>
|
|
/// <param name="angle">The counter-clockwise angle in radians.</param>
|
|
/// <returns>The resulting Matrix3d instance.</returns>
|
|
public static Matrix3d CreateRotationZ(double angle)
|
|
{
|
|
Matrix3d result;
|
|
CreateRotationZ(angle, out result);
|
|
return result;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region CreateScale
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="scale">Single scale factor for the x, y, and z axes.</param>
|
|
/// <returns>A scale matrix.</returns>
|
|
public static Matrix3d CreateScale(double scale)
|
|
{
|
|
Matrix3d result;
|
|
CreateScale(scale, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="scale">Scale factors for the x, y, and z axes.</param>
|
|
/// <returns>A scale matrix.</returns>
|
|
public static Matrix3d CreateScale(Vector3d scale)
|
|
{
|
|
Matrix3d result;
|
|
CreateScale(ref scale, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="x">Scale factor for the x axis.</param>
|
|
/// <param name="y">Scale factor for the y axis.</param>
|
|
/// <param name="z">Scale factor for the z axis.</param>
|
|
/// <returns>A scale matrix.</returns>
|
|
public static Matrix3d CreateScale(double x, double y, double z)
|
|
{
|
|
Matrix3d result;
|
|
CreateScale(x, y, z, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="scale">Single scale factor for the x, y, and z axes.</param>
|
|
/// <param name="result">A scale matrix.</param>
|
|
public static void CreateScale(double scale, out Matrix3d result)
|
|
{
|
|
result = Identity;
|
|
result.Row0.X = scale;
|
|
result.Row1.Y = scale;
|
|
result.Row2.Z = scale;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="scale">Scale factors for the x, y, and z axes.</param>
|
|
/// <param name="result">A scale matrix.</param>
|
|
public static void CreateScale(ref Vector3d scale, out Matrix3d result)
|
|
{
|
|
result = Identity;
|
|
result.Row0.X = scale.X;
|
|
result.Row1.Y = scale.Y;
|
|
result.Row2.Z = scale.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates a scale matrix.
|
|
/// </summary>
|
|
/// <param name="x">Scale factor for the x axis.</param>
|
|
/// <param name="y">Scale factor for the y axis.</param>
|
|
/// <param name="z">Scale factor for the z axis.</param>
|
|
/// <param name="result">A scale matrix.</param>
|
|
public static void CreateScale(double x, double y, double z, out Matrix3d result)
|
|
{
|
|
result = Identity;
|
|
result.Row0.X = x;
|
|
result.Row1.Y = y;
|
|
result.Row2.Z = z;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Multiply Functions
|
|
|
|
/// <summary>
|
|
/// Multiplies two instances.
|
|
/// </summary>
|
|
/// <param name="left">The left operand of the multiplication.</param>
|
|
/// <param name="right">The right operand of the multiplication.</param>
|
|
/// <returns>A new instance that is the result of the multiplication</returns>
|
|
public static Matrix3d Mult(Matrix3d left, Matrix3d right)
|
|
{
|
|
Matrix3d result;
|
|
Mult(ref left, ref right, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Multiplies two instances.
