* Refactor CPU interface
* Use IExecutionContext interface on SVC handler, change how CPU interrupts invokes the handlers
* Make CpuEngine take a ITickSource rather than returning one
The previous implementation had the scenario where the CPU engine had to implement the tick source in mind, like for example, when we have a hypervisor and the game can read CNTPCT on the host directly. However given that we need to do conversion due to different frequencies anyway, it's not worth it. It's better to just let the user pass the tick source and redirect any reads to CNTPCT to the user tick source
* XML docs for the public interfaces
* PPTC invalidation due to NativeInterface function name changes
* Fix build of the CPU tests
* PR feedback
* Back to the origins: Make memory manager take guest PA rather than host address once again
* Direct mapping with alias support on Windows
* Fixes and remove more of the emulated shared memory
* Linux support
* Make shared and transfer memory not depend on SharedMemoryStorage
* More efficient view mapping on Windows (no more restricted to 4KB pages at a time)
* Handle potential access violations caused by partial unmap
* Implement host mapping using shared memory on Linux
* Add new GetPhysicalAddressChecked method, used to ensure the virtual address is mapped before address translation
Also align GetRef behaviour with software memory manager
* We don't need a mirrorable memory block for software memory manager mode
* Disable memory aliasing tests while we don't have shared memory support on Mac
* Shared memory & SIGBUS handler for macOS
* Fix typo + nits + re-enable memory tests
* Set MAP_JIT_DARWIN on x86 Mac too
* Add back the address space mirror
* Only set MAP_JIT_DARWIN if we are mapping as executable
* Disable aliasing tests again (still fails on Mac)
* Fix UnmapView4KB (by not casting size to int)
* Use ref counting on memory blocks to delay closing the shared memory handle until all blocks using it are disposed
* Address PR feedback
* Make RO hold a reference to the guest process memory manager to avoid early disposal
Co-authored-by: nastys <nastys@users.noreply.github.com>
* Collapse AsSpan().Slice(..) calls into AsSpan(..)
Less code and a bit faster
* Collapse an Array.Clear(array, 0, array.Length) call to Array.Clear(array)
* Remove usage of Mono.Posix.NETStandard in Ryujinx project
* Remove usage of Mono.Posix.NETStandard in ARMeilleure project
* Remove usage of Mono.Posix.NETStandard in Ryujinx.Memory project
* Address gdkchan's comments
* infra: Migrate to .NET 6
* Rollback version naming change
* Workaround .NET 6 ZipArchive API issues
* ci: Switch to VS 2022 for AppVeyor
CI is now ready for .NET 6
* Suppress WebClient warning in DoUpdateWithMultipleThreads
* Attempt to workaround System.Drawing.Common changes on 6.0.0
* Change keyboard rendering from System.Drawing to ImageSharp
* Make the software keyboard renderer multithreaded
* Bump ImageSharp version to 1.0.4 to fix a bug in Image.Load
* Add fallback fonts to the keyboard renderer
* Fix warnings
* Address caian's comment
* Clean up linux workaround as it's uneeded now
* Update readme
Co-authored-by: Caian Benedicto <caianbene@gmail.com>
* Add an early `TailMerge` pass
Some translations can have a lot of guest calls and since for each guest
call there is a call guard which may return. This can produce a lot of
epilogue code for returns. This pass merges the epilogue into a single
block.
```
Using filter 'hcq'.
Using metric 'code size'.
Total diff: -1648111 (-7.19 %) (bytes):
Base: 22913847
Diff: 21265736
Improved: 4567, regressed: 14, unchanged: 144
```
* Set PTC version
* Address feedback
* Handle `void` returning functions
* Actually handle `void` returning functions
* Fix `RegisterToLocal` logging
* Optimize `TryAllocateRegWithtoutSpill` a bit
* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
(i.e: free position is 0).
* Do not allocate child split list if not parent
* Turn `LiveRange` into a reference struct
`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.
It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.
Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.
* Turn `LiveInterval` into an iterator
The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.
The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).
* Remove `LinearScanAllocator.Sources`
Local methods are less susceptible to do allocations than lambdas.
* Optimize `GetOverlapPosition(interval)` a bit
Time complexity should be in O(n+m) instead of O(nm) now.
* Optimize `NumberLocals` a bit
Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.
* Optimize `InsertSplitCopies` a bit
Avoid allocating a redundant `CopyResolver`.
* Optimize `InsertSplitCopiesAtEdges` a bit
Avoid redundant allocations of `CopyResolver`.
* Use stack allocation for `freePositions`
Avoid redundant computations.
* Add `UseList`
Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.
* Turn `LiveInterval` into a reference struct
`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.
The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.
To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.
Really wished we got some more of C++ template in C#. :^(
* Optimize `GetChildSplit` a bit
No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.
* Optimize `CopyResolver` a bit
Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.
* Optimize `BitMap.Enumerator` a bit
Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.
