Ryujinx/Ryujinx.Graphics.Gpu/Image/TextureManager.cs

1300 lines
52 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Texture;
using Ryujinx.Memory.Range;
using System;
namespace Ryujinx.Graphics.Gpu.Image
{
/// <summary>
/// Texture manager.
/// </summary>
class TextureManager : IDisposable
{
private struct OverlapInfo
{
public TextureViewCompatibility Compatibility { get; }
public int FirstLayer { get; }
public int FirstLevel { get; }
public OverlapInfo(TextureViewCompatibility compatibility, int firstLayer, int firstLevel)
{
Compatibility = compatibility;
FirstLayer = firstLayer;
FirstLevel = firstLevel;
}
}
private const int OverlapsBufferInitialCapacity = 10;
private const int OverlapsBufferMaxCapacity = 10000;
private readonly GpuContext _context;
private readonly TextureBindingsManager _cpBindingsManager;
private readonly TextureBindingsManager _gpBindingsManager;
private readonly Texture[] _rtColors;
private readonly ITexture[] _rtHostColors;
private Texture _rtDepthStencil;
private ITexture _rtHostDs;
private readonly MultiRangeList<Texture> _textures;
private Texture[] _textureOverlaps;
private OverlapInfo[] _overlapInfo;
private readonly AutoDeleteCache _cache;
/// <summary>
/// The scaling factor applied to all currently bound render targets.
/// </summary>
public float RenderTargetScale { get; private set; } = 1f;
/// <summary>
/// Constructs a new instance of the texture manager.
/// </summary>
/// <param name="context">The GPU context that the texture manager belongs to</param>
public TextureManager(GpuContext context)
{
_context = context;
TexturePoolCache texturePoolCache = new TexturePoolCache(context);
_cpBindingsManager = new TextureBindingsManager(context, texturePoolCache, isCompute: true);
_gpBindingsManager = new TextureBindingsManager(context, texturePoolCache, isCompute: false);
_rtColors = new Texture[Constants.TotalRenderTargets];
_rtHostColors = new ITexture[Constants.TotalRenderTargets];
_textures = new MultiRangeList<Texture>();
_textureOverlaps = new Texture[OverlapsBufferInitialCapacity];
_overlapInfo = new OverlapInfo[OverlapsBufferInitialCapacity];
_cache = new AutoDeleteCache();
}
/// <summary>
/// Sets texture bindings on the compute pipeline.
/// </summary>
/// <param name="bindings">The texture bindings</param>
public void SetComputeTextures(TextureBindingInfo[] bindings)
{
_cpBindingsManager.SetTextures(0, bindings);
}
/// <summary>
/// Sets texture bindings on the graphics pipeline.
/// </summary>
/// <param name="stage">The index of the shader stage to bind the textures</param>
/// <param name="bindings">The texture bindings</param>
public void SetGraphicsTextures(int stage, TextureBindingInfo[] bindings)
{
_gpBindingsManager.SetTextures(stage, bindings);
}
/// <summary>
/// Sets image bindings on the compute pipeline.
/// </summary>
/// <param name="bindings">The image bindings</param>
public void SetComputeImages(TextureBindingInfo[] bindings)
{
_cpBindingsManager.SetImages(0, bindings);
}
/// <summary>
/// Sets image bindings on the graphics pipeline.
/// </summary>
/// <param name="stage">The index of the shader stage to bind the images</param>
/// <param name="bindings">The image bindings</param>
public void SetGraphicsImages(int stage, TextureBindingInfo[] bindings)
{
_gpBindingsManager.SetImages(stage, bindings);
}
/// <summary>
/// Sets the texture constant buffer index on the compute pipeline.
/// </summary>
/// <param name="index">The texture constant buffer index</param>
public void SetComputeTextureBufferIndex(int index)
{
_cpBindingsManager.SetTextureBufferIndex(index);
}
/// <summary>
/// Sets the texture constant buffer index on the graphics pipeline.
/// </summary>
/// <param name="index">The texture constant buffer index</param>
public void SetGraphicsTextureBufferIndex(int index)
{
_gpBindingsManager.SetTextureBufferIndex(index);
}
/// <summary>
/// Sets the current sampler pool on the compute pipeline.
/// </summary>
/// <param name="gpuVa">The start GPU virtual address of the sampler pool</param>
/// <param name="maximumId">The maximum ID of the sampler pool</param>
/// <param name="samplerIndex">The indexing type of the sampler pool</param>
public void SetComputeSamplerPool(ulong gpuVa, int maximumId, SamplerIndex samplerIndex)
{
_cpBindingsManager.SetSamplerPool(gpuVa, maximumId, samplerIndex);
}
/// <summary>
/// Sets the current sampler pool on the graphics pipeline.
/// </summary>
/// <param name="gpuVa">The start GPU virtual address of the sampler pool</param>
/// <param name="maximumId">The maximum ID of the sampler pool</param>
/// <param name="samplerIndex">The indexing type of the sampler pool</param>
public void SetGraphicsSamplerPool(ulong gpuVa, int maximumId, SamplerIndex samplerIndex)
{
_gpBindingsManager.SetSamplerPool(gpuVa, maximumId, samplerIndex);
}
/// <summary>
/// Sets the current texture pool on the compute pipeline.
