mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2024-11-09 09:18:43 +00:00
a731ab3a2a
* Start of the ARMeilleure project * Refactoring around the old IRAdapter, now renamed to PreAllocator * Optimize the LowestBitSet method * Add CLZ support and fix CLS implementation * Add missing Equals and GetHashCode overrides on some structs, misc small tweaks * Implement the ByteSwap IR instruction, and some refactoring on the assembler * Implement the DivideUI IR instruction and fix 64-bits IDIV * Correct constant operand type on CSINC * Move division instructions implementation to InstEmitDiv * Fix destination type for the ConditionalSelect IR instruction * Implement UMULH and SMULH, with new IR instructions * Fix some issues with shift instructions * Fix constant types for BFM instructions * Fix up new tests using the new V128 struct * Update tests * Move DIV tests to a separate file * Add support for calls, and some instructions that depends on them * Start adding support for SIMD & FP types, along with some of the related ARM instructions * Fix some typos and the divide instruction with FP operands * Fix wrong method call on Clz_V * Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes * Implement SIMD logical instructions and more misc. fixes * Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations * Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes * Implement SIMD shift instruction and fix Dup_V * Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table * Fix check with tolerance on tester * Implement FP & SIMD comparison instructions, and some fixes * Update FCVT (Scalar) encoding on the table to support the Half-float variants * Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes * Use old memory access methods, made a start on SIMD memory insts support, some fixes * Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes * Fix arguments count with struct return values, other fixes * More instructions * Misc. fixes and integrate LDj3SNuD fixes * Update tests * Add a faster linear scan allocator, unwinding support on windows, and other changes * Update Ryujinx.HLE * Update Ryujinx.Graphics * Fix V128 return pointer passing, RCX is clobbered * Update Ryujinx.Tests * Update ITimeZoneService * Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks * Use generic GetFunctionPointerForDelegate method and other tweaks * Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics * Remove some unused code on the assembler * Fix REX.W prefix regression on float conversion instructions, add some sort of profiler * Add hardware capability detection * Fix regression on Sha1h and revert Fcm** changes * Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator * Fix silly mistake introduced on last commit on CpuId * Generate inline stack probes when the stack allocation is too large * Initial support for the System-V ABI * Support multiple destination operands * Fix SSE2 VectorInsert8 path, and other fixes * Change placement of XMM callee save and restore code to match other compilers * Rename Dest to Destination and Inst to Instruction * Fix a regression related to calls and the V128 type * Add an extra space on comments to match code style * Some refactoring * Fix vector insert FP32 SSE2 path * Port over the ARM32 instructions * Avoid memory protection races on JIT Cache * Another fix on VectorInsert FP32 (thanks to LDj3SNuD * Float operands don't need to use the same register when VEX is supported * Add a new register allocator, higher quality code for hot code (tier up), and other tweaks * Some nits, small improvements on the pre allocator * CpuThreadState is gone * Allow changing CPU emulators with a config entry * Add runtime identifiers on the ARMeilleure project * Allow switching between CPUs through a config entry (pt. 2) * Change win10-x64 to win-x64 on projects * Update the Ryujinx project to use ARMeilleure * Ensure that the selected register is valid on the hybrid allocator * Allow exiting on returns to 0 (should fix test regression) * Remove register assignments for most used variables on the hybrid allocator * Do not use fixed registers as spill temp * Add missing namespace and remove unneeded using * Address PR feedback * Fix types, etc * Enable AssumeStrictAbiCompliance by default * Ensure that Spill and Fill don't load or store any more than necessary
2791 lines
87 KiB
C#
2791 lines
87 KiB
C#
using ChocolArm64.State;
|
|
using System;
|
|
using System.Diagnostics;
|
|
using System.Runtime.CompilerServices;
|
|
|
|
namespace ChocolArm64.Instructions
|
|
{
|
|
static class SoftFloat
|
|
{
|
|
static SoftFloat()
|
|
{
|
|
RecipEstimateTable = BuildRecipEstimateTable();
|
|
RecipSqrtEstimateTable = BuildRecipSqrtEstimateTable();
|
|
}
|
|
|
|
internal static readonly byte[] RecipEstimateTable;
|
|
internal static readonly byte[] RecipSqrtEstimateTable;
|
|
|
|
private static byte[] BuildRecipEstimateTable()
|
|
{
|
|
byte[] tbl = new byte[256];
|
|
|
|
for (int idx = 0; idx < 256; idx++)
|
|
{
|
|
uint src = (uint)idx + 256u;
|
|
|
|
Debug.Assert(256u <= src && src < 512u);
|
|
|
|
src = (src << 1) + 1u;
|
|
|
|
uint aux = (1u << 19) / src;
|
|
|
|
uint dst = (aux + 1u) >> 1;
|
|
|
|
Debug.Assert(256u <= dst && dst < 512u);
|
|
|
|
tbl[idx] = (byte)(dst - 256u);
|
|
}
|
|
|
|
return tbl;
|
|
}
|
|
|
|
private static byte[] BuildRecipSqrtEstimateTable()
|
|
{
|
|
byte[] tbl = new byte[384];
|
|
|
|
for (int idx = 0; idx < 384; idx++)
|
|
{
|
|
uint src = (uint)idx + 128u;
|
|
|
|
Debug.Assert(128u <= src && src < 512u);
|
|
|
|
if (src < 256u)
|
|
{
|
|
src = (src << 1) + 1u;
|
|
}
|
|
else
|
|
{
|
|
src = (src >> 1) << 1;
|
|
src = (src + 1u) << 1;
|
|
}
|
|
|
|
uint aux = 512u;
|
|
|
|
while (src * (aux + 1u) * (aux + 1u) < (1u << 28))
|
|
{
|
|
aux = aux + 1u;
|
|
}
|
|
|
|
uint dst = (aux + 1u) >> 1;
|
|
|
|
Debug.Assert(256u <= dst && dst < 512u);
|
|
|
|
tbl[idx] = (byte)(dst - 256u);
|
|
}
|
|
|
|
return tbl;
|
|
}
|
|
}
|
|
|
|
static class SoftFloat16_32
|
|
{
|
|
public static float FPConvert(ushort valueBits, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat16_32.FPConvert: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
double real = valueBits.FPUnpackCv(out FpType type, out bool sign, state);
|
|
|
|
float result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
if (state.GetFpcrFlag(Fpcr.Dn))
|
|
{
|
|
result = FPDefaultNaN();
|
|
}
|
|
else
|
|
{
|
|
result = FPConvertNaN(valueBits);
|
|
}
|
|
|
|
if (type == FpType.SNaN)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPZero(sign);
|
|
}
|
|
else
|
|
{
|
|
result = FPRoundCv(real, state);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private static float FPDefaultNaN()
|
|
{
|
|
return -float.NaN;
|
|
}
|
|
|
|
private static float FPInfinity(bool sign)
|
|
{
|
|
return sign ? float.NegativeInfinity : float.PositiveInfinity;
|
|
}
|
|
|
|
private static float FPZero(bool sign)
|
|
{
|
|
return sign ? -0f : +0f;
|
|
}
|
|
|
|
private static float FPMaxNormal(bool sign)
|
|
{
|
|
return sign ? float.MinValue : float.MaxValue;
|
|
}
|
|
|
|
private static double FPUnpackCv(
|
|
this ushort valueBits,
|
|
out FpType type,
|
|
out bool sign,
|
|
CpuThreadState state)
|
|
{
|
|
sign = (~(uint)valueBits & 0x8000u) == 0u;
|
|
|
|
uint exp16 = ((uint)valueBits & 0x7C00u) >> 10;
|
|
uint frac16 = (uint)valueBits & 0x03FFu;
|
|
|
|
double real;
|
|
|
|
if (exp16 == 0u)
|
|
{
|
|
if (frac16 == 0u)
|
|
{
|
|
type = FpType.Zero;
|
|
real = 0d;
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero; // Subnormal.