* Use stack allocation for `use/blockedPositions`
* Optimize `AllocateWithSpill` a bit
* Address feedback
* Make `LiveInterval.AddRange(,)` more conservative
Produces no diff against master, but just for good measure.
* Add `Operand.Label` support to `Assembler`
This adds label support to `Assembler` and enables branch tightening
when compiling with relocatables. Jump management and patching has been
moved to the `Assembler`.
* Move instruction table to `Assembler.Table`
* Set PTC internal version
* Rename `Assembler.Table` to `AssemblerTable`
* Replace CacheResourceWrite with more general "precise" write
The goal of CacheResourceWrite was to notify GPU resources when they were modified directly, by looking up the modified address/size in a structure and calling a method on each resource. The downside of this is that each resource cache has to be queried individually, they all have to implement their own way to do this, and it can only signal to resources using the same PhysicalMemory instance.
This PR adds the ability to signal a write as "precise" on the tracking, which signals a special handler (if present) which can be used to avoid unnecessary flush actions, or maybe even more. For buffers, precise writes specifically do not flush, and instead punch a hole in the modified range list to indicate that the data on GPU has been replaced.
The downside is that precise actions must ignore the page protection bits and always signal - as they need to notify the target resource to ignore the sequence number optimization.
I had to reintroduce the sequence number increment after I2M, as removing it was causing issues in rabbids kingdom battle. However - all resources modified by I2M are notified directly to lower their sequence number, so the problem is likely that another unrelated resource is not being properly updated. Thankfully, doing this does not affect performance in the games I tested.
This should fix regressions from #2624. Test any games that were broken by that. (RF4, rabbids kingdom battle)
I've also added a sequence number increment to ThreedClass.IncrementSyncpoint, as it seems to fix buffer corruption in OpenGL homebrew. (this was a regression from removing sequence number increment from constant buffer update - another unrelated resource thing)
* Add tests.
* Add XML docs for GpuRegionHandle
* Skip UpdateProtection if only precise actions were called
This allows precise actions to skip reprotection costs.
* Store constant `Operand`s in the `LocalInfo`
Since the spill slot and register assigned is fixed, we can just store
the `Operand` reference in the `LocalInfo` struct. This allows skipping
hitting the intern-table for a look up.
* Skip `Uses`/`Assignments` management
Since the `HybridAllocator` is the last pass and we do not care about
uses/assignments we can skip managing that when setting destinations or
sources.
* Make `GetLocalInfo` inlineable
Also fix a possible issue where with numbered locals. See or-assignment
operator in `SetVisited(local)` before patch.
* Do not run `BlockPlacement` in LCQ
With the host mapped memory manager, there is a lot less cold code to
split from hot code. So disabling this in LCQ gives some extra
throughput - where we need it.
* Address Mou-Ikkai's feedback
* Apply suggestions from code review
Co-authored-by: VocalFan <45863583+Mou-Ikkai@users.noreply.github.com>
* Move check to an assert
Co-authored-by: VocalFan <45863583+Mou-Ikkai@users.noreply.github.com>
Seems like this is used as an optimized way to clear memory in homebrew applications. Unfortunately, calling the software fallback method every 8 bytes was not very optimal.
The existing EmitStore is used by passing in ZR as the register to get a 0 write.
Fix an issue introduced in #2190 where by 2 different count table entry
addresses were used for LCQ functions. E.g:
```asm
.L1:
mov rbp,COUNT_TABLE_0 ;; This gets an address.
mov ebp,[rbp]
lea esi,[rbp+1]
mov rdi,COUNT_TABLE_1 ;; This gets another address.
mov [rdi],esi
cmp ebp,64h
je near .L34
```
This caused LCQ functions to not tier up when they're loaded from the
PTC cache. This does not happen when they're freshly compiled.
This PR fixes the issue by ensuring only a single counter is created per
translation.
* Refactor `PtcInfo`
This change reduces the coupling of `PtcInfo` by moving relocation
tracking to the backend. `RelocEntry`s remains as `RelocEntry`s through
out the pipeline until it actually needs to be written to the PTC
streams. Keeping this representation makes inspecting and manipulating
relocations after compilations less painful. This is something I needed
to do to patch relocations to 0 to diff dumps.
Contributes to #1125.
* Turn `Symbol` & `RelocInfo` into readonly structs
* Add documentation to `CompiledFunction`
* Remove `Compiler.Compile<T>`
Remove `Compiler.Compile<T>` and replace it by `Map<T>` of the
`CompiledFunction` returned.
* Add a "Pause Emulation" option and hotkey
Closes Ryujinx#1604
* Refactoring how pause is handled
* Applied suggested changes from review
* Applied suggested fixes
* Pass correct suspend type to threads for suspend/resume
* Fix NRE after stoping emulation
* Removing SimulateWakeUpMessage call after resuming emulation
* Skip suspending non game process
* Pause the tickCounter in the ExecutionContext
* Refactoring tickCounter pause/resume as suggested
* Fix Config migration to add pause hotkey
* Fixed pausing only application threads
* Fix exiting emulator while paused
* Avoid pause/resume while already paused/resumed
* Cleanup unused code
* Avoid restarting audio if stopping emulation while in pause.