/// </summary>
/// <param name="gpuVa">The start GPU virtual address of the texture pool</param>
/// <param name="maximumId">The maximum ID of the texture pool</param>
public void SetComputeTexturePool(ulong gpuVa, int maximumId)
{
_cpBindingsManager.SetTexturePool(gpuVa, maximumId);
}
/// <summary>
/// Sets the current texture pool on the graphics pipeline.
/// </summary>
/// <param name="gpuVa">The start GPU virtual address of the texture pool</param>
/// <param name="maximumId">The maximum ID of the texture pool</param>
public void SetGraphicsTexturePool(ulong gpuVa, int maximumId)
{
_gpBindingsManager.SetTexturePool(gpuVa, maximumId);
}
/// <summary>
/// Sets the render target color buffer.
/// </summary>
/// <param name="index">The index of the color buffer to set (up to 8)</param>
/// <param name="color">The color buffer texture</param>
/// <returns>True if render target scale must be updated.</returns>
public bool SetRenderTargetColor(int index, Texture color)
{
bool hasValue = color != null;
bool changesScale = (hasValue != (_rtColors[index] != null)) || (hasValue && RenderTargetScale != color.ScaleFactor);
if (_rtColors[index] != color)
{
_rtColors[index]?.SignalModifying(false);
color?.SignalModifying(true);
_rtColors[index] = color;
}
return changesScale || (hasValue && color.ScaleMode != TextureScaleMode.Blacklisted && color.ScaleFactor != GraphicsConfig.ResScale);
}
/// <summary>
/// Sets the render target depth-stencil buffer.
/// </summary>
/// <param name="depthStencil">The depth-stencil buffer texture</param>
/// <returns>True if render target scale must be updated.</returns>
public bool SetRenderTargetDepthStencil(Texture depthStencil)
{
bool hasValue = depthStencil != null;
bool changesScale = (hasValue != (_rtDepthStencil != null)) || (hasValue && RenderTargetScale != depthStencil.ScaleFactor);
if (_rtDepthStencil != depthStencil)
{
_rtDepthStencil?.SignalModifying(false);
depthStencil?.SignalModifying(true);
_rtDepthStencil = depthStencil;
}
return changesScale || (hasValue && depthStencil.ScaleMode != TextureScaleMode.Blacklisted && depthStencil.ScaleFactor != GraphicsConfig.ResScale);
}
/// <summary>
/// Gets the first available bound colour target, or the depth stencil target if not present.
/// </summary>
/// <returns>The first bound colour target, otherwise the depth stencil target</returns>
public Texture GetAnyRenderTarget()
{
return _rtColors[0] ?? _rtDepthStencil;
}
/// <summary>
/// Updates the Render Target scale, given the currently bound render targets.
/// This will update scale to match the configured scale, scale textures that are eligible but not scaled,
/// and propagate blacklisted status from one texture to the ones bound with it.
/// </summary>
/// <param name="singleUse">If this is not -1, it indicates that only the given indexed target will be used.</param>
public void UpdateRenderTargetScale(int singleUse)
{
// Make sure all scales for render targets are at the highest they should be. Blacklisted targets should propagate their scale to the other targets.
bool mismatch = false;
bool blacklisted = false;
bool hasUpscaled = false;
float targetScale = GraphicsConfig.ResScale;
void ConsiderTarget(Texture target)
{
if (target == null) return;
float scale = target.ScaleFactor;
switch (target.ScaleMode)
{
case TextureScaleMode.Blacklisted:
mismatch |= scale != 1f;
blacklisted = true;
break;
case TextureScaleMode.Eligible:
mismatch = true; // We must make a decision.
break;
case TextureScaleMode.Scaled:
hasUpscaled = true;
mismatch |= scale != targetScale; // If the target scale has changed, reset the scale for all targets.
break;
}
}
if (singleUse != -1)
{
// If only one target is in use (by a clear, for example) the others do not need to be checked for mismatching scale.
ConsiderTarget(_rtColors[singleUse]);
}
else
{
foreach (Texture color in _rtColors)
{
ConsiderTarget(color);
}
}
ConsiderTarget(_rtDepthStencil);
mismatch |= blacklisted && hasUpscaled;
if (blacklisted)
{
targetScale = 1f;
}
if (mismatch)
{
if (blacklisted)
{
// Propagate the blacklisted state to the other textures.
foreach (Texture color in _rtColors)
{
color?.BlacklistScale();
}
_rtDepthStencil?.BlacklistScale();
}
else
{
// Set the scale of the other textures.
foreach (Texture color in _rtColors)
{
color?.SetScale(targetScale);
}
_rtDepthStencil?.SetScale(targetScale);
}
}
RenderTargetScale = targetScale;
}
/// <summary>
/// Commits bindings on the compute pipeline.
/// </summary>
public void CommitComputeBindings()
{
// Every time we switch between graphics and compute work,
// we must rebind everything.
// Since compute work happens less often, we always do that
// before and after the compute dispatch.