|
|
real = Math.Pow(2d, -14) * ((double)frac16 * Math.Pow(2d, -10));
|
|
}
|
|
}
|
|
else if (exp16 == 0x1Fu && !state.GetFpcrFlag(Fpcr.Ahp))
|
|
{
|
|
if (frac16 == 0u)
|
|
{
|
|
type = FpType.Infinity;
|
|
real = Math.Pow(2d, 1000);
|
|
}
|
|
else
|
|
{
|
|
type = (~frac16 & 0x0200u) == 0u ? FpType.QNaN : FpType.SNaN;
|
|
real = 0d;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero; // Normal.
|
|
real = Math.Pow(2d, (int)exp16 - 15) * (1d + (double)frac16 * Math.Pow(2d, -10));
|
|
}
|
|
|
|
return sign ? -real : real;
|
|
}
|
|
|
|
private static float FPRoundCv(double real, CpuThreadState state)
|
|
{
|
|
const int minimumExp = -126;
|
|
|
|
const int e = 8;
|
|
const int f = 23;
|
|
|
|
bool sign;
|
|
double mantissa;
|
|
|
|
if (real < 0d)
|
|
{
|
|
sign = true;
|
|
mantissa = -real;
|
|
}
|
|
else
|
|
{
|
|
sign = false;
|
|
mantissa = real;
|
|
}
|
|
|
|
int exponent = 0;
|
|
|
|
while (mantissa < 1d)
|
|
{
|
|
mantissa *= 2d;
|
|
exponent--;
|
|
}
|
|
|
|
while (mantissa >= 2d)
|
|
{
|
|
mantissa /= 2d;
|
|
exponent++;
|
|
}
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && exponent < minimumExp)
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
return FPZero(sign);
|
|
}
|
|
|
|
uint biasedExp = (uint)Math.Max(exponent - minimumExp + 1, 0);
|
|
|
|
if (biasedExp == 0u)
|
|
{
|
|
mantissa /= Math.Pow(2d, minimumExp - exponent);
|
|
}
|
|
|
|
uint intMant = (uint)Math.Floor(mantissa * Math.Pow(2d, f));
|
|
double error = mantissa * Math.Pow(2d, f) - (double)intMant;
|
|
|
|
if (biasedExp == 0u && (error != 0d || state.GetFpcrFlag(Fpcr.Ufe)))
|
|
{
|
|
FPProcessException(FpExc.Underflow, state);
|
|
}
|
|
|
|
bool overflowToInf;
|
|
bool roundUp;
|
|
|
|
switch (state.FPRoundingMode())
|
|
{
|
|
default:
|
|
case RoundMode.ToNearest:
|
|
roundUp = (error > 0.5d || (error == 0.5d && (intMant & 1u) == 1u));
|
|
overflowToInf = true;
|
|
break;
|
|
|
|
case RoundMode.TowardsPlusInfinity:
|
|
roundUp = (error != 0d && !sign);
|
|
overflowToInf = !sign;
|
|
break;
|
|
|
|
case RoundMode.TowardsMinusInfinity:
|
|
roundUp = (error != 0d && sign);
|
|
overflowToInf = sign;
|
|
break;
|
|
|
|
case RoundMode.TowardsZero:
|
|
roundUp = false;
|
|
overflowToInf = false;
|
|
break;
|
|
}
|
|
|
|
if (roundUp)
|
|
{
|
|
intMant++;
|
|
|
|
if (intMant == 1u << f)
|
|
{
|
|
biasedExp = 1u;
|
|
}
|
|
|
|
if (intMant == 1u << (f + 1))
|
|
{
|
|
biasedExp++;
|
|
intMant >>= 1;
|
|
}
|
|
}
|
|
|
|
float result;
|
|
|
|
if (biasedExp >= (1u << e) - 1u)
|
|
{
|
|
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
|
|
|
|
FPProcessException(FpExc.Overflow, state);
|
|
|
|
error = 1d;
|
|
}
|
|
else
|
|
{
|
|
result = BitConverter.Int32BitsToSingle(
|
|
(int)((sign ? 1u : 0u) << 31 | (biasedExp & 0xFFu) << 23 | (intMant & 0x007FFFFFu)));
|
|
}
|
|
|
|
if (error != 0d)
|
|
{
|
|
FPProcessException(FpExc.Inexact, state);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private static float FPConvertNaN(ushort valueBits)
|
|
{
|
|
return BitConverter.Int32BitsToSingle(
|
|
(int)(((uint)valueBits & 0x8000u) << 16 | 0x7FC00000u | ((uint)valueBits & 0x01FFu) << 13));
|
|
}
|
|
|
|
private static void FPProcessException(FpExc exc, CpuThreadState state)
|
|
{
|
|
int enable = (int)exc + 8;
|
|
|
|
if ((state.CFpcr & (1 << enable)) != 0)
|
|
{
|
|
throw new NotImplementedException("Floating-point trap handling.");
|
|
}
|
|
else
|
|
{
|
|
state.CFpsr |= 1 << (int)exc;
|
|
}
|
|
}
|
|
}
|
|
|
|
static class SoftFloat32_16
|
|
{
|
|
public static ushort FPConvert(float value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32_16.FPConvert: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
double real = value.FPUnpackCv(out FpType type, out bool sign, out uint valueBits, state);
|
|
|
|
bool altHp = state.GetFpcrFlag(Fpcr.Ahp);
|
|
|
|
ushort resultBits;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
if (altHp)
|
|
{
|
|
resultBits = FPZero(sign);
|
|
}
|
|
else if (state.GetFpcrFlag(Fpcr.Dn))
|
|
{
|
|
resultBits = FPDefaultNaN();
|
|
}
|
|
else
|
|
{
|
|
resultBits = FPConvertNaN(valueBits);
|
|
}
|
|
|
|
if (type == FpType.SNaN || altHp)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
if (altHp)
|
|
{
|
|
resultBits = (ushort)((sign ? 1u : 0u) << 15 | 0x7FFFu);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
resultBits = FPInfinity(sign);
|
|
}
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
resultBits = FPZero(sign);
|
|
}
|
|
else
|
|
{
|
|
resultBits = FPRoundCv(real, state);
|
|
}
|
|
|
|
return resultBits;
|
|
}
|
|
|
|
private static ushort FPDefaultNaN()
|
|
{
|
|
return (ushort)0x7E00u;
|
|
}
|
|
|
|
private static ushort FPInfinity(bool sign)
|
|
{
|
|
return sign ? (ushort)0xFC00u : (ushort)0x7C00u;
|
|
}
|
|
|
|
private static ushort FPZero(bool sign)
|
|
{
|
|
return sign ? (ushort)0x8000u : (ushort)0x0000u;
|
|
}
|
|
|
|
private static ushort FPMaxNormal(bool sign)
|
|
{
|
|
return sign ? (ushort)0xFBFFu : (ushort)0x7BFFu;
|
|
}
|
|
|
|
private static double FPUnpackCv(
|
|
this float value,
|
|
out FpType type,
|
|
out bool sign,
|
|
out uint valueBits,
|
|
CpuThreadState state)
|
|
{
|
|
valueBits = (uint)BitConverter.SingleToInt32Bits(value);
|
|
|
|
sign = (~valueBits & 0x80000000u) == 0u;
|
|
|
|
uint exp32 = (valueBits & 0x7F800000u) >> 23;
|
|
uint frac32 = valueBits & 0x007FFFFFu;
|
|
|
|
double real;
|
|
|
|
if (exp32 == 0u)
|
|
{
|
|
if (frac32 == 0u || state.GetFpcrFlag(Fpcr.Fz))
|
|
{
|
|
type = FpType.Zero;
|
|
real = 0d;
|
|
|
|
if (frac32 != 0u)
|
|
{
|
|
FPProcessException(FpExc.InputDenorm, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero; // Subnormal.
|
|
real = Math.Pow(2d, -126) * ((double)frac32 * Math.Pow(2d, -23));
|
|
}
|
|
}
|
|
else if (exp32 == 0xFFu)
|
|
{
|
|
if (frac32 == 0u)
|
|
{
|
|
type = FpType.Infinity;
|
|
real = Math.Pow(2d, 1000);
|
|
}
|
|
else
|
|
{
|
|
type = (~frac32 & 0x00400000u) == 0u ? FpType.QNaN : FpType.SNaN;
|
|
real = 0d;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero; // Normal.
|
|
real = Math.Pow(2d, (int)exp32 - 127) * (1d + (double)frac32 * Math.Pow(2d, -23));
|
|
}
|
|
|
|
return sign ? -real : real;
|
