Ryujinx/ARMeilleure/Instructions/InstEmitSimdCmp.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

712 lines
22 KiB
C#

using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.State;
using ARMeilleure.Translation;
using System;
using static ARMeilleure.Instructions.InstEmitHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.Instructions
{
using Func2I = Func<Operand, Operand, Operand>;
static partial class InstEmit
{
public static void Cmeq_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareEqual(op1, op2), scalar: true);
}
public static void Cmeq_V(ArmEmitterContext context)
{
if (Optimizations.UseSse41)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Operand m;
if (op is OpCodeSimdReg binOp)
{
m = GetVec(binOp.Rm);
}
else
{
m = context.VectorZero();
}
Intrinsic cmpInst = X86PcmpeqInstruction[op.Size];
Operand res = context.AddIntrinsic(cmpInst, n, m);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareEqual(op1, op2), scalar: false);
}
}
public static void Cmge_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterOrEqual(op1, op2), scalar: true);
}
public static void Cmge_V(ArmEmitterContext context)
{
if (Optimizations.UseSse42)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Operand m;
if (op is OpCodeSimdReg binOp)
{
m = GetVec(binOp.Rm);
}
else
{
m = context.VectorZero();
}
Intrinsic cmpInst = X86PcmpgtInstruction[op.Size];
Operand res = context.AddIntrinsic(cmpInst, m, n);
Operand mask = X86GetAllElements(context, -1L);
res = context.AddIntrinsic(Intrinsic.X86Pandn, res, mask);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterOrEqual(op1, op2), scalar: false);
}
}
public static void Cmgt_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreater(op1, op2), scalar: true);
}
public static void Cmgt_V(ArmEmitterContext context)
{
if (Optimizations.UseSse42)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Operand m;
if (op is OpCodeSimdReg binOp)
{
m = GetVec(binOp.Rm);
}
else
{
m = context.VectorZero();
}
Intrinsic cmpInst = X86PcmpgtInstruction[op.Size];
Operand res = context.AddIntrinsic(cmpInst, n, m);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreater(op1, op2), scalar: false);
}
}
public static void Cmhi_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterUI(op1, op2), scalar: true);
}
public static void Cmhi_V(ArmEmitterContext context)
{
OpCodeSimdReg op = (OpCodeSimdReg)context.CurrOp;
if (Optimizations.UseSse41 && op.Size < 3)
{
Operand n = GetVec(op.Rn);
Operand m = GetVec(op.Rm);
Intrinsic maxInst = X86PmaxuInstruction[op.Size];
Operand res = context.AddIntrinsic(maxInst, m, n);
Intrinsic cmpInst = X86PcmpeqInstruction[op.Size];
res = context.AddIntrinsic(cmpInst, res, m);
Operand mask = X86GetAllElements(context, -1L);
res = context.AddIntrinsic(Intrinsic.X86Pandn, res, mask);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterUI(op1, op2), scalar: false);
}
}
public static void Cmhs_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterOrEqualUI(op1, op2), scalar: true);
}
public static void Cmhs_V(ArmEmitterContext context)
{
OpCodeSimdReg op = (OpCodeSimdReg)context.CurrOp;
if (Optimizations.UseSse41 && op.Size < 3)
{
Operand n = GetVec(op.Rn);
Operand m = GetVec(op.Rm);
Intrinsic maxInst = X86PmaxuInstruction[op.Size];
Operand res = context.AddIntrinsic(maxInst, n, m);
Intrinsic cmpInst = X86PcmpeqInstruction[op.Size];
res = context.AddIntrinsic(cmpInst, res, n);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareGreaterOrEqualUI(op1, op2), scalar: false);