_cpBindingsManager.Rebind();
_cpBindingsManager.CommitBindings();
_gpBindingsManager.Rebind();
}
/// <summary>
/// Commits bindings on the graphics pipeline.
/// </summary>
public void CommitGraphicsBindings()
{
_gpBindingsManager.CommitBindings();
UpdateRenderTargets();
}
/// <summary>
/// Gets a texture descriptor used on the compute pipeline.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="handle">Shader "fake" handle of the texture</param>
/// <returns>The texture descriptor</returns>
public TextureDescriptor GetComputeTextureDescriptor(GpuState state, int handle)
{
return _cpBindingsManager.GetTextureDescriptor(state, 0, handle);
}
/// <summary>
/// Gets a texture descriptor used on the graphics pipeline.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="stageIndex">Index of the shader stage where the texture is bound</param>
/// <param name="handle">Shader "fake" handle of the texture</param>
/// <returns>The texture descriptor</returns>
public TextureDescriptor GetGraphicsTextureDescriptor(GpuState state, int stageIndex, int handle)
{
return _gpBindingsManager.GetTextureDescriptor(state, stageIndex, handle);
}
/// <summary>
/// Update host framebuffer attachments based on currently bound render target buffers.
/// </summary>
public void UpdateRenderTargets()
{
bool anyChanged = false;
if (_rtHostDs != _rtDepthStencil?.HostTexture)
{
_rtHostDs = _rtDepthStencil?.HostTexture;
anyChanged = true;
}
for (int index = 0; index < _rtColors.Length; index++)
{
ITexture hostTexture = _rtColors[index]?.HostTexture;
if (_rtHostColors[index] != hostTexture)
{
_rtHostColors[index] = hostTexture;
anyChanged = true;
}
}
if (anyChanged)
{
_context.Renderer.Pipeline.SetRenderTargets(_rtHostColors, _rtHostDs);
}
}
/// <summary>
/// Determines if a given texture is eligible for upscaling from its info.
/// </summary>
/// <param name="info">The texture info to check</param>
/// <returns>True if eligible</returns>
public bool IsUpscaleCompatible(TextureInfo info)
{
return (info.Target == Target.Texture2D || info.Target == Target.Texture2DArray) && !info.FormatInfo.IsCompressed && UpscaleSafeMode(info);
}
/// <summary>
/// Determines if a given texture is "safe" for upscaling from its info.
/// Note that this is different from being compatible - this elilinates targets that would have detrimental effects when scaled.
/// </summary>
/// <param name="info">The texture info to check</param>
/// <returns>True if safe</returns>
public bool UpscaleSafeMode(TextureInfo info)
{
// While upscaling works for all targets defined by IsUpscaleCompatible, we additionally blacklist targets here that
// may have undesirable results (upscaling blur textures) or simply waste GPU resources (upscaling texture atlas).
if (info.Levels > 3)
{
// Textures with more than 3 levels are likely to be game textures, rather than render textures.
// Small textures with full mips are likely to be removed by the next check.
return false;
}
if (info.Width < 8 || info.Height < 8)
{
// Discount textures with small dimensions.
return false;
}
if (!(info.FormatInfo.Format.IsDepthOrStencil() || info.FormatInfo.Components == 1))
{
// Discount square textures that aren't depth-stencil like. (excludes game textures, cubemap faces, most 3D texture LUT, texture atlas)
// Detect if the texture is possibly square. Widths may be aligned, so to remove the uncertainty we align both the width and height.
int widthAlignment = (info.IsLinear ? Constants.StrideAlignment : Constants.GobAlignment) / info.FormatInfo.BytesPerPixel;
bool possiblySquare = BitUtils.AlignUp(info.Width, widthAlignment) == BitUtils.AlignUp(info.Height, widthAlignment);
if (possiblySquare)
{
return false;
}
}
int aspect = (int)Math.Round((info.Width / (float)info.Height) * 9);
if (aspect == 16 && info.Height < 360)
{
// Targets that are roughly 16:9 can only be rescaled if they're equal to or above 360p. (excludes blur and bloom textures)
return false;
}
return true;
}
/// <summary>
/// Handles removal of textures written to a memory region being unmapped.
/// </summary>
/// <param name="sender">Sender object</param>
/// <param name="e">Event arguments</param>
public void MemoryUnmappedHandler(object sender, UnmapEventArgs e)
{
Texture[] overlaps = new Texture[10];
int overlapCount;
lock (_textures)
{
overlapCount = _textures.FindOverlaps(_context.MemoryManager.Translate(e.Address), e.Size, ref overlaps);
}
for (int i = 0; i < overlapCount; i++)
{
overlaps[i].Unmapped();
}
}
/// <summary>
/// Tries to find an existing texture, or create a new one if not found.
