Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
using ARMeilleure.IntermediateRepresentation;
|
|
|
|
using System;
|
|
|
|
using System.Collections.Generic;
|
|
|
|
using System.Diagnostics;
|
|
|
|
|
|
|
|
namespace ARMeilleure.CodeGen.RegisterAllocators
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
unsafe readonly struct LiveInterval : IComparable<LiveInterval>
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
|
|
|
public const int NotFound = -1;
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
private struct Data
|
|
|
|
{
|
|
|
|
public int End;
|
|
|
|
public int SpillOffset;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public LiveRange FirstRange;
|
|
|
|
public LiveRange PrevRange;
|
|
|
|
public LiveRange CurrRange;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public LiveInterval Parent;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public UseList Uses;
|
|
|
|
public LiveIntervalList Children;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public Operand Local;
|
|
|
|
public Register Register;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public bool IsFixed;
|
|
|
|
}
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
private readonly Data* _data;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
private ref int End => ref _data->End;
|
|
|
|
private ref LiveRange FirstRange => ref _data->FirstRange;
|
|
|
|
private ref LiveRange CurrRange => ref _data->CurrRange;
|
|
|
|
private ref LiveRange PrevRange => ref _data->PrevRange;
|
|
|
|
private ref LiveInterval Parent => ref _data->Parent;
|
|
|
|
private ref UseList Uses => ref _data->Uses;
|
|
|
|
private ref LiveIntervalList Children => ref _data->Children;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public Operand Local => _data->Local;
|
|
|
|
public ref Register Register => ref _data->Register;
|
|
|
|
public ref int SpillOffset => ref _data->SpillOffset;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public bool IsFixed => _data->IsFixed;
|
|
|
|
public bool IsEmpty => FirstRange == default;
|
|
|
|
public bool IsSplit => Children.Count != 0;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
public bool IsSpilled => SpillOffset != -1;
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public int UsesCount => Uses.Count;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public LiveInterval(Operand local = default, LiveInterval parent = default)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
_data = Allocators.LiveIntervals.Allocate<Data>();
|
|
|
|
*_data = default;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
_data->IsFixed = false;
|
|
|
|
_data->Local = local;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Parent = parent == default ? this : parent;
|
|
|
|
Uses = new UseList();
|
|
|
|
Children = new LiveIntervalList();
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange = default;
|
|
|
|
CurrRange = default;
|
|
|
|
PrevRange = default;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
|
|
|
SpillOffset = -1;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public LiveInterval(Register register) : this(local: default, parent: default)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
_data->IsFixed = true;
|
|
|
|
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
Register = register;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public void Reset()
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
PrevRange = default;
|
|
|
|
CurrRange = FirstRange;
|
|
|
|
}
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public void Forward(int position)
|
|
|
|
{
|
|
|
|
LiveRange prev = PrevRange;
|
|
|
|
LiveRange curr = CurrRange;
|
|
|
|
|
|
|
|
while (curr != default && curr.Start < position && !curr.Overlaps(position))
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
prev = curr;
|
|
|
|
curr = curr.Next;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
|
|
|
|
PrevRange = prev;
|
|
|
|
CurrRange = curr;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public int GetStart()
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(!IsEmpty, "Empty LiveInterval cannot have a start position.");
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return FirstRange.Start;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public void SetStart(int position)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (FirstRange != default)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(position != FirstRange.End);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange.Start = position;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange = new LiveRange(position, position + 1);
|
|
|
|
End = position + 1;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public int GetEnd()
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(!IsEmpty, "Empty LiveInterval cannot have an end position.");
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return End;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public void AddRange(int start, int end)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(start < end, $"Invalid range start position {start}, {end}");
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (FirstRange != default)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
// If the new range ends exactly where the first range start, then coalesce together.
|
|
|
|
if (end == FirstRange.Start)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange.Start = start;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
// If the new range is already contained, then coalesce together.