|
}
|
|
|
|
private static ushort FPRoundCv(double real, CpuThreadState state)
|
|
{
|
|
const int minimumExp = -14;
|
|
|
|
const int e = 5;
|
|
const int f = 10;
|
|
|
|
bool sign;
|
|
double mantissa;
|
|
|
|
if (real < 0d)
|
|
{
|
|
sign = true;
|
|
mantissa = -real;
|
|
}
|
|
else
|
|
{
|
|
sign = false;
|
|
mantissa = real;
|
|
}
|
|
|
|
int exponent = 0;
|
|
|
|
while (mantissa < 1d)
|
|
{
|
|
mantissa *= 2d;
|
|
exponent--;
|
|
}
|
|
|
|
while (mantissa >= 2d)
|
|
{
|
|
mantissa /= 2d;
|
|
exponent++;
|
|
}
|
|
|
|
uint biasedExp = (uint)Math.Max(exponent - minimumExp + 1, 0);
|
|
|
|
if (biasedExp == 0u)
|
|
{
|
|
mantissa /= Math.Pow(2d, minimumExp - exponent);
|
|
}
|
|
|
|
uint intMant = (uint)Math.Floor(mantissa * Math.Pow(2d, f));
|
|
double error = mantissa * Math.Pow(2d, f) - (double)intMant;
|
|
|
|
if (biasedExp == 0u && (error != 0d || state.GetFpcrFlag(Fpcr.Ufe)))
|
|
{
|
|
FPProcessException(FpExc.Underflow, state);
|
|
}
|
|
|
|
bool overflowToInf;
|
|
bool roundUp;
|
|
|
|
switch (state.FPRoundingMode())
|
|
{
|
|
default:
|
|
case RoundMode.ToNearest:
|
|
roundUp = (error > 0.5d || (error == 0.5d && (intMant & 1u) == 1u));
|
|
overflowToInf = true;
|
|
break;
|
|
|
|
case RoundMode.TowardsPlusInfinity:
|
|
roundUp = (error != 0d && !sign);
|
|
overflowToInf = !sign;
|
|
break;
|
|
|
|
case RoundMode.TowardsMinusInfinity:
|
|
roundUp = (error != 0d && sign);
|
|
overflowToInf = sign;
|
|
break;
|
|
|
|
case RoundMode.TowardsZero:
|
|
roundUp = false;
|
|
overflowToInf = false;
|
|
break;
|
|
}
|
|
|
|
if (roundUp)
|
|
{
|
|
intMant++;
|
|
|
|
if (intMant == 1u << f)
|
|
{
|
|
biasedExp = 1u;
|
|
}
|
|
|
|
if (intMant == 1u << (f + 1))
|
|
{
|
|
biasedExp++;
|
|
intMant >>= 1;
|
|
}
|
|
}
|
|
|
|
ushort resultBits;
|
|
|
|
if (!state.GetFpcrFlag(Fpcr.Ahp))
|
|
{
|
|
if (biasedExp >= (1u << e) - 1u)
|
|
{
|
|
resultBits = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
|
|
|
|
FPProcessException(FpExc.Overflow, state);
|
|
|
|
error = 1d;
|
|
}
|
|
else
|
|
{
|
|
resultBits = (ushort)((sign ? 1u : 0u) << 15 | (biasedExp & 0x1Fu) << 10 | (intMant & 0x03FFu));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (biasedExp >= 1u << e)
|
|
{
|
|
resultBits = (ushort)((sign ? 1u : 0u) << 15 | 0x7FFFu);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
|
|
error = 0d;
|
|
}
|
|
else
|
|
{
|
|
resultBits = (ushort)((sign ? 1u : 0u) << 15 | (biasedExp & 0x1Fu) << 10 | (intMant & 0x03FFu));
|
|
}
|
|
}
|
|
|
|
if (error != 0d)
|
|
{
|
|
FPProcessException(FpExc.Inexact, state);
|
|
}
|
|
|
|
return resultBits;
|
|
}
|
|
|
|
private static ushort FPConvertNaN(uint valueBits)
|
|
{
|
|
return (ushort)((valueBits & 0x80000000u) >> 16 | 0x7E00u | (valueBits & 0x003FE000u) >> 13);
|
|
}
|
|
|
|
private static void FPProcessException(FpExc exc, CpuThreadState state)
|
|
{
|
|
int enable = (int)exc + 8;
|
|
|
|
if ((state.CFpcr & (1 << enable)) != 0)
|
|
{
|
|
throw new NotImplementedException("Floating-point trap handling.");
|
|
}
|
|
else
|
|
{
|
|
state.CFpsr |= 1 << (int)exc;
|
|
}
|
|
}
|
|
}
|
|
|
|
static class SoftFloat32
|
|
{
|
|
public static float FPAdd(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPAdd: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if (inf1 && inf2 && sign1 == !sign2)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((inf1 && !sign1) || (inf2 && !sign2))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((inf1 && sign1) || (inf2 && sign2))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zero1 && zero2 && sign1 == sign2)
|
|
{
|
|
result = FPZero(sign1);
|
|
}
|
|
else
|
|
{
|
|
result = value1 + value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static int FPCompare(float value1, float value2, bool signalNaNs, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompare: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out _, state);
|
|
|
|
int result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = 0b0011;
|
|
|
|
if (type1 == FpType.SNaN || type2 == FpType.SNaN || signalNaNs)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (value1 == value2)
|
|
{
|
|
result = 0b0110;
|
|
}
|
|
else if (value1 < value2)
|
|
{
|
|
result = 0b1000;
|
|
}
|
|
else
|
|
{
|
|
result = 0b0010;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPCompareEQ(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareEQ: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
float result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
if (type1 == FpType.SNaN || type2 == FpType.SNaN)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 == value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPCompareGE(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareGE: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
float result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 >= value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPCompareGT(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareGT: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
float result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 > value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float FPCompareLE(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareLE: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
return FPCompareGE(value2, value1, state);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float FPCompareLT(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPCompareLT: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
return FPCompareGT(value2, value1, state);
|
|
}
|
|
|
|
public static float FPDiv(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPDiv: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && inf2) || (zero1 && zero2))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (inf1 || zero2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
|
|
if (!inf1)
|
|
{
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
}
|
|
else if (zero1 || inf2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 / value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPMax(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMax: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