/// </summary>
/// <param name="copyTexture">Copy texture to find or create</param>
/// <param name="formatInfo">Format information of the copy texture</param>
/// <param name="preferScaling">Indicates if the texture should be scaled from the start</param>
/// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
/// <returns>The texture</returns>
public Texture FindOrCreateTexture(CopyTexture copyTexture, FormatInfo formatInfo, bool preferScaling = true, Size? sizeHint = null)
{
int gobBlocksInY = copyTexture.MemoryLayout.UnpackGobBlocksInY();
int gobBlocksInZ = copyTexture.MemoryLayout.UnpackGobBlocksInZ();
int width;
if (copyTexture.LinearLayout)
{
width = copyTexture.Stride / formatInfo.BytesPerPixel;
}
else
{
width = copyTexture.Width;
}
TextureInfo info = new TextureInfo(
copyTexture.Address.Pack(),
width,
copyTexture.Height,
copyTexture.Depth,
1,
1,
1,
copyTexture.Stride,
copyTexture.LinearLayout,
gobBlocksInY,
gobBlocksInZ,
1,
Target.Texture2D,
formatInfo);
TextureSearchFlags flags = TextureSearchFlags.ForCopy;
if (preferScaling)
{
flags |= TextureSearchFlags.WithUpscale;
}
Texture texture = FindOrCreateTexture(flags, info, 0, sizeHint);
texture?.SynchronizeMemory();
return texture;
}
/// <summary>
/// Tries to find an existing texture, or create a new one if not found.
/// </summary>
/// <param name="colorState">Color buffer texture to find or create</param>
/// <param name="samplesInX">Number of samples in the X direction, for MSAA</param>
/// <param name="samplesInY">Number of samples in the Y direction, for MSAA</param>
/// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
/// <returns>The texture</returns>
public Texture FindOrCreateTexture(RtColorState colorState, int samplesInX, int samplesInY, Size sizeHint)
{
bool isLinear = colorState.MemoryLayout.UnpackIsLinear();
int gobBlocksInY = colorState.MemoryLayout.UnpackGobBlocksInY();
int gobBlocksInZ = colorState.MemoryLayout.UnpackGobBlocksInZ();
Target target;
if (colorState.MemoryLayout.UnpackIsTarget3D())
{
target = Target.Texture3D;
}
else if ((samplesInX | samplesInY) != 1)
{
target = colorState.Depth > 1
? Target.Texture2DMultisampleArray
: Target.Texture2DMultisample;
}
else
{
target = colorState.Depth > 1
? Target.Texture2DArray
: Target.Texture2D;
}
FormatInfo formatInfo = colorState.Format.Convert();
int width, stride;
// For linear textures, the width value is actually the stride.
// We can easily get the width by dividing the stride by the bpp,
// since the stride is the total number of bytes occupied by a
// line. The stride should also meet alignment constraints however,
// so the width we get here is the aligned width.
if (isLinear)
{
width = colorState.WidthOrStride / formatInfo.BytesPerPixel;
stride = colorState.WidthOrStride;
}
else
{
width = colorState.WidthOrStride;
stride = 0;
}
TextureInfo info = new TextureInfo(
colorState.Address.Pack(),
width,
colorState.Height,
colorState.Depth,
1,
samplesInX,
samplesInY,
stride,
isLinear,
gobBlocksInY,
gobBlocksInZ,
1,
target,
formatInfo);
int layerSize = !isLinear ? colorState.LayerSize * 4 : 0;
Texture texture = FindOrCreateTexture(TextureSearchFlags.WithUpscale, info, layerSize, sizeHint);
texture?.SynchronizeMemory();
return texture;
}
/// <summary>
/// Tries to find an existing texture, or create a new one if not found.
/// </summary>
/// <param name="dsState">Depth-stencil buffer texture to find or create</param>
/// <param name="size">Size of the depth-stencil texture</param>
/// <param name="samplesInX">Number of samples in the X direction, for MSAA</param>
/// <param name="samplesInY">Number of samples in the Y direction, for MSAA</param>
/// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
/// <returns>The texture</returns>
public Texture FindOrCreateTexture(RtDepthStencilState dsState, Size3D size, int samplesInX, int samplesInY, Size sizeHint)
{
int gobBlocksInY = dsState.MemoryLayout.UnpackGobBlocksInY();
int gobBlocksInZ = dsState.MemoryLayout.UnpackGobBlocksInZ();
Target target = (samplesInX | samplesInY) != 1
? Target.Texture2DMultisample
: Target.Texture2D;
FormatInfo formatInfo = dsState.Format.Convert();
TextureInfo info = new TextureInfo(
dsState.Address.Pack(),
size.Width,
size.Height,
size.Depth,
1,
samplesInX,
samplesInY,
0,
false,
gobBlocksInY,
gobBlocksInZ,
1,
target,
formatInfo);
Texture texture = FindOrCreateTexture(TextureSearchFlags.WithUpscale, info, dsState.LayerSize * 4, sizeHint);
texture?.SynchronizeMemory();
return texture;
}
/// <summary>
/// Tries to find an existing texture, or create a new one if not found.