}
}
public static void Cmle_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareLessOrEqual(op1, op2), scalar: true);
}
public static void Cmle_V(ArmEmitterContext context)
{
if (Optimizations.UseSse42)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Intrinsic cmpInst = X86PcmpgtInstruction[op.Size];
Operand res = context.AddIntrinsic(cmpInst, n, context.VectorZero());
Operand mask = X86GetAllElements(context, -1L);
res = context.AddIntrinsic(Intrinsic.X86Pandn, res, mask);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareLessOrEqual(op1, op2), scalar: false);
}
}
public static void Cmlt_S(ArmEmitterContext context)
{
EmitCmpOp(context, (op1, op2) => context.ICompareLess(op1, op2), scalar: true);
}
public static void Cmlt_V(ArmEmitterContext context)
{
if (Optimizations.UseSse42)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Intrinsic cmpInst = X86PcmpgtInstruction[op.Size];
Operand res = context.AddIntrinsic(cmpInst, context.VectorZero(), n);
if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else
{
EmitCmpOp(context, (op1, op2) => context.ICompareLess(op1, op2), scalar: false);
}
}
public static void Cmtst_S(ArmEmitterContext context)
{
EmitCmtstOp(context, scalar: true);
}
public static void Cmtst_V(ArmEmitterContext context)
{
EmitCmtstOp(context, scalar: false);
}
public static void Fccmp_S(ArmEmitterContext context)
{
EmitFccmpOrFccmpe(context, signalNaNs: false);
}
public static void Fccmpe_S(ArmEmitterContext context)
{
EmitFccmpOrFccmpe(context, signalNaNs: true);
}
public static void Fcmeq_S(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.Equal, scalar: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareEQ, SoftFloat64.FPCompareEQ, scalar: true);
}
}
public static void Fcmeq_V(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.Equal, scalar: false);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareEQ, SoftFloat64.FPCompareEQ, scalar: false);
}
}
public static void Fcmge_S(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThanOrEqual, scalar: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareGE, SoftFloat64.FPCompareGE, scalar: true);
}
}
public static void Fcmge_V(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThanOrEqual, scalar: false);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareGE, SoftFloat64.FPCompareGE, scalar: false);
}
}
public static void Fcmgt_S(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThan, scalar: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareGT, SoftFloat64.FPCompareGT, scalar: true);
}
}
public static void Fcmgt_V(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThan, scalar: false);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareGT, SoftFloat64.FPCompareGT, scalar: false);
}
}
public static void Fcmle_S(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThanOrEqual, scalar: true, isLeOrLt: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareLE, SoftFloat64.FPCompareLE, scalar: true);
}
}
public static void Fcmle_V(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThanOrEqual, scalar: false, isLeOrLt: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareLE, SoftFloat64.FPCompareLE, scalar: false);
}
}
public static void Fcmlt_S(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThan, scalar: true, isLeOrLt: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareLT, SoftFloat64.FPCompareLT, scalar: true);
}
}
public static void Fcmlt_V(ArmEmitterContext context)