|
|
|
|
else if (FirstRange.Overlaps(start, end))
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange.Start = Math.Min(FirstRange.Start, start);
|
|
|
|
FirstRange.End = Math.Max(FirstRange.End, end);
|
|
|
|
End = Math.Max(End, end);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(FirstRange.Next == default || !FirstRange.Overlaps(FirstRange.Next));
|
|
|
|
return;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
FirstRange = new LiveRange(start, end, FirstRange);
|
|
|
|
End = Math.Max(End, end);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(FirstRange.Next == default || !FirstRange.Overlaps(FirstRange.Next));
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public void AddUsePosition(int position)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Uses.Add(position);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public bool Overlaps(int position)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
LiveRange curr = CurrRange;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
while (curr != default && curr.Start <= position)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (curr.Overlaps(position))
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
|
|
|
|
curr = curr.Next;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public bool Overlaps(LiveInterval other)
|
|
|
|
{
|
|
|
|
return GetOverlapPosition(other) != NotFound;
|
|
|
|
}
|
|
|
|
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
public int GetOverlapPosition(LiveInterval other)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
LiveRange a = CurrRange;
|
|
|
|
LiveRange b = other.CurrRange;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
while (a != default)
|
|
|
|
{
|
|
|
|
while (b != default && b.Start < a.Start)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (a.Overlaps(b))
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return a.Start;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
b = b.Next;
|
|
|
|
}
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (b == default)
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (a.Overlaps(b))
|
|
|
|
{
|
|
|
|
return a.Start;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
|
|
|
|
a = a.Next;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return NotFound;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public ReadOnlySpan<LiveInterval> SplitChildren()
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return Parent.Children.Span;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public ReadOnlySpan<int> UsePositions()
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return Uses.Span;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public int FirstUse()
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return Uses.FirstUse;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public int NextUseAfter(int position)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return Uses.NextUse(position);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public LiveInterval Split(int position)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
LiveInterval result = new(Local, Parent);
|
|
|
|
result.End = End;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
LiveRange prev = PrevRange;
|
|
|
|
LiveRange curr = CurrRange;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
while (curr != default && curr.Start < position && !curr.Overlaps(position))
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
prev = curr;
|
|
|
|
curr = curr.Next;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (curr.Start >= position)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
prev.Next = default;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
result.FirstRange = curr;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
End = prev.End;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
else
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
result.FirstRange = new LiveRange(position, curr.End, curr.Next);
|
|
|
|
|
|
|
|
curr.End = position;
|
|
|
|
curr.Next = default;
|
|
|
|
|
|
|
|
End = curr.End;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
result.Uses = Uses.Split(position);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
AddSplitChild(result);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(!IsEmpty, "Left interval is empty after split.");
|
|
|
|
Debug.Assert(!result.IsEmpty, "Right interval is empty after split.");
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
// Make sure the iterator in the new split is pointing to the start.
|
|
|
|
result.Reset();
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return result;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
private void AddSplitChild(LiveInterval child)
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Debug.Assert(!child.IsEmpty, "Trying to insert an empty interval.");
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
Parent.Children.Add(child);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public LiveInterval GetSplitChild(int position)
|
|
|
|
{
|
|
|
|
if (Overlaps(position))
|
|
|
|
{
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
foreach (LiveInterval splitChild in SplitChildren())
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
|
|
|
if (splitChild.Overlaps(position))
|
|
|
|
{
|
|
|
|
return splitChild;
|
|
|
|
}
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
else if (splitChild.GetStart() > position)
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return default;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public bool TrySpillWithSiblingOffset()
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
foreach (LiveInterval splitChild in SplitChildren())
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
|
|
|
if (splitChild.IsSpilled)
|
|
|
|
{
|
|
|
|
Spill(splitChild.SpillOffset);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
public void Spill(int offset)