/// </summary>
/// <param name="flags">The texture search flags, defines texture comparison rules</param>
/// <param name="info">Texture information of the texture to be found or created</param>
/// <param name="layerSize">Size in bytes of a single texture layer</param>
/// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
/// <param name="range">Optional ranges of physical memory where the texture data is located</param>
/// <returns>The texture</returns>
public Texture FindOrCreateTexture(TextureSearchFlags flags, TextureInfo info, int layerSize = 0, Size? sizeHint = null, MultiRange? range = null)
{
bool isSamplerTexture = (flags & TextureSearchFlags.ForSampler) != 0;
bool isScalable = IsUpscaleCompatible(info);
TextureScaleMode scaleMode = TextureScaleMode.Blacklisted;
if (isScalable)
{
scaleMode = (flags & TextureSearchFlags.WithUpscale) != 0 ? TextureScaleMode.Scaled : TextureScaleMode.Eligible;
}
ulong address;
if (range != null)
{
address = range.Value.GetSubRange(0).Address;
}
else
{
address = _context.MemoryManager.Translate(info.GpuAddress);
if (address == MemoryManager.PteUnmapped)
{
return null;
}
}
int sameAddressOverlapsCount;
lock (_textures)
{
// Try to find a perfect texture match, with the same address and parameters.
sameAddressOverlapsCount = _textures.FindOverlaps(address, ref _textureOverlaps);
}
Texture texture = null;
TextureMatchQuality bestQuality = TextureMatchQuality.NoMatch;
for (int index = 0; index < sameAddressOverlapsCount; index++)
{
Texture overlap = _textureOverlaps[index];
TextureMatchQuality matchQuality = overlap.IsExactMatch(info, flags);
if (matchQuality != TextureMatchQuality.NoMatch)
{
// If the parameters match, we need to make sure the texture is mapped to the same memory regions.
// If a range of memory was supplied, just check if the ranges match.
if (range != null && !overlap.Range.Equals(range.Value))
{
continue;
}
// If no range was supplied, we can check if the GPU virtual address match. If they do,
// we know the textures are located at the same memory region.
// If they don't, it may still be mapped to the same physical region, so we
// do a more expensive check to tell if they are mapped into the same physical regions.
// If the GPU VA for the texture has ever been unmapped, then the range must be checked regardless.
if ((overlap.Info.GpuAddress != info.GpuAddress || overlap.ChangedMapping) &&
!_context.MemoryManager.CompareRange(overlap.Range, info.GpuAddress))
{
continue;
}
}
if (matchQuality == TextureMatchQuality.Perfect)
{
texture = overlap;
break;
}
else if (matchQuality > bestQuality)
{
texture = overlap;
bestQuality = matchQuality;
}
}
if (texture != null)
{
if (!isSamplerTexture)
{
// If not a sampler texture, it is managed by the auto delete
// cache, ensure that it is on the "top" of the list to avoid
// deletion.
_cache.Lift(texture);
}
ChangeSizeIfNeeded(info, texture, isSamplerTexture, sizeHint);
texture.SynchronizeMemory();
return texture;
}
// Calculate texture sizes, used to find all overlapping textures.
SizeInfo sizeInfo = info.CalculateSizeInfo(layerSize);
ulong size = (ulong)sizeInfo.TotalSize;
if (range == null)
{
range = _context.MemoryManager.GetPhysicalRegions(info.GpuAddress, size);
}
// Find view compatible matches.
int overlapsCount;
lock (_textures)
{
overlapsCount = _textures.FindOverlaps(range.Value, ref _textureOverlaps);
}
if (_overlapInfo.Length != _textureOverlaps.Length)
{
Array.Resize(ref _overlapInfo, _textureOverlaps.Length);
}
// =============== Find Texture View of Existing Texture ===============
int fullyCompatible = 0;
// Evaluate compatibility of overlaps
for (int index = 0; index < overlapsCount; index++)
{
Texture overlap = _textureOverlaps[index];
TextureViewCompatibility overlapCompatibility = overlap.IsViewCompatible(info, range.Value, sizeInfo.LayerSize, out int firstLayer, out int firstLevel);
if (overlapCompatibility == TextureViewCompatibility.Full)
{
if (overlap.IsView)
{
overlapCompatibility = TextureViewCompatibility.CopyOnly;
}
else
{
fullyCompatible++;
}
}
_overlapInfo[index] = new OverlapInfo(overlapCompatibility, firstLayer, firstLevel);
}
// Search through the overlaps to find a compatible view and establish any copy dependencies.
for (int index = 0; index < overlapsCount; index++)
{
Texture overlap = _textureOverlaps[index];
OverlapInfo oInfo = _overlapInfo[index];
if (oInfo.Compatibility == TextureViewCompatibility.Full)
{
TextureInfo adjInfo = AdjustSizes(overlap, info, oInfo.FirstLevel);
if (!isSamplerTexture)
{
info = adjInfo;
}
texture = overlap.CreateView(adjInfo, sizeInfo, range.Value, oInfo.FirstLayer, oInfo.FirstLevel);
ChangeSizeIfNeeded(info, texture, isSamplerTexture, sizeHint);
texture.SynchronizeMemory();
break;
}
else if (oInfo.Compatibility == TextureViewCompatibility.CopyOnly && fullyCompatible == 0)
{
// Only copy compatible. If there's another choice for a FULLY compatible texture, choose that instead.
texture = new Texture(_context, info, sizeInfo, range.Value, scaleMode);
texture.InitializeGroup(true, true);
texture.InitializeData(false, false);
overlap.SynchronizeMemory();
overlap.CreateCopyDependency(texture, oInfo.FirstLayer, oInfo.FirstLevel, true);
break;
}
}
if (texture != null)
{
// This texture could be a view of multiple parent textures with different storages, even if it is a view.