{
if (Optimizations.FastFP && Optimizations.UseSse2)
{
EmitCmpSseOrSse2OpF(context, CmpCondition.GreaterThan, scalar: false, isLeOrLt: true);
}
else
{
EmitCmpOpF(context, SoftFloat32.FPCompareLT, SoftFloat64.FPCompareLT, scalar: false);
}
}
public static void Fcmp_S(ArmEmitterContext context)
{
EmitFcmpOrFcmpe(context, signalNaNs: false);
}
public static void Fcmpe_S(ArmEmitterContext context)
{
EmitFcmpOrFcmpe(context, signalNaNs: true);
}
public static void EmitFccmpOrFccmpe(ArmEmitterContext context, bool signalNaNs)
{
OpCodeSimdFcond op = (OpCodeSimdFcond)context.CurrOp;
Operand lblTrue = Label();
Operand lblEnd = Label();
context.BranchIfTrue(lblTrue, InstEmitFlowHelper.GetCondTrue(context, op.Cond));
EmitSetNzcv(context, Const(op.Nzcv));
context.Branch(lblEnd);
context.MarkLabel(lblTrue);
EmitFcmpOrFcmpe(context, signalNaNs);
context.MarkLabel(lblEnd);
}
private static void EmitFcmpOrFcmpe(ArmEmitterContext context, bool signalNaNs)
{
OpCodeSimdReg op = (OpCodeSimdReg)context.CurrOp;
const int cmpOrdered = 7;
bool cmpWithZero = !(op is OpCodeSimdFcond) ? op.Bit3 : false;
if (Optimizations.FastFP && Optimizations.UseSse2)
{
Operand n = GetVec(op.Rn);
Operand m = cmpWithZero ? context.VectorZero() : GetVec(op.Rm);
Operand lblNaN = Label();
Operand lblEnd = Label();
if (op.Size == 0)
{
Operand ordMask = context.AddIntrinsic(Intrinsic.X86Cmpss, n, m, Const(cmpOrdered));
Operand isOrdered = context.VectorExtract16(ordMask, 0);
context.BranchIfFalse(lblNaN, isOrdered);
Operand cf = context.AddIntrinsicInt(Intrinsic.X86Comissge, n, m);
Operand zf = context.AddIntrinsicInt(Intrinsic.X86Comisseq, n, m);
Operand nf = context.AddIntrinsicInt(Intrinsic.X86Comisslt, n, m);
SetFlag(context, PState.VFlag, Const(0));
SetFlag(context, PState.CFlag, cf);
SetFlag(context, PState.ZFlag, zf);
SetFlag(context, PState.NFlag, nf);
}
else /* if (op.Size == 1) */
{
Operand ordMask = context.AddIntrinsic(Intrinsic.X86Cmpsd, n, m, Const(cmpOrdered));
Operand isOrdered = context.VectorExtract16(ordMask, 0);
context.BranchIfFalse(lblNaN, isOrdered);
Operand cf = context.AddIntrinsicInt(Intrinsic.X86Comisdge, n, m);
Operand zf = context.AddIntrinsicInt(Intrinsic.X86Comisdeq, n, m);
Operand nf = context.AddIntrinsicInt(Intrinsic.X86Comisdlt, n, m);
SetFlag(context, PState.VFlag, Const(0));
SetFlag(context, PState.CFlag, cf);
SetFlag(context, PState.ZFlag, zf);
SetFlag(context, PState.NFlag, nf);
}
context.Branch(lblEnd);
context.MarkLabel(lblNaN);
SetFlag(context, PState.VFlag, Const(1));
SetFlag(context, PState.CFlag, Const(1));
SetFlag(context, PState.ZFlag, Const(0));
SetFlag(context, PState.NFlag, Const(0));
context.MarkLabel(lblEnd);
}
else
{
OperandType type = op.Size != 0 ? OperandType.FP64 : OperandType.FP32;
Operand ne = context.VectorExtract(type, GetVec(op.Rn), 0);
Operand me;
if (cmpWithZero)
{
me = op.Size == 0 ? ConstF(0f) : ConstF(0d);
}
else
{
me = context.VectorExtract(type, GetVec(op.Rm), 0);
}
Delegate dlg = op.Size != 0
? (Delegate)new _S32_F64_F64_Bool(SoftFloat64.FPCompare)
: (Delegate)new _S32_F32_F32_Bool(SoftFloat32.FPCompare);
Operand nzcv = context.Call(dlg, ne, me, Const(signalNaNs));
EmitSetNzcv(context, nzcv);
}
}
private static void EmitSetNzcv(ArmEmitterContext context, Operand nzcv)
{
Operand Extract(Operand value, int bit)
{
if (bit != 0)
{
value = context.ShiftRightUI(value, Const(bit));
}
value = context.BitwiseAnd(value, Const(1));
return value;
}