|
|
/// </summary>
|
|
/// <param name="left">The left operand of the multiplication.</param>
|
|
/// <param name="right">The right operand of the multiplication.</param>
|
|
/// <param name="result">A new instance that is the result of the multiplication</param>
|
|
public static void Mult(ref Matrix3d left, ref Matrix3d right, out Matrix3d result)
|
|
{
|
|
double lM11 = left.Row0.X, lM12 = left.Row0.Y, lM13 = left.Row0.Z,
|
|
lM21 = left.Row1.X, lM22 = left.Row1.Y, lM23 = left.Row1.Z,
|
|
lM31 = left.Row2.X, lM32 = left.Row2.Y, lM33 = left.Row2.Z,
|
|
rM11 = right.Row0.X, rM12 = right.Row0.Y, rM13 = right.Row0.Z,
|
|
rM21 = right.Row1.X, rM22 = right.Row1.Y, rM23 = right.Row1.Z,
|
|
rM31 = right.Row2.X, rM32 = right.Row2.Y, rM33 = right.Row2.Z;
|
|
|
|
result.Row0.X = ((lM11 * rM11) + (lM12 * rM21)) + (lM13 * rM31);
|
|
result.Row0.Y = ((lM11 * rM12) + (lM12 * rM22)) + (lM13 * rM32);
|
|
result.Row0.Z = ((lM11 * rM13) + (lM12 * rM23)) + (lM13 * rM33);
|
|
result.Row1.X = ((lM21 * rM11) + (lM22 * rM21)) + (lM23 * rM31);
|
|
result.Row1.Y = ((lM21 * rM12) + (lM22 * rM22)) + (lM23 * rM32);
|
|
result.Row1.Z = ((lM21 * rM13) + (lM22 * rM23)) + (lM23 * rM33);
|
|
result.Row2.X = ((lM31 * rM11) + (lM32 * rM21)) + (lM33 * rM31);
|
|
result.Row2.Y = ((lM31 * rM12) + (lM32 * rM22)) + (lM33 * rM32);
|
|
result.Row2.Z = ((lM31 * rM13) + (lM32 * rM23)) + (lM33 * rM33);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Invert Functions
|
|
|
|
/// <summary>
|
|
/// Calculate the inverse of the given matrix
|
|
/// </summary>
|
|
/// <param name="mat">The matrix to invert</param>
|
|
/// <param name="result">The inverse of the given matrix if it has one, or the input if it is singular</param>
|
|
/// <exception cref="InvalidOperationException">Thrown if the Matrix3d is singular.</exception>
|
|
public static void Invert(ref Matrix3d mat, out Matrix3d result)
|
|
{
|
|
int[] colIdx = { 0, 0, 0 };
|
|
int[] rowIdx = { 0, 0, 0 };
|
|
int[] pivotIdx = { -1, -1, -1 };
|
|
|
|
double[,] inverse = {{mat.Row0.X, mat.Row0.Y, mat.Row0.Z},
|
|
{mat.Row1.X, mat.Row1.Y, mat.Row1.Z},
|
|
{mat.Row2.X, mat.Row2.Y, mat.Row2.Z}};
|
|
|
|
int icol = 0;
|
|
int irow = 0;
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
double maxPivot = 0.0;
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
if (pivotIdx[j] != 0)
|
|
{
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
if (pivotIdx[k] == -1)
|
|
{
|
|
double absVal = System.Math.Abs(inverse[j, k]);
|
|
if (absVal > maxPivot)
|
|
{
|
|
maxPivot = absVal;
|
|
irow = j;
|
|
icol = k;
|
|
}
|
|
}
|
|
else if (pivotIdx[k] > 0)
|
|
{
|
|
result = mat;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
++(pivotIdx[icol]);
|
|
|
|
if (irow != icol)
|
|
{
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
double f = inverse[irow, k];
|
|
inverse[irow, k] = inverse[icol, k];
|
|
inverse[icol, k] = f;
|
|
}
|
|
}
|
|
|
|
rowIdx[i] = irow;
|
|
colIdx[i] = icol;
|
|
|
|
double pivot = inverse[icol, icol];
|
|
|
|
if (pivot == 0.0)
|
|
{
|
|
throw new InvalidOperationException("Matrix is singular and cannot be inverted.");
|
|
}
|
|
|
|
double oneOverPivot = 1.0 / pivot;
|
|
inverse[icol, icol] = 1.0;
|
|
for (int k = 0; k < 3; ++k)
|
|
inverse[icol, k] *= oneOverPivot;
|
|
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
if (icol != j)
|
|
{
|
|
double f = inverse[j, icol];
|
|
inverse[j, icol] = 0.0;
|
|
for (int k = 0; k < 3; ++k)
|
|
inverse[j, k] -= inverse[icol, k] * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 2; j >= 0; --j)
|
|
{
|
|
int ir = rowIdx[j];
|
|
int ic = colIdx[j];
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
double f = inverse[k, ir];
|
|
inverse[k, ir] = inverse[k, ic];
|
|
inverse[k, ic] = f;
|
|
}
|
|
}
|
|
|
|
result.Row0.X = inverse[0, 0];
|
|
result.Row0.Y = inverse[0, 1];
|
|
result.Row0.Z = inverse[0, 2];
|
|
result.Row1.X = inverse[1, 0];
|
|
result.Row1.Y = inverse[1, 1];
|
|
result.Row1.Z = inverse[1, 2];
|
|
result.Row2.X = inverse[2, 0];
|
|
result.Row2.Y = inverse[2, 1];
|
|
result.Row2.Z = inverse[2, 2];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the inverse of the given matrix
|
|
/// </summary>
|
|
/// <param name="mat">The matrix to invert</param>
|
|