// When a texture is created, make sure all possible dependencies to other textures are created as copies.
// (even if it could be fulfilled without a copy)
for (int index = 0; index < overlapsCount; index++)
{
Texture overlap = _textureOverlaps[index];
OverlapInfo oInfo = _overlapInfo[index];
if (oInfo.Compatibility != TextureViewCompatibility.Incompatible && overlap.Group != texture.Group)
{
overlap.SynchronizeMemory();
overlap.CreateCopyDependency(texture, oInfo.FirstLayer, oInfo.FirstLevel, true);
}
}
texture.SynchronizeMemory();
}
// =============== Create a New Texture ===============
// No match, create a new texture.
if (texture == null)
{
texture = new Texture(_context, info, sizeInfo, range.Value, scaleMode);
// Step 1: Find textures that are view compatible with the new texture.
// Any textures that are incompatible will contain garbage data, so they should be removed where possible.
int viewCompatible = 0;
fullyCompatible = 0;
bool setData = isSamplerTexture || overlapsCount == 0 || flags.HasFlag(TextureSearchFlags.ForCopy);
bool hasLayerViews = false;
bool hasMipViews = false;
for (int index = 0; index < overlapsCount; index++)
{
Texture overlap = _textureOverlaps[index];
bool overlapInCache = overlap.CacheNode != null;
TextureViewCompatibility compatibility = texture.IsViewCompatible(overlap.Info, overlap.Range, overlap.LayerSize, out int firstLayer, out int firstLevel);
if (overlap.IsView && compatibility == TextureViewCompatibility.Full)
{
compatibility = TextureViewCompatibility.CopyOnly;
}
if (compatibility != TextureViewCompatibility.Incompatible)
{
if (compatibility == TextureViewCompatibility.Full)
{
if (viewCompatible == fullyCompatible)
{
_overlapInfo[viewCompatible] = new OverlapInfo(compatibility, firstLayer, firstLevel);
_textureOverlaps[viewCompatible++] = overlap;
}
else
{
// Swap overlaps so that the fully compatible views have priority.
_overlapInfo[viewCompatible] = _overlapInfo[fullyCompatible];
_textureOverlaps[viewCompatible++] = _textureOverlaps[fullyCompatible];
_overlapInfo[fullyCompatible] = new OverlapInfo(compatibility, firstLayer, firstLevel);
_textureOverlaps[fullyCompatible] = overlap;
}
fullyCompatible++;
}
else
{
_overlapInfo[viewCompatible] = new OverlapInfo(compatibility, firstLayer, firstLevel);
_textureOverlaps[viewCompatible++] = overlap;
}
hasLayerViews |= overlap.Info.GetSlices() < texture.Info.GetSlices();
hasMipViews |= overlap.Info.Levels < texture.Info.Levels;
}
else if (overlapInCache || !setData)
{
if (info.GobBlocksInZ > 1 && info.GobBlocksInZ == overlap.Info.GobBlocksInZ)
{
// Allow overlapping slices of 3D textures. Could be improved in future by making sure the textures don't overlap.
continue;
}
// The overlap texture is going to contain garbage data after we draw, or is generally incompatible.
// If the texture cannot be entirely contained in the new address space, and one of its view children is compatible with us,
// it must be flushed before removal, so that the data is not lost.
// If the texture was modified since its last use, then that data is probably meant to go into this texture.
// If the data has been modified by the CPU, then it also shouldn't be flushed.
bool modified = overlap.ConsumeModified();
bool flush = overlapInCache && !modified && !texture.Range.Contains(overlap.Range) && overlap.HasViewCompatibleChild(texture);
setData |= modified || flush;
if (overlapInCache)
{
_cache.Remove(overlap, flush);
}
}
}
texture.InitializeGroup(hasLayerViews, hasMipViews);
// We need to synchronize before copying the old view data to the texture,
// otherwise the copied data would be overwritten by a future synchronization.
texture.InitializeData(false, setData);
for (int index = 0; index < viewCompatible; index++)
{
Texture overlap = _textureOverlaps[index];
OverlapInfo oInfo = _overlapInfo[index];
if (overlap.Group == texture.Group)
{
// If the texture group is equal, then this texture (or its parent) is already a view.
continue;
}
TextureInfo overlapInfo = AdjustSizes(texture, overlap.Info, oInfo.FirstLevel);
if (texture.ScaleFactor != overlap.ScaleFactor)
{
// A bit tricky, our new texture may need to contain an existing texture that is upscaled, but isn't itself.
