mirror of
https://github.com/Ryujinx/SDL.git
synced 2025-03-25 14:55:11 +00:00
647 lines
12 KiB
C
647 lines
12 KiB
C
/*
|
|
Simple DirectMedia Layer
|
|
Copyright (C) 1997-2022 Sam Lantinga <slouken@libsdl.org>
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#if defined(__clang_analyzer__) && !defined(SDL_DISABLE_ANALYZE_MACROS)
|
|
#define SDL_DISABLE_ANALYZE_MACROS 1
|
|
#endif
|
|
|
|
#include "../SDL_internal.h"
|
|
|
|
/* This file contains portable stdlib functions for SDL */
|
|
|
|
#include "SDL_stdinc.h"
|
|
#include "../libm/math_libm.h"
|
|
|
|
|
|
double
|
|
SDL_atan(double x)
|
|
{
|
|
#if defined(HAVE_ATAN)
|
|
return atan(x);
|
|
#else
|
|
return SDL_uclibc_atan(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_atanf(float x)
|
|
{
|
|
#if defined(HAVE_ATANF)
|
|
return atanf(x);
|
|
#else
|
|
return (float)SDL_atan((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_atan2(double y, double x)
|
|
{
|
|
#if defined(HAVE_ATAN2)
|
|
return atan2(y, x);
|
|
#else
|
|
return SDL_uclibc_atan2(y, x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_atan2f(float y, float x)
|
|
{
|
|
#if defined(HAVE_ATAN2F)
|
|
return atan2f(y, x);
|
|
#else
|
|
return (float)SDL_atan2((double)y, (double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_acos(double val)
|
|
{
|
|
#if defined(HAVE_ACOS)
|
|
return acos(val);
|
|
#else
|
|
double result;
|
|
if (val == -1.0) {
|
|
result = M_PI;
|
|
} else {
|
|
result = SDL_atan(SDL_sqrt(1.0 - val * val) / val);
|
|
if (result < 0.0)
|
|
{
|
|
result += M_PI;
|
|
}
|
|
}
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_acosf(float val)
|
|
{
|
|
#if defined(HAVE_ACOSF)
|
|
return acosf(val);
|
|
#else
|
|
return (float)SDL_acos((double)val);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_asin(double val)
|
|
{
|
|
#if defined(HAVE_ASIN)
|
|
return asin(val);
|
|
#else
|
|
double result;
|
|
if (val == -1.0) {
|
|
result = -(M_PI / 2.0);
|
|
} else {
|
|
result = (M_PI / 2.0) - SDL_acos(val);
|
|
}
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_asinf(float val)
|
|
{
|
|
#if defined(HAVE_ASINF)
|
|
return asinf(val);
|
|
#else
|
|
return (float)SDL_asin((double)val);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_ceil(double x)
|
|
{
|
|
#if defined(HAVE_CEIL)
|
|
return ceil(x);
|
|
#else
|
|
double integer = SDL_floor(x);
|
|
double fraction = x - integer;
|
|
if (fraction > 0.0) {
|
|
integer += 1.0;
|
|
}
|
|
return integer;
|
|
#endif /* HAVE_CEIL */
|
|
}
|
|
|
|
float
|
|
SDL_ceilf(float x)
|
|
{
|
|
#if defined(HAVE_CEILF)
|
|
return ceilf(x);
|
|
#else
|
|
return (float)SDL_ceil((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_copysign(double x, double y)
|
|
{
|
|
#if defined(HAVE_COPYSIGN)
|
|
return copysign(x, y);
|
|
#elif defined(HAVE__COPYSIGN)
|
|
return _copysign(x, y);
|
|
#elif defined(__WATCOMC__) && defined(__386__)
|
|
/* this is nasty as hell, but it works.. */
|
|
unsigned int *xi = (unsigned int *) &x,
|
|
*yi = (unsigned int *) &y;
|
|
xi[1] = (yi[1] & 0x80000000) | (xi[1] & 0x7fffffff);
|
|
return x;
|
|
#else
|
|
return SDL_uclibc_copysign(x, y);
|
|
#endif /* HAVE_COPYSIGN */
|
|
}
|
|
|
|
float
|
|
SDL_copysignf(float x, float y)
|
|
{
|
|
#if defined(HAVE_COPYSIGNF)
|
|
return copysignf(x, y);
|
|
#else
|
|
return (float)SDL_copysign((double)x, (double)y);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_cos(double x)
|
|
{
|
|
#if defined(HAVE_COS)
|
|
return cos(x);
|
|
#else
|
|
return SDL_uclibc_cos(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_cosf(float x)
|
|
{
|
|
#if defined(HAVE_COSF)
|
|
return cosf(x);
|
|
#else
|
|
return (float)SDL_cos((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_exp(double x)
|
|
{
|
|
#if defined(HAVE_EXP)
|
|
return exp(x);
|
|
#else
|
|
return SDL_uclibc_exp(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_expf(float x)
|
|
{
|
|
#if defined(HAVE_EXPF)
|
|
return expf(x);
|
|
#else
|
|
return (float)SDL_exp((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_fabs(double x)
|
|
{
|
|
#if defined(HAVE_FABS)
|
|
return fabs(x);
|
|
#else
|
|
return SDL_uclibc_fabs(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_fabsf(float x)
|
|
{
|
|
#if defined(HAVE_FABSF)
|
|
return fabsf(x);
|
|
#else
|
|
return (float)SDL_fabs((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_floor(double x)
|
|
{
|
|
#if defined(HAVE_FLOOR)