if (value1 > value2)
|
|
{
|
|
if (type1 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign1);
|
|
}
|
|
else if (type1 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 && sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (type2 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign2);
|
|
}
|
|
else if (type2 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 && sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPMaxNum(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMaxNum: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
|
|
{
|
|
value1 = FPInfinity(true);
|
|
}
|
|
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
|
|
{
|
|
value2 = FPInfinity(true);
|
|
}
|
|
|
|
return FPMax(value1, value2, state);
|
|
}
|
|
|
|
public static float FPMin(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMin: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
if (value1 < value2)
|
|
{
|
|
if (type1 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign1);
|
|
}
|
|
else if (type1 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 || sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (type2 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign2);
|
|
}
|
|
else if (type2 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 || sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPMinNum(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMinNum: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
|
|
{
|
|
value1 = FPInfinity(false);
|
|
}
|
|
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
|
|
{
|
|
value2 = FPInfinity(false);
|
|
}
|
|
|
|
return FPMin(value1, value2, state);
|
|
}
|
|
|
|
public static float FPMul(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMul: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else if (zero1 || zero2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 * value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPMulAdd(
|
|
float valueA,
|
|
float value1,
|
|
float value2,
|
|
CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulAdd: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
valueA = valueA.FPUnpack(out FpType typeA, out bool signA, out uint addend, state);
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
float result = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, out bool done, state);
|
|
|
|
if (typeA == FpType.QNaN && ((inf1 && zero2) || (zero1 && inf2)))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
|
|
if (!done)
|
|
{
|
|
bool infA = typeA == FpType.Infinity; bool zeroA = typeA == FpType.Zero;
|
|
|
|
bool signP = sign1 ^ sign2;
|
|
bool infP = inf1 || inf2;
|
|
bool zeroP = zero1 || zero2;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((infA && !signA) || (infP && !signP))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((infA && signA) || (infP && signP))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zeroA && zeroP && signA == signP)
|
|
{
|
|
result = FPZero(signA);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = valueA + (value1 * value2);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float FPMulSub(
|
|
float valueA,
|
|
float value1,
|
|
float value2,
|
|
CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulSub: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
return FPMulAdd(valueA, value1, value2, state);
|
|
}
|
|
|
|
public static float FPMulX(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPMulX: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPTwo(sign1 ^ sign2);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else if (zero1 || zero2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 * value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPRecipEstimate(float value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecipEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
|
|
|
|
float result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
result = FPZero(sign);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPInfinity(sign);
|
|
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
else if (MathF.Abs(value) < MathF.Pow(2f, -128))
|
|
{
|
|
bool overflowToInf;
|
|
|
|
switch (state.FPRoundingMode())
|
|
{
|
|
default:
|
|
case RoundMode.ToNearest: overflowToInf = true; break;
|
|
case RoundMode.TowardsPlusInfinity: overflowToInf = !sign; break;
|
|
case RoundMode.TowardsMinusInfinity: overflowToInf = sign; break;
|
|
case RoundMode.TowardsZero: overflowToInf = false; break;
|
|
}
|
|
|
|
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
|
|
|
|
FPProcessException(FpExc.Overflow, state);
|
|
FPProcessException(FpExc.Inexact, state);
|
|
}
|
|
else if (state.GetFpcrFlag(Fpcr.Fz) && (MathF.Abs(value) >= MathF.Pow(2f, 126)))
|
|
{
|
|
result = FPZero(sign);
|
|
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
}
|
|
else
|
|
{
|
|
ulong fraction = (ulong)(op & 0x007FFFFFu) << 29;
|
|
uint exp = (op & 0x7F800000u) >> 23;
|
|
|
|
if (exp == 0u)
|
|
{
|
|
if ((fraction & 0x0008000000000000ul) == 0ul)
|
|
{
|
|
fraction = (fraction & 0x0003FFFFFFFFFFFFul) << 2;
|
|
exp -= 1u;
|
|
}
|
|
else
|
|
{
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
}
|
|
}
|
|
|
|
uint scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
|
|
|
|
uint resultExp = 253u - exp;
|
|
|
|
uint estimate = (uint)SoftFloat.RecipEstimateTable[scaled - 256u] + 256u;
|
|
|
|
fraction = (ulong)(estimate & 0xFFu) << 44;
|
|
|
|
if (resultExp == 0u)
|
|
{
|
|
fraction = ((fraction & 0x000FFFFFFFFFFFFEul) | 0x0010000000000000ul) >> 1;
|
|
}
|
|
else if (resultExp + 1u == 0u)
|
|
{
|
|
fraction = ((fraction & 0x000FFFFFFFFFFFFCul) | 0x0010000000000000ul) >> 2;
|
|
resultExp = 0u;
|
|
}
|
|
|
|
result = BitConverter.Int32BitsToSingle(
|
|
(int)((sign ? 1u : 0u) << 31 | (resultExp & 0xFFu) << 23 | (uint)(fraction >> 29) & 0x007FFFFFu));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPRecipStepFused(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecipStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPTwo(false);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = 2f + (value1 * value2);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPRecpX(float value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRecpX: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
