While we should normally expect _something_ from the stream based on the
AudioStreamAvailable check, it's possible for a device change to flush the
stream at an inconvenient time, causing this function to return 0.
Thing is, this is harmless. Either data will be NULL and the result won't matter
anyway, or the data buffer will be zeroed out and the output will just be
silence for the brief moment that the device change is occurring. Both scenarios
work themselves out, and testing on Windows shows that this behavior is safe.
Some of the SDL_AudioDevice struct members aren't initialized until after returning from the OpenDevice function. Since Pipewire uses it's own processing threads, the callbacks can be entered before all members of SDL_AudioDevice are initialized, such as work_buffer, callbackspec and the processing stream, which creates a race condition. Don't use these members when in the paused state to avoid potentially using uninitialized values and memory.
This prevents the dsp target from stealing the audio subsystem but not
being able to produce sound, so other audio targets further down the list
can make an attempt instead.
Thanks to Frank Praznik who did a lot of the research on this problem!
A user reported that the mpv video player hangs after attempting to
set an unsupported number of channels with the SDL audio output,
because it thinks it's successfully opened the device. This makes
the failure graceful.
Removes the node nickname from sink/source nodes as it doesn't provide any useful information and names now match those used in Pulseaudio, so any stored configuration data will be compatible between the two audio backends.
Constify the min/max period variables, use a #define for the base clock rate used in the calculations and note that changing the upper limit can have dire side effects as it's a hard limit in Pipewire.
Replace "magic numbers" with #defines, explain the requirements when using the userdata pointer in the node_object struct and a few other minor code and comment cleanups.
Use the 'R' (rear) prefixed designations for the rear audio channels instead of 'S' (surround). Surround designated channels are only used in the 8 channel configuration.
Further refactor the device enumeration code to retrieve the default sink/source node IDs from the metadata node. Use the retrieved IDs to sort the device list so that the default devices are at the beginning and thus are the first reported to SDL.
The latency of source nodes can change depending on the overall latency of the processing graph. Incoming audio must therefore always be buffered to ensure uninterrupted delivery.
The SDL_AudioStream path was removed in the input callback as the only thing it was used for was buffering audio outside of Pipewire's min/max period sizes, and that case is now handled by the omnipresent buffer.
Extend device enumeration to retrieve the channel count and default sample rate for sink and source nodes. This required a fairly significant rework of the enumeration procedure as multiple callbacks are involved now. Sink/source nodes are tracked in a separate list during the enumeration process so they can be cleaned up if a device is removed before completion. These changes also simplify any future efforts that may be needed to retrieve additional configuration information from the nodes.
This uses the mechanism added in emscripten-core/emscripten#10843
which was applied to SDL1 and OpenAL. This adds the same for SDL2.
This also reverts commit 865eaddffed50dbd13e6564c3f73902472cf74e8
which did something similar, but the new mechanism is more effective.
The DJGPP compiler emits many warnings for conflicts between print
format specifiers and argument types. To fix the warnings, I added
`SDL_PRIx32` macros for use with `Sint32` and `Uint32` types. The macros
alias those found in <inttypes.h> or fallback to a reasonable default.
As an alternative, print arguments could be cast to plain old integers.
I opted slightly for the current solution as it felt more technically correct,
despite making the format strings more verbose.
Nia Alarie
The NetBSD kernel's audio resampling code is much simpler and lower quality than libsamplerate.
Presumably, if SDL always performs I/O on the audio device in its native frequency, we can avoid resampling audio in the kernel and let SDL do it with libsamplerate instead.