* Added suggested changes
* Fix ConfigurationState
* Fix type mismatch in `BitwiseAnd` simplification
`TryEliminateBitwiseAnd` would turn the `BitwiseAnd` operation into a
copy of the wrong type. E.g:
Before `Simplification`:
```llvm
i64 %0 = BitwiseAnd i64 0x0, %1
```
After `Simplication`:
```llvm
i64 %0 = Copy i32 0x0
```
Since the with the changes in #2515, we iterate in reverse order and
`Simplication`, `ConstantFolding` does not indicate if it modified
the CFG, the second pass to "retype" the copy into the proper
destination type does not happen.
This also blocked copy propagation since its destination type did not
match with its source type. But in the cases I've seen, the
`PreAllocator` would insert a copy for the propagated constant, which
results in no diffs.
Since the copy remained as is, asserts are fired when generating it.
* Set PPTC version
* Turn `MemoryOperand` into a struct
* Remove `IntrinsicOperation`
* Remove `PhiNode`
* Remove `Node`
* Turn `Operand` into a struct
* Turn `Operation` into a struct
* Clean up pool management methods
* Add `Arena` allocator
* Move `OperationHelper` to `Operation.Factory`
* Move `OperandHelper` to `Operand.Factory`
* Optimize `Operation` a bit
* Fix `Arena` initialization
* Rename `NativeList<T>` to `ArenaList<T>`
* Reduce `Operand` size from 88 to 56 bytes
* Reduce `Operation` size from 56 to 40 bytes
* Add optimistic interning of Register & Constant operands
* Optimize `RegisterUsage` pass a bit
* Optimize `RemoveUnusedNodes` pass a bit
Iterating in reverse-order allows killing dependency chains in a single
pass.
* Fix PPTC symbols
* Optimize `BasicBlock` a bit
Reduce allocations from `_successor` & `DominanceFrontiers`
* Fix `Operation` resize
* Make `Arena` expandable
Change the arena allocator to be expandable by allocating in pages, with
some of them being pooled. Currently 32 pages are pooled. An LRU removal
mechanism should probably be added to it.
Apparently MHR can allocate bitmaps large enough to exceed the 16MB
limit for the type.
* Move `Arena` & `ArenaList` to `Common`
* Remove `ThreadStaticPool` & co
* Add `PhiOperation`
* Reduce `Operand` size from 56 from 48 bytes
* Add linear-probing to `Operand` intern table
* Optimize `HybridAllocator` a bit
* Add `Allocators` class
* Tune `ArenaAllocator` sizes
* Add page removal mechanism to `ArenaAllocator`
Remove pages which have not been used for more than 5s after each reset.
I am on fence if this would be better using a Gen2 callback object like
the one in System.Buffers.ArrayPool<T>, to trim the pool. Because right
now if a large translation happens, the pages will be freed only after a
reset. This reset may not happen for a while because no new translation
is hit, but the arena base sizes are rather small.
* Fix `OOM` when allocating larger than page size in `ArenaAllocator`
Tweak resizing mechanism for Operand.Uses and Assignemnts.
* Optimize `Optimizer` a bit
* Optimize `Operand.Add<T>/Remove<T>` a bit
* Clean up `PreAllocator`
* Fix phi insertion order
Reduce codegen diffs.
* Fix code alignment
* Use new heuristics for degree of parallelism
* Suppress warnings
* Address gdkchan's feedback
Renamed `GetValue()` to `GetValueUnsafe()` to make it more clear that
`Operand.Value` should usually not be modified directly.
* Add fast path to `ArenaAllocator`
* Assembly for `ArenaAllocator.Allocate(ulong)`:
.L0:
mov rax, [rcx+0x18]
lea r8, [rax+rdx]
cmp r8, [rcx+0x10]
ja short .L2
.L1:
mov rdx, [rcx+8]
add rax, [rdx+8]
mov [rcx+0x18], r8
ret
.L2:
jmp ArenaAllocator.AllocateSlow(UInt64)
A few variable/field had to be changed to ulong so that RyuJIT avoids
emitting zero-extends.
* Implement a new heuristic to free pooled pages.
If an arena is used often, it is more likely that its pages will be
needed, so the pages are kept for longer (e.g: during PPTC rebuild or
burst sof compilations). If is not used often, then it is more likely
that its pages will not be needed (e.g: after PPTC rebuild or bursts
of compilations).
* Address riperiperi's feedback
* Use `EqualityComparer<T>` in `IntrusiveList<T>`
Avoids a potential GC hole in `Equals(T, T)`.