|
|
|
|
float result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else
|
|
{
|
|
uint notExp = (~op >> 23) & 0xFFu;
|
|
uint maxExp = 0xFEu;
|
|
|
|
result = BitConverter.Int32BitsToSingle(
|
|
(int)((sign ? 1u : 0u) << 31 | (notExp == 0xFFu ? maxExp : notExp) << 23));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPRSqrtEstimate(float value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRSqrtEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out uint op, state);
|
|
|
|
float result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPInfinity(sign);
|
|
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
else if (sign)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
result = FPZero(false);
|
|
}
|
|
else
|
|
{
|
|
ulong fraction = (ulong)(op & 0x007FFFFFu) << 29;
|
|
uint exp = (op & 0x7F800000u) >> 23;
|
|
|
|
if (exp == 0u)
|
|
{
|
|
while ((fraction & 0x0008000000000000ul) == 0ul)
|
|
{
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
exp -= 1u;
|
|
}
|
|
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
}
|
|
|
|
uint scaled;
|
|
|
|
if ((exp & 1u) == 0u)
|
|
{
|
|
scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
|
|
}
|
|
else
|
|
{
|
|
scaled = (uint)(((fraction & 0x000FE00000000000ul) | 0x0010000000000000ul) >> 45);
|
|
}
|
|
|
|
uint resultExp = (380u - exp) >> 1;
|
|
|
|
uint estimate = (uint)SoftFloat.RecipSqrtEstimateTable[scaled - 128u] + 256u;
|
|
|
|
result = BitConverter.Int32BitsToSingle((int)((resultExp & 0xFFu) << 23 | (estimate & 0xFFu) << 15));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPRSqrtStepFused(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPRSqrtStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPOnePointFive(false);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T MathF.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = (3f + (value1 * value2)) / 2f;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPSqrt(float value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPSqrt: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value = value.FPUnpack(out FpType type, out bool sign, out uint op, state);
|
|
|
|
float result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPZero(sign);
|
|
}
|
|
else if (type == FpType.Infinity && !sign)
|
|
{
|
|
result = FPInfinity(sign);
|
|
}
|
|
else if (sign)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = MathF.Sqrt(value);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static float FPSub(float value1, float value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat32.FPSub: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out uint op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out uint op2, state);
|
|
|
|
float result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if (inf1 && inf2 && sign1 == sign2)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((inf1 && !sign1) || (inf2 && sign2))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((inf1 && sign1) || (inf2 && !sign2))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zero1 && zero2 && sign1 == !sign2)
|
|
{
|
|
result = FPZero(sign1);
|
|
}
|
|
else
|
|
{
|
|
result = value1 - value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && float.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private static float FPDefaultNaN()
|
|
{
|
|
return -float.NaN;
|
|
}
|
|
|
|
private static float FPInfinity(bool sign)
|
|
{
|
|
return sign ? float.NegativeInfinity : float.PositiveInfinity;
|
|
}
|
|
|
|
private static float FPZero(bool sign)
|
|
{
|
|
return sign ? -0f : +0f;
|
|
}
|
|
|
|
private static float FPMaxNormal(bool sign)
|
|
{
|
|
return sign ? float.MinValue : float.MaxValue;
|
|
}
|
|
|
|
private static float FPTwo(bool sign)
|
|
{
|
|
return sign ? -2f : +2f;
|
|
}
|
|
|
|
private static float FPOnePointFive(bool sign)
|
|
{
|
|
return sign ? -1.5f : +1.5f;
|
|
}
|
|
|
|
private static float FPNeg(this float value)
|
|
{
|
|
return -value;
|
|
}
|
|
|
|
private static float ZerosOrOnes(bool ones)
|
|
{
|
|
return BitConverter.Int32BitsToSingle(ones ? -1 : 0);
|
|
}
|
|
|
|
private static float FPUnpack(
|
|
this float value,
|
|
out FpType type,
|
|
out bool sign,
|
|
out uint valueBits,
|
|
CpuThreadState state)
|
|
{
|
|
valueBits = (uint)BitConverter.SingleToInt32Bits(value);
|
|
|
|
sign = (~valueBits & 0x80000000u) == 0u;
|
|
|
|
if ((valueBits & 0x7F800000u) == 0u)
|
|
{
|
|
if ((valueBits & 0x007FFFFFu) == 0u || state.GetFpcrFlag(Fpcr.Fz))
|
|
{
|
|
type = FpType.Zero;
|
|
value = FPZero(sign);
|
|
|
|
if ((valueBits & 0x007FFFFFu) != 0u)
|
|
{
|
|
FPProcessException(FpExc.InputDenorm, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero;
|
|
}
|
|
}
|
|
else if ((~valueBits & 0x7F800000u) == 0u)
|
|
{
|
|
if ((valueBits & 0x007FFFFFu) == 0u)
|
|
{
|
|
type = FpType.Infinity;
|
|
}
|
|
else
|
|
{
|
|
type = (~valueBits & 0x00400000u) == 0u ? FpType.QNaN : FpType.SNaN;
|
|
value = FPZero(sign);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
private static float FPProcessNaNs(
|
|
FpType type1,
|
|
FpType type2,
|
|
uint op1,
|
|
uint op2,
|
|
out bool done,
|
|
CpuThreadState state)
|
|
{
|
|
done = true;
|
|
|
|
if (type1 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type1 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
|
|
done = false;
|
|
|
|
return FPZero(false);
|
|
}
|
|
|
|
private static float FPProcessNaNs3(
|
|
FpType type1,
|
|
FpType type2,
|
|
FpType type3,
|
|
uint op1,
|
|
uint op2,
|
|
uint op3,
|
|
out bool done,
|
|
CpuThreadState state)
|
|
{
|
|
done = true;
|
|
|
|
if (type1 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type3 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type3, op3, state);
|
|
}
|
|
else if (type1 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type3 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type3, op3, state);
|
|
}
|
|
|
|
done = false;
|
|
|
|
return FPZero(false);