/// <returns>The inverse of the given matrix if it has one, or the input if it is singular</returns>
|
|
/// <exception cref="InvalidOperationException">Thrown if the Matrix4 is singular.</exception>
|
|
public static Matrix3d Invert(Matrix3d mat)
|
|
{
|
|
Matrix3d result;
|
|
Invert(ref mat, out result);
|
|
return result;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Transpose
|
|
|
|
/// <summary>
|
|
/// Calculate the transpose of the given matrix
|
|
/// </summary>
|
|
/// <param name="mat">The matrix to transpose</param>
|
|
/// <returns>The transpose of the given matrix</returns>
|
|
public static Matrix3d Transpose(Matrix3d mat)
|
|
{
|
|
return new Matrix3d(mat.Column0, mat.Column1, mat.Column2);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the transpose of the given matrix
|
|
/// </summary>
|
|
/// <param name="mat">The matrix to transpose</param>
|
|
/// <param name="result">The result of the calculation</param>
|
|
public static void Transpose(ref Matrix3d mat, out Matrix3d result)
|
|
{
|
|
result.Row0 = mat.Column0;
|
|
result.Row1 = mat.Column1;
|
|
result.Row2 = mat.Column2;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#endregion
|
|
|
|
#region Operators
|
|
|
|
/// <summary>
|
|
/// Matrix multiplication
|
|
/// </summary>
|
|
/// <param name="left">left-hand operand</param>
|
|
/// <param name="right">right-hand operand</param>
|
|
/// <returns>A new Matrix3d which holds the result of the multiplication</returns>
|
|
public static Matrix3d operator *(Matrix3d left, Matrix3d right)
|
|
{
|
|
return Matrix3d.Mult(left, right);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compares two instances for equality.
|
|
/// </summary>
|
|
/// <param name="left">The first instance.</param>
|
|
/// <param name="right">The second instance.</param>
|
|
/// <returns>True, if left equals right; false otherwise.</returns>
|
|
public static bool operator ==(Matrix3d left, Matrix3d right)
|
|
{
|
|
return left.Equals(right);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compares two instances for inequality.
|
|
/// </summary>
|
|
/// <param name="left">The first instance.</param>
|
|
/// <param name="right">The second instance.</param>
|
|
/// <returns>True, if left does not equal right; false otherwise.</returns>
|
|
public static bool operator !=(Matrix3d left, Matrix3d right)
|
|
{
|
|
return !left.Equals(right);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Overrides
|
|
|
|
#region public override string ToString()
|
|
|
|
/// <summary>
|
|
/// Returns a System.String that represents the current Matrix3d.
|
|
/// </summary>
|
|
/// <returns>The string representation of the matrix.</returns>
|
|
public override string ToString()
|
|
{
|
|
return String.Format("{0}\n{1}\n{2}", Row0, Row1, Row2);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region public override int GetHashCode()
|
|
|
|
/// <summary>
|
|
/// Returns the hashcode for this instance.
|
|
/// </summary>
|
|
/// <returns>A System.Int32 containing the unique hashcode for this instance.</returns>
|
|
public override int GetHashCode()
|
|
{
|
|
return Row0.GetHashCode() ^ Row1.GetHashCode() ^ Row2.GetHashCode();
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region public override bool Equals(object obj)
|
|
|
|
/// <summary>
|
|
/// Indicates whether this instance and a specified object are equal.
|
|
/// </summary>
|
|
/// <param name="obj">The object to compare to.</param>
|
|
/// <returns>True if the instances are equal; false otherwise.</returns>
|
|
public override bool Equals(object obj)
|
|
{
|
|
if (!(obj is Matrix3d))
|
|
return false;
|
|
|
|
return this.Equals((Matrix3d)obj);
|
|
}
|
|
|
|
#endregion
|
|
|
|
#endregion
|
|
|
|
#endregion
|
|
|
|
#region IEquatable<Matrix3d> Members
|
|
|
|
/// <summary>Indicates whether the current matrix is equal to another matrix.</summary>
|
|
/// <param name="other">A matrix to compare with this matrix.</param>
|
|
/// <returns>true if the current matrix is equal to the matrix parameter; otherwise, false.</returns>
|
|
public bool Equals(Matrix3d other)
|
|
{
|
|
return
|
|
Row0 == other.Row0 &&
|
|
Row1 == other.Row1 &&
|
|
Row2 == other.Row2;
|
|
}
|
|
|
|
#endregion
|
|
}
|
|
}
|