// In that case, we prefer the higher scale only if our format is render-target-like, otherwise we scale the view down before copy.
texture.PropagateScale(overlap);
}
if (oInfo.Compatibility != TextureViewCompatibility.Full)
{
// Copy only compatibility, or target texture is already a view.
overlap.SynchronizeMemory();
texture.CreateCopyDependency(overlap, oInfo.FirstLayer, oInfo.FirstLevel, false);
}
else
{
TextureCreateInfo createInfo = GetCreateInfo(overlapInfo, _context.Capabilities, overlap.ScaleFactor);
ITexture newView = texture.HostTexture.CreateView(createInfo, oInfo.FirstLayer, oInfo.FirstLevel);
overlap.SynchronizeMemory();
overlap.HostTexture.CopyTo(newView, 0, 0);
overlap.ReplaceView(texture, overlapInfo, newView, oInfo.FirstLayer, oInfo.FirstLevel);
}
}
texture.SynchronizeMemory();
}
// Sampler textures are managed by the texture pool, all other textures
// are managed by the auto delete cache.
if (!isSamplerTexture)
{
_cache.Add(texture);
}
lock (_textures)
{
_textures.Add(texture);
}
ShrinkOverlapsBufferIfNeeded();
return texture;
}
/// <summary>
/// Changes a texture's size to match the desired size for samplers,
/// or increases a texture's size to fit the region indicated by a size hint.
/// </summary>
/// <param name="info">The desired texture info</param>
/// <param name="texture">The texture to resize</param>
/// <param name="isSamplerTexture">True if the texture will be used for a sampler, false otherwise</param>
/// <param name="sizeHint">A hint indicating the minimum used size for the texture</param>
private void ChangeSizeIfNeeded(TextureInfo info, Texture texture, bool isSamplerTexture, Size? sizeHint)
{
if (isSamplerTexture)
{
// If this is used for sampling, the size must match,
// otherwise the shader would sample garbage data.
// To fix that, we create a new texture with the correct
// size, and copy the data from the old one to the new one.
if (!TextureCompatibility.SizeMatches(texture.Info, info))
{
texture.ChangeSize(info.Width, info.Height, info.DepthOrLayers);
}
}
else if (sizeHint != null)
{
// A size hint indicates that data will be used within that range, at least.
// If the texture is smaller than the size hint, it must be enlarged to meet it.
// The maximum size is provided by the requested info, which generally has an aligned size.
int width = Math.Max(texture.Info.Width, Math.Min(sizeHint.Value.Width, info.Width));
int height = Math.Max(texture.Info.Height, Math.Min(sizeHint.Value.Height, info.Height));
if (texture.Info.Width != width || texture.Info.Height != height)
{
texture.ChangeSize(width, height, info.DepthOrLayers);
}
}
}
/// <summary>
/// Tries to find an existing texture matching the given buffer copy destination. If none is found, returns null.
/// </summary>
/// <param name="tex">The texture information</param>
/// <param name="cbp">The copy buffer parameters</param>
/// <param name="swizzle">The copy buffer swizzle</param>
/// <param name="linear">True if the texture has a linear layout, false otherwise</param>
/// <returns>A matching texture, or null if there is no match</returns>
public Texture FindTexture(CopyBufferTexture tex, CopyBufferParams cbp, CopyBufferSwizzle swizzle, bool linear)
{
ulong address = _context.MemoryManager.Translate(cbp.DstAddress.Pack());
if (address == MemoryManager.PteUnmapped)
{
return null;
}
int bpp = swizzle.UnpackDstComponentsCount() * swizzle.UnpackComponentSize();
int addressMatches = _textures.FindOverlaps(address, ref _textureOverlaps);
for (int i = 0; i < addressMatches; i++)
{
Texture texture = _textureOverlaps[i];
FormatInfo format = texture.Info.FormatInfo;
if (texture.Info.DepthOrLayers > 1)
{
continue;
}
bool match;
if (linear)
{
// Size is not available for linear textures. Use the stride and end of the copy region instead.
match = texture.Info.IsLinear && texture.Info.Stride == cbp.DstStride && tex.RegionY + cbp.YCount <= texture.Info.Height;
}
else
{
// Bpp may be a mismatch between the target texture and the param.
// Due to the way linear strided and block layouts work, widths can be multiplied by Bpp for comparison.
// Note: tex.Width is the aligned texture size. Prefer param.XCount, as the destination should be a texture with that exact size.
bool sizeMatch = cbp.XCount * bpp == texture.Info.Width * format.BytesPerPixel && tex.Height == texture.Info.Height;
bool formatMatch = !texture.Info.IsLinear &&
texture.Info.GobBlocksInY == tex.MemoryLayout.UnpackGobBlocksInY() &&
texture.Info.GobBlocksInZ == tex.MemoryLayout.UnpackGobBlocksInZ();
match = sizeMatch && formatMatch;
}
if (match)
{
return texture;
}
}
return null;
}
/// <summary>
/// Resizes the temporary buffer used for range list intersection results, if it has grown too much.
/// </summary>
private void ShrinkOverlapsBufferIfNeeded()
{
if (_textureOverlaps.Length > OverlapsBufferMaxCapacity)
{
Array.Resize(ref _textureOverlaps, OverlapsBufferMaxCapacity);
}
}
/// <summary>
/// Adjusts the size of the texture information for a given mipmap level,
/// based on the size of a parent texture.