SetFlag(context, PState.VFlag, Extract(nzcv, 0));
SetFlag(context, PState.CFlag, Extract(nzcv, 1));
SetFlag(context, PState.ZFlag, Extract(nzcv, 2));
SetFlag(context, PState.NFlag, Extract(nzcv, 3));
}
private static void EmitCmpOp(ArmEmitterContext context, Func2I emitCmp, bool scalar)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand res = context.VectorZero();
int elems = !scalar ? op.GetBytesCount() >> op.Size : 1;
ulong szMask = ulong.MaxValue >> (64 - (8 << op.Size));
for (int index = 0; index < elems; index++)
{
Operand ne = EmitVectorExtractSx(context, op.Rn, index, op.Size);
Operand me;
if (op is OpCodeSimdReg binOp)
{
me = EmitVectorExtractSx(context, binOp.Rm, index, op.Size);
}
else
{
me = Const(0L);
}
Operand isTrue = emitCmp(ne, me);
Operand mask = context.ConditionalSelect(isTrue, Const(szMask), Const(0L));
res = EmitVectorInsert(context, res, mask, index, op.Size);
}
context.Copy(GetVec(op.Rd), res);
}
private static void EmitCmtstOp(ArmEmitterContext context, bool scalar)
{
OpCodeSimdReg op = (OpCodeSimdReg)context.CurrOp;
Operand res = context.VectorZero();
int elems = !scalar ? op.GetBytesCount() >> op.Size : 1;
ulong szMask = ulong.MaxValue >> (64 - (8 << op.Size));
for (int index = 0; index < elems; index++)
{
Operand ne = EmitVectorExtractZx(context, op.Rn, index, op.Size);
Operand me = EmitVectorExtractZx(context, op.Rm, index, op.Size);
Operand test = context.BitwiseAnd(ne, me);
Operand isTrue = context.ICompareNotEqual(test, Const(0L));
Operand mask = context.ConditionalSelect(isTrue, Const(szMask), Const(0L));
res = EmitVectorInsert(context, res, mask, index, op.Size);
}
context.Copy(GetVec(op.Rd), res);
}
private static void EmitCmpOpF(
ArmEmitterContext context,
_F32_F32_F32 f32,
_F64_F64_F64 f64,
bool scalar)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand res = context.VectorZero();
int sizeF = op.Size & 1;
OperandType type = sizeF != 0 ? OperandType.FP64 : OperandType.FP32;
int elems = !scalar ? op.GetBytesCount() >> sizeF + 2 : 1;
for (int index = 0; index < elems; index++)
{
Operand ne = context.VectorExtract(type, GetVec(op.Rn), index);
Operand me;
if (op is OpCodeSimdReg binOp)
{
me = context.VectorExtract(type, GetVec(binOp.Rm), index);
}
else
{
me = sizeF == 0 ? ConstF(0f) : ConstF(0d);
}
Operand e = EmitSoftFloatCall(context, f32, f64, ne, me);
res = context.VectorInsert(res, e, index);
}
context.Copy(GetVec(op.Rd), res);
}
private enum CmpCondition
{
Equal = 0,
GreaterThanOrEqual = 5,
GreaterThan = 6
}
private static void EmitCmpSseOrSse2OpF(
ArmEmitterContext context,
CmpCondition cond,
bool scalar,
bool isLeOrLt = false)
{
OpCodeSimd op = (OpCodeSimd)context.CurrOp;
Operand n = GetVec(op.Rn);
Operand m = op is OpCodeSimdReg binOp ? GetVec(binOp.Rm) : context.VectorZero();
int sizeF = op.Size & 1;
if (sizeF == 0)
{
Intrinsic inst = scalar ? Intrinsic.X86Cmpss : Intrinsic.X86Cmpps;
Operand res = isLeOrLt
? context.AddIntrinsic(inst, m, n, Const((int)cond))
: context.AddIntrinsic(inst, n, m, Const((int)cond));
if (scalar)
{
res = context.VectorZeroUpper96(res);
}
else if (op.RegisterSize == RegisterSize.Simd64)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
else /* if (sizeF == 1) */
{
Intrinsic inst = scalar ? Intrinsic.X86Cmpsd : Intrinsic.X86Cmppd;
Operand res = isLeOrLt
? context.AddIntrinsic(inst, m, n, Const((int)cond))
: context.AddIntrinsic(inst, n, m, Const((int)cond));
if (scalar)
{
res = context.VectorZeroUpper64(res);
}
context.Copy(GetVec(op.Rd), res);
}
}
}
}