|
|
|
|
{
|
|
|
|
SpillOffset = offset;
|
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
public int CompareTo(LiveInterval interval)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
if (FirstRange == default || interval.FirstRange == default)
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return 0;
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
return GetStart().CompareTo(interval.GetStart());
|
|
|
|
}
|
|
|
|
|
|
|
|
public bool Equals(LiveInterval interval)
|
|
|
|
{
|
|
|
|
return interval._data == _data;
|
|
|
|
}
|
|
|
|
|
|
|
|
public override bool Equals(object obj)
|
|
|
|
{
|
|
|
|
return obj is LiveInterval interval && Equals(interval);
|
|
|
|
}
|
|
|
|
|
|
|
|
public static bool operator ==(LiveInterval a, LiveInterval b)
|
|
|
|
{
|
|
|
|
return a.Equals(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
public static bool operator !=(LiveInterval a, LiveInterval b)
|
|
|
|
{
|
|
|
|
return !a.Equals(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
public override int GetHashCode()
|
|
|
|
{
|
|
|
|
return HashCode.Combine((IntPtr)_data);
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
public override string ToString()
|
|
|
|
{
|
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
2021-10-08 21:15:44 +00:00
|
|
|
LiveInterval self = this;
|
|
|
|
|
|
|
|
IEnumerable<string> GetRanges()
|
|
|
|
{
|
|
|
|
LiveRange curr = self.CurrRange;
|
|
|
|
|
|
|
|
while (curr != default)
|
|
|
|
{
|
|
|
|
if (curr == self.CurrRange)
|
|
|
|
{
|
|
|
|
yield return "*" + curr;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
yield return curr.ToString();
|
|
|
|
}
|
|
|
|
|
|
|
|
curr = curr.Next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return string.Join(", ", GetRanges());
|
Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project
* Refactoring around the old IRAdapter, now renamed to PreAllocator
* Optimize the LowestBitSet method
* Add CLZ support and fix CLS implementation
* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks
* Implement the ByteSwap IR instruction, and some refactoring on the assembler
* Implement the DivideUI IR instruction and fix 64-bits IDIV
* Correct constant operand type on CSINC
* Move division instructions implementation to InstEmitDiv
* Fix destination type for the ConditionalSelect IR instruction
* Implement UMULH and SMULH, with new IR instructions
* Fix some issues with shift instructions
* Fix constant types for BFM instructions
* Fix up new tests using the new V128 struct
* Update tests
* Move DIV tests to a separate file
* Add support for calls, and some instructions that depends on them
* Start adding support for SIMD & FP types, along with some of the related ARM instructions
* Fix some typos and the divide instruction with FP operands
* Fix wrong method call on Clz_V
* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes
* Implement SIMD logical instructions and more misc. fixes
* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations
* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes
* Implement SIMD shift instruction and fix Dup_V
* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table
* Fix check with tolerance on tester
* Implement FP & SIMD comparison instructions, and some fixes
* Update FCVT (Scalar) encoding on the table to support the Half-float variants
* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes
* Use old memory access methods, made a start on SIMD memory insts support, some fixes
* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes
* Fix arguments count with struct return values, other fixes
* More instructions
* Misc. fixes and integrate LDj3SNuD fixes
* Update tests
* Add a faster linear scan allocator, unwinding support on windows, and other changes
* Update Ryujinx.HLE
* Update Ryujinx.Graphics
* Fix V128 return pointer passing, RCX is clobbered
* Update Ryujinx.Tests
* Update ITimeZoneService
* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks
* Use generic GetFunctionPointerForDelegate method and other tweaks
* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics
* Remove some unused code on the assembler
* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler
* Add hardware capability detection
* Fix regression on Sha1h and revert Fcm** changes
* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator
* Fix silly mistake introduced on last commit on CpuId
* Generate inline stack probes when the stack allocation is too large
* Initial support for the System-V ABI
* Support multiple destination operands
* Fix SSE2 VectorInsert8 path, and other fixes
* Change placement of XMM callee save and restore code to match other compilers
* Rename Dest to Destination and Inst to Instruction
* Fix a regression related to calls and the V128 type
* Add an extra space on comments to match code style
* Some refactoring
* Fix vector insert FP32 SSE2 path
* Port over the ARM32 instructions
* Avoid memory protection races on JIT Cache
* Another fix on VectorInsert FP32 (thanks to LDj3SNuD
* Float operands don't need to use the same register when VEX is supported
* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks
* Some nits, small improvements on the pre allocator
* CpuThreadState is gone
* Allow changing CPU emulators with a config entry
* Add runtime identifiers on the ARMeilleure project
* Allow switching between CPUs through a config entry (pt. 2)
* Change win10-x64 to win-x64 on projects
* Update the Ryujinx project to use ARMeilleure
* Ensure that the selected register is valid on the hybrid allocator
* Allow exiting on returns to 0 (should fix test regression)
* Remove register assignments for most used variables on the hybrid allocator
* Do not use fixed registers as spill temp
* Add missing namespace and remove unneeded using
* Address PR feedback
* Fix types, etc
* Enable AssumeStrictAbiCompliance by default
* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|