/// </summary>
/// <param name="parent">The parent texture</param>
/// <param name="info">The texture information to be adjusted</param>
/// <param name="firstLevel">The first level of the texture view</param>
/// <returns>The adjusted texture information with the new size</returns>
private static TextureInfo AdjustSizes(Texture parent, TextureInfo info, int firstLevel)
{
// When the texture is used as view of another texture, we must
// ensure that the sizes are valid, otherwise data uploads would fail
// (and the size wouldn't match the real size used on the host API).
// Given a parent texture from where the view is created, we have the
// following rules:
// - The view size must be equal to the parent size, divided by (2 ^ l),
// where l is the first mipmap level of the view. The division result must
// be rounded down, and the result must be clamped to 1.
// - If the parent format is compressed, and the view format isn't, the
// view size is calculated as above, but the width and height of the
// view must be also divided by the compressed format block width and height.
// - If the parent format is not compressed, and the view is, the view
// size is calculated as described on the first point, but the width and height
// of the view must be also multiplied by the block width and height.
int width = Math.Max(1, parent.Info.Width >> firstLevel);
int height = Math.Max(1, parent.Info.Height >> firstLevel);
if (parent.Info.FormatInfo.IsCompressed && !info.FormatInfo.IsCompressed)
{
width = BitUtils.DivRoundUp(width, parent.Info.FormatInfo.BlockWidth);
height = BitUtils.DivRoundUp(height, parent.Info.FormatInfo.BlockHeight);
}
else if (!parent.Info.FormatInfo.IsCompressed && info.FormatInfo.IsCompressed)
{
width *= info.FormatInfo.BlockWidth;
height *= info.FormatInfo.BlockHeight;
}
int depthOrLayers;
if (info.Target == Target.Texture3D)
{
depthOrLayers = Math.Max(1, parent.Info.DepthOrLayers >> firstLevel);
}
else
{
depthOrLayers = info.DepthOrLayers;
}
return new TextureInfo(
info.GpuAddress,
width,
height,
depthOrLayers,
info.Levels,
info.SamplesInX,
info.SamplesInY,
info.Stride,
info.IsLinear,
info.GobBlocksInY,
info.GobBlocksInZ,
info.GobBlocksInTileX,
info.Target,
info.FormatInfo,
info.DepthStencilMode,
info.SwizzleR,
info.SwizzleG,
info.SwizzleB,
info.SwizzleA);
}
/// <summary>
/// Gets a texture creation information from texture information.
/// This can be used to create new host textures.
/// </summary>
/// <param name="info">Texture information</param>
/// <param name="caps">GPU capabilities</param>
/// <param name="scale">Texture scale factor, to be applied to the texture size</param>
/// <returns>The texture creation information</returns>
public static TextureCreateInfo GetCreateInfo(TextureInfo info, Capabilities caps, float scale)
{
FormatInfo formatInfo = TextureCompatibility.ToHostCompatibleFormat(info, caps);
if (info.Target == Target.TextureBuffer)
{
// We assume that the host does not support signed normalized format
// (as is the case with OpenGL), so we just use a unsigned format.
// The shader will need the appropriate conversion code to compensate.
switch (formatInfo.Format)
{
case Format.R8Snorm:
formatInfo = new FormatInfo(Format.R8Sint, 1, 1, 1, 1);
break;
case Format.R16Snorm:
formatInfo = new FormatInfo(Format.R16Sint, 1, 1, 2, 1);
break;
case Format.R8G8Snorm:
formatInfo = new FormatInfo(Format.R8G8Sint, 1, 1, 2, 2);
break;
case Format.R16G16Snorm:
formatInfo = new FormatInfo(Format.R16G16Sint, 1, 1, 4, 2);
break;
case Format.R8G8B8A8Snorm:
formatInfo = new FormatInfo(Format.R8G8B8A8Sint, 1, 1, 4, 4);
break;
case Format.R16G16B16A16Snorm:
formatInfo = new FormatInfo(Format.R16G16B16A16Sint, 1, 1, 8, 4);
break;
}
}
int width = info.Width / info.SamplesInX;
int height = info.Height / info.SamplesInY;
int depth = info.GetDepth() * info.GetLayers();
if (scale != 1f)
{
width = (int)MathF.Ceiling(width * scale);
height = (int)MathF.Ceiling(height * scale);
}
return new TextureCreateInfo(
width,
height,
depth,
info.Levels,
info.Samples,
formatInfo.BlockWidth,
formatInfo.BlockHeight,
formatInfo.BytesPerPixel,
formatInfo.Format,
info.DepthStencilMode,
info.Target,
info.SwizzleR,
info.SwizzleG,
info.SwizzleB,
info.SwizzleA);
}
/// <summary>
/// Removes a texture from the cache.
/// </summary>
/// <remarks>
/// This only removes the texture from the internal list, not from the auto-deletion cache.
/// It may still have live references after the removal.
/// </remarks>
/// <param name="texture">The texture to be removed</param>
public void RemoveTextureFromCache(Texture texture)
{
lock (_textures)
{
_textures.Remove(texture);
}
}
/// <summary>
/// Disposes all textures in the cache.
/// It's an error to use the texture manager after disposal.
/// </summary>
public void Dispose()
{
lock (_textures)
{
foreach (Texture texture in _textures)
{
texture.Dispose();
}
}
}
}
}