|
|
}
|
|
|
|
private static float FPProcessNaN(FpType type, uint op, CpuThreadState state)
|
|
{
|
|
if (type == FpType.SNaN)
|
|
{
|
|
op |= 1u << 22;
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Dn))
|
|
{
|
|
return FPDefaultNaN();
|
|
}
|
|
|
|
return BitConverter.Int32BitsToSingle((int)op);
|
|
}
|
|
|
|
private static void FPProcessException(FpExc exc, CpuThreadState state)
|
|
{
|
|
int enable = (int)exc + 8;
|
|
|
|
if ((state.CFpcr & (1 << enable)) != 0)
|
|
{
|
|
throw new NotImplementedException("Floating-point trap handling.");
|
|
}
|
|
else
|
|
{
|
|
state.CFpsr |= 1 << (int)exc;
|
|
}
|
|
}
|
|
}
|
|
|
|
static class SoftFloat64
|
|
{
|
|
public static double FPAdd(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPAdd: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if (inf1 && inf2 && sign1 == !sign2)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((inf1 && !sign1) || (inf2 && !sign2))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((inf1 && sign1) || (inf2 && sign2))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zero1 && zero2 && sign1 == sign2)
|
|
{
|
|
result = FPZero(sign1);
|
|
}
|
|
else
|
|
{
|
|
result = value1 + value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static int FPCompare(double value1, double value2, bool signalNaNs, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompare: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out _, state);
|
|
|
|
int result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = 0b0011;
|
|
|
|
if (type1 == FpType.SNaN || type2 == FpType.SNaN || signalNaNs)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (value1 == value2)
|
|
{
|
|
result = 0b0110;
|
|
}
|
|
else if (value1 < value2)
|
|
{
|
|
result = 0b1000;
|
|
}
|
|
else
|
|
{
|
|
result = 0b0010;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPCompareEQ(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareEQ: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
double result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
if (type1 == FpType.SNaN || type2 == FpType.SNaN)
|
|
{
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 == value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPCompareGE(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareGE: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
double result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 >= value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPCompareGT(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareGT: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
double result;
|
|
|
|
if (type1 == FpType.SNaN || type1 == FpType.QNaN || type2 == FpType.SNaN || type2 == FpType.QNaN)
|
|
{
|
|
result = ZerosOrOnes(false);
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = ZerosOrOnes(value1 > value2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static double FPCompareLE(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareLE: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
return FPCompareGE(value2, value1, state);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static double FPCompareLT(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPCompareLT: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
return FPCompareGT(value2, value1, state);
|
|
}
|
|
|
|
public static double FPDiv(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPDiv: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && inf2) || (zero1 && zero2))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (inf1 || zero2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
|
|
if (!inf1)
|
|
{
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
}
|
|
else if (zero1 || inf2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 / value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPMax(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMax: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
if (value1 > value2)
|
|
{
|
|
if (type1 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign1);
|
|
}
|
|
else if (type1 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 && sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (type2 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign2);
|
|
}
|
|
else if (type2 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 && sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPMaxNum(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMaxNum: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
|
|
{
|
|
value1 = FPInfinity(true);
|
|
}
|
|
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
|
|
{
|
|
value2 = FPInfinity(true);
|
|
}
|
|
|
|
return FPMax(value1, value2, state);
|
|
}
|
|
|
|
public static double FPMin(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMin: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
if (value1 < value2)
|
|
{
|
|
if (type1 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign1);
|
|
}
|
|
else if (type1 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 || sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (type2 == FpType.Infinity)
|
|
{
|
|
result = FPInfinity(sign2);
|
|
}
|
|
else if (type2 == FpType.Zero)
|
|
{
|
|
result = FPZero(sign1 || sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPMinNum(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMinNum: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1.FPUnpack(out FpType type1, out _, out _, state);
|
|
value2.FPUnpack(out FpType type2, out _, out _, state);
|
|
|
|
if (type1 == FpType.QNaN && type2 != FpType.QNaN)
|
|
{
|
|
value1 = FPInfinity(false);
|
|
}
|
|
else if (type1 != FpType.QNaN && type2 == FpType.QNaN)
|
|
{
|
|
value2 = FPInfinity(false);
|
|
}
|
|
|
|
return FPMin(value1, value2, state);
|
|
}
|
|
|
|
public static double FPMul(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMul: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else if (zero1 || zero2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 * value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPMulAdd(
|
|
double valueA,
|
|
double value1,
|
|
double value2,
|
|
CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulAdd: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
valueA = valueA.FPUnpack(out FpType typeA, out bool signA, out ulong addend, state);
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
double result = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, out bool done, state);
|
|
|
|
if (typeA == FpType.QNaN && ((inf1 && zero2) || (zero1 && inf2)))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
|
|
if (!done)
|
|
{
|
|
bool infA = typeA == FpType.Infinity; bool zeroA = typeA == FpType.Zero;
|
|
|
|
bool signP = sign1 ^ sign2;
|
|
bool infP = inf1 || inf2;
|
|
bool zeroP = zero1 || zero2;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP))
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((infA && !signA) || (infP && !signP))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((infA && signA) || (infP && signP))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zeroA && zeroP && signA == signP)
|
|
{
|
|
result = FPZero(signA);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = valueA + (value1 * value2);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static double FPMulSub(
|
|
double valueA,
|
|
double value1,
|
|
double value2,
|
|
CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulSub: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
return FPMulAdd(valueA, value1, value2, state);
|
|
}
|
|
|
|
public static double FPMulX(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPMulX: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPTwo(sign1 ^ sign2);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else if (zero1 || zero2)
|
|
{
|
|
result = FPZero(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
result = value1 * value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPRecipEstimate(double value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecipEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
|
|
|
|
double result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
result = FPZero(sign);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPInfinity(sign);
|
|
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
else if (Math.Abs(value) < Math.Pow(2d, -1024))
|
|
{
|
|
bool overflowToInf;
|
|
|
|
switch (state.FPRoundingMode())
|
|
{
|
|
default:
|
|
case RoundMode.ToNearest: overflowToInf = true; break;
|
|
case RoundMode.TowardsPlusInfinity: overflowToInf = !sign; break;
|
|
case RoundMode.TowardsMinusInfinity: overflowToInf = sign; break;
|
|
case RoundMode.TowardsZero: overflowToInf = false; break;
|
|
}
|
|
|
|
result = overflowToInf ? FPInfinity(sign) : FPMaxNormal(sign);
|
|
|
|
FPProcessException(FpExc.Overflow, state);
|
|
FPProcessException(FpExc.Inexact, state);
|
|
}
|
|
else if (state.GetFpcrFlag(Fpcr.Fz) && (Math.Abs(value) >= Math.Pow(2d, 1022)))
|
|
{
|
|
result = FPZero(sign);
|
|
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
}
|
|
else
|
|
{
|
|
ulong fraction = op & 0x000FFFFFFFFFFFFFul;
|
|
uint exp = (uint)((op & 0x7FF0000000000000ul) >> 52);
|
|
|
|
if (exp == 0u)
|
|
{
|
|
if ((fraction & 0x0008000000000000ul) == 0ul)
|
|
{
|
|
fraction = (fraction & 0x0003FFFFFFFFFFFFul) << 2;
|
|
exp -= 1u;
|
|
}
|
|
else
|
|
{
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
}
|
|
}
|
|
|
|
uint scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
|
|
|
|
uint resultExp = 2045u - exp;
|
|
|
|
uint estimate = (uint)SoftFloat.RecipEstimateTable[scaled - 256u] + 256u;
|
|
|
|
fraction = (ulong)(estimate & 0xFFu) << 44;
|
|
|
|
if (resultExp == 0u)
|
|
{
|
|
fraction = ((fraction & 0x000FFFFFFFFFFFFEul) | 0x0010000000000000ul) >> 1;
|
|
}
|
|
else if (resultExp + 1u == 0u)
|
|
{
|
|
fraction = ((fraction & 0x000FFFFFFFFFFFFCul) | 0x0010000000000000ul) >> 2;
|
|
resultExp = 0u;
|
|
}
|
|
|
|
result = BitConverter.Int64BitsToDouble(
|
|
(long)((sign ? 1ul : 0ul) << 63 | (resultExp & 0x7FFul) << 52 | (fraction & 0x000FFFFFFFFFFFFFul)));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPRecipStepFused(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecipStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPTwo(false);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = 2d + (value1 * value2);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPRecpX(double value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRecpX: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
|
|
|
|
double result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else
|
|
{
|
|
ulong notExp = (~op >> 52) & 0x7FFul;
|
|
ulong maxExp = 0x7FEul;
|
|
|
|
result = BitConverter.Int64BitsToDouble(
|
|
(long)((sign ? 1ul : 0ul) << 63 | (notExp == 0x7FFul ? maxExp : notExp) << 52));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPRSqrtEstimate(double value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRSqrtEstimate: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
|
|
|
|
double result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPInfinity(sign);
|
|
|
|
FPProcessException(FpExc.DivideByZero, state);
|
|
}
|
|
else if (sign)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if (type == FpType.Infinity)
|
|
{
|
|
result = FPZero(false);
|
|
}
|
|
else
|
|
{
|
|
ulong fraction = op & 0x000FFFFFFFFFFFFFul;
|
|
uint exp = (uint)((op & 0x7FF0000000000000ul) >> 52);
|
|
|
|
if (exp == 0u)
|
|
{
|
|
while ((fraction & 0x0008000000000000ul) == 0ul)
|
|
{
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
exp -= 1u;
|
|
}
|
|
|
|
fraction = (fraction & 0x0007FFFFFFFFFFFFul) << 1;
|
|
}
|
|
|
|
uint scaled;
|
|
|
|
if ((exp & 1u) == 0u)
|
|
{
|
|
scaled = (uint)(((fraction & 0x000FF00000000000ul) | 0x0010000000000000ul) >> 44);
|
|
}
|
|
else
|
|
{
|
|
scaled = (uint)(((fraction & 0x000FE00000000000ul) | 0x0010000000000000ul) >> 45);
|
|
}
|
|
|
|
uint resultExp = (3068u - exp) >> 1;
|
|
|
|
uint estimate = (uint)SoftFloat.RecipSqrtEstimateTable[scaled - 128u] + 256u;
|
|
|
|
result = BitConverter.Int64BitsToDouble((long)((resultExp & 0x7FFul) << 52 | (estimate & 0xFFul) << 44));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPRSqrtStepFused(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPRSqrtStepFused: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPNeg();
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if ((inf1 && zero2) || (zero1 && inf2))
|
|
{
|
|
result = FPOnePointFive(false);
|
|
}
|
|
else if (inf1 || inf2)
|
|
{
|
|
result = FPInfinity(sign1 ^ sign2);
|
|
}
|
|
else
|
|
{
|
|
// TODO: When available, use: T Math.FusedMultiplyAdd(T, T, T);
|
|
// https://github.com/dotnet/corefx/issues/31903
|
|
|
|
result = (3d + (value1 * value2)) / 2d;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPSqrt(double value, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPSqrt: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value = value.FPUnpack(out FpType type, out bool sign, out ulong op, state);
|
|
|
|
double result;
|
|
|
|
if (type == FpType.SNaN || type == FpType.QNaN)
|
|
{
|
|
result = FPProcessNaN(type, op, state);
|
|
}
|
|
else if (type == FpType.Zero)
|
|
{
|
|
result = FPZero(sign);
|
|
}
|
|
else if (type == FpType.Infinity && !sign)
|
|
{
|
|
result = FPInfinity(sign);
|
|
}
|
|
else if (sign)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else
|
|
{
|
|
result = Math.Sqrt(value);
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static double FPSub(double value1, double value2, CpuThreadState state)
|
|
{
|
|
Debug.WriteLineIf(state.CFpcr != 0, $"SoftFloat64.FPSub: state.Fpcr = 0x{state.CFpcr:X8}");
|
|
|
|
value1 = value1.FPUnpack(out FpType type1, out bool sign1, out ulong op1, state);
|
|
value2 = value2.FPUnpack(out FpType type2, out bool sign2, out ulong op2, state);
|
|
|
|
double result = FPProcessNaNs(type1, type2, op1, op2, out bool done, state);
|
|
|
|
if (!done)
|
|
{
|
|
bool inf1 = type1 == FpType.Infinity; bool zero1 = type1 == FpType.Zero;
|
|
bool inf2 = type2 == FpType.Infinity; bool zero2 = type2 == FpType.Zero;
|
|
|
|
if (inf1 && inf2 && sign1 == sign2)
|
|
{
|
|
result = FPDefaultNaN();
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
else if ((inf1 && !sign1) || (inf2 && sign2))
|
|
{
|
|
result = FPInfinity(false);
|
|
}
|
|
else if ((inf1 && sign1) || (inf2 && !sign2))
|
|
{
|
|
result = FPInfinity(true);
|
|
}
|
|
else if (zero1 && zero2 && sign1 == !sign2)
|
|
{
|
|
result = FPZero(sign1);
|
|
}
|
|
else
|
|
{
|
|
result = value1 - value2;
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Fz) && double.IsSubnormal(result))
|
|
{
|
|
state.SetFpsrFlag(Fpsr.Ufc);
|
|
|
|
result = FPZero(result < 0d);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private static double FPDefaultNaN()
|
|
{
|
|
return -double.NaN;
|
|
}
|
|
|
|
private static double FPInfinity(bool sign)
|
|
{
|
|
return sign ? double.NegativeInfinity : double.PositiveInfinity;
|
|
}
|
|
|
|
private static double FPZero(bool sign)
|
|
{
|
|
return sign ? -0d : +0d;
|
|
}
|
|
|
|
private static double FPMaxNormal(bool sign)
|
|
{
|
|
return sign ? double.MinValue : double.MaxValue;
|
|
}
|
|
|
|
private static double FPTwo(bool sign)
|
|
{
|
|
return sign ? -2d : +2d;
|
|
}
|
|
|
|
private static double FPOnePointFive(bool sign)
|
|
{
|
|
return sign ? -1.5d : +1.5d;
|
|
}
|
|
|
|
private static double FPNeg(this double value)
|
|
{
|
|
return -value;
|
|
}
|
|
|
|
private static double ZerosOrOnes(bool ones)
|
|
{
|
|
return BitConverter.Int64BitsToDouble(ones ? -1L : 0L);
|
|
}
|
|
|
|
private static double FPUnpack(
|
|
this double value,
|
|
out FpType type,
|
|
out bool sign,
|
|
out ulong valueBits,
|
|
CpuThreadState state)
|
|
{
|
|
valueBits = (ulong)BitConverter.DoubleToInt64Bits(value);
|
|
|
|
sign = (~valueBits & 0x8000000000000000ul) == 0ul;
|
|
|
|
if ((valueBits & 0x7FF0000000000000ul) == 0ul)
|
|
{
|
|
if ((valueBits & 0x000FFFFFFFFFFFFFul) == 0ul || state.GetFpcrFlag(Fpcr.Fz))
|
|
{
|
|
type = FpType.Zero;
|
|
value = FPZero(sign);
|
|
|
|
if ((valueBits & 0x000FFFFFFFFFFFFFul) != 0ul)
|
|
{
|
|
FPProcessException(FpExc.InputDenorm, state);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero;
|
|
}
|
|
}
|
|
else if ((~valueBits & 0x7FF0000000000000ul) == 0ul)
|
|
{
|
|
if ((valueBits & 0x000FFFFFFFFFFFFFul) == 0ul)
|
|
{
|
|
type = FpType.Infinity;
|
|
}
|
|
else
|
|
{
|
|
type = (~valueBits & 0x0008000000000000ul) == 0ul ? FpType.QNaN : FpType.SNaN;
|
|
value = FPZero(sign);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
type = FpType.Nonzero;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
private static double FPProcessNaNs(
|
|
FpType type1,
|
|
FpType type2,
|
|
ulong op1,
|
|
ulong op2,
|
|
out bool done,
|
|
CpuThreadState state)
|
|
{
|
|
done = true;
|
|
|
|
if (type1 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type1 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
|
|
done = false;
|
|
|
|
return FPZero(false);
|
|
}
|
|
|
|
private static double FPProcessNaNs3(
|
|
FpType type1,
|
|
FpType type2,
|
|
FpType type3,
|
|
ulong op1,
|
|
ulong op2,
|
|
ulong op3,
|
|
out bool done,
|
|
CpuThreadState state)
|
|
{
|
|
done = true;
|
|
|
|
if (type1 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type3 == FpType.SNaN)
|
|
{
|
|
return FPProcessNaN(type3, op3, state);
|
|
}
|
|
else if (type1 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type1, op1, state);
|
|
}
|
|
else if (type2 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type2, op2, state);
|
|
}
|
|
else if (type3 == FpType.QNaN)
|
|
{
|
|
return FPProcessNaN(type3, op3, state);
|
|
}
|
|
|
|
done = false;
|
|
|
|
return FPZero(false);
|
|
}
|
|
|
|
private static double FPProcessNaN(FpType type, ulong op, CpuThreadState state)
|
|
{
|
|
if (type == FpType.SNaN)
|
|
{
|
|
op |= 1ul << 51;
|
|
|
|
FPProcessException(FpExc.InvalidOp, state);
|
|
}
|
|
|
|
if (state.GetFpcrFlag(Fpcr.Dn))
|
|
{
|
|
return FPDefaultNaN();
|
|
}
|
|
|
|
return BitConverter.Int64BitsToDouble((long)op);
|
|
}
|
|
|
|
private static void FPProcessException(FpExc exc, CpuThreadState state)
|
|
{
|
|
int enable = (int)exc + 8;
|
|
|
|
if ((state.CFpcr & (1 << enable)) != 0)
|
|
{
|
|
throw new NotImplementedException("Floating-point trap handling.");
|
|
}
|
|
else
|
|
{
|
|
state.CFpsr |= 1 << (int)exc;
|
|
}
|
|
}
|
|
}
|
|
}
|