|
|
return floor(x);
|
|
#else
|
|
return SDL_uclibc_floor(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_floorf(float x)
|
|
{
|
|
#if defined(HAVE_FLOORF)
|
|
return floorf(x);
|
|
#else
|
|
return (float)SDL_floor((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_trunc(double x)
|
|
{
|
|
#if defined(HAVE_TRUNC)
|
|
return trunc(x);
|
|
#else
|
|
if (x >= 0.0f) {
|
|
return SDL_floor(x);
|
|
} else {
|
|
return SDL_ceil(x);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_truncf(float x)
|
|
{
|
|
#if defined(HAVE_TRUNCF)
|
|
return truncf(x);
|
|
#else
|
|
return (float)SDL_trunc((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_fmod(double x, double y)
|
|
{
|
|
#if defined(HAVE_FMOD)
|
|
return fmod(x, y);
|
|
#else
|
|
return SDL_uclibc_fmod(x, y);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_fmodf(float x, float y)
|
|
{
|
|
#if defined(HAVE_FMODF)
|
|
return fmodf(x, y);
|
|
#else
|
|
return (float)SDL_fmod((double)x, (double)y);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_log(double x)
|
|
{
|
|
#if defined(HAVE_LOG)
|
|
return log(x);
|
|
#else
|
|
return SDL_uclibc_log(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_logf(float x)
|
|
{
|
|
#if defined(HAVE_LOGF)
|
|
return logf(x);
|
|
#else
|
|
return (float)SDL_log((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_log10(double x)
|
|
{
|
|
#if defined(HAVE_LOG10)
|
|
return log10(x);
|
|
#else
|
|
return SDL_uclibc_log10(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_log10f(float x)
|
|
{
|
|
#if defined(HAVE_LOG10F)
|
|
return log10f(x);
|
|
#else
|
|
return (float)SDL_log10((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_pow(double x, double y)
|
|
{
|
|
#if defined(HAVE_POW)
|
|
return pow(x, y);
|
|
#else
|
|
return SDL_uclibc_pow(x, y);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_powf(float x, float y)
|
|
{
|
|
#if defined(HAVE_POWF)
|
|
return powf(x, y);
|
|
#else
|
|
return (float)SDL_pow((double)x, (double)y);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_round(double arg)
|
|
{
|
|
#if defined HAVE_ROUND
|
|
return round(arg);
|
|
#else
|
|
if (arg >= 0.0) {
|
|
return SDL_floor(arg + 0.5);
|
|
} else {
|
|
return SDL_ceil(arg - 0.5);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_roundf(float arg)
|
|
{
|
|
#if defined HAVE_ROUNDF
|
|
return roundf(arg);
|
|
#else
|
|
return (float)SDL_round((double)arg);
|
|
#endif
|
|
}
|
|
|
|
long
|
|
SDL_lround(double arg)
|
|
{
|
|
#if defined HAVE_LROUND
|
|
return lround(arg);
|
|
#else
|
|
return (long)SDL_round(arg);
|
|
#endif
|
|
}
|
|
|
|
long
|
|
SDL_lroundf(float arg)
|
|
{
|
|
#if defined HAVE_LROUNDF
|
|
return lroundf(arg);
|
|
#else
|
|
return (long)SDL_round((double)arg);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_scalbn(double x, int n)
|
|
{
|
|
#if defined(HAVE_SCALBN)
|
|
return scalbn(x, n);
|
|
#elif defined(HAVE__SCALB)
|
|
return _scalb(x, n);
|
|
#elif defined(HAVE_LIBC) && defined(HAVE_FLOAT_H) && (FLT_RADIX == 2)
|
|
/* from scalbn(3): If FLT_RADIX equals 2 (which is
|
|
* usual), then scalbn() is equivalent to ldexp(3). */
|
|
return ldexp(x, n);
|
|
#else
|
|
return SDL_uclibc_scalbn(x, n);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_scalbnf(float x, int n)
|
|
{
|
|
#if defined(HAVE_SCALBNF)
|
|
return scalbnf(x, n);
|
|
#else
|
|
return (float)SDL_scalbn((double)x, n);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_sin(double x)
|
|
{
|
|
#if defined(HAVE_SIN)
|
|
return sin(x);
|
|
#else
|
|
return SDL_uclibc_sin(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_sinf(float x)
|
|
{
|
|
#if defined(HAVE_SINF)
|
|
return sinf(x);
|
|
#else
|
|
return (float)SDL_sin((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_sqrt(double x)
|
|
{
|
|
#if defined(HAVE_SQRT)
|
|
return sqrt(x);
|
|
#else
|
|
return SDL_uclibc_sqrt(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_sqrtf(float x)
|
|
{
|
|
#if defined(HAVE_SQRTF)
|
|
return sqrtf(x);
|
|
#else
|
|
return (float)SDL_sqrt((double)x);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
SDL_tan(double x)
|
|
{
|
|
#if defined(HAVE_TAN)
|
|
return tan(x);
|
|
#else
|
|
return SDL_uclibc_tan(x);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
SDL_tanf(float x)
|
|
{
|
|
#if defined(HAVE_TANF)
|
|
return tanf(x);
|
|
#else
|
|
return (float)SDL_tan((double)x);
|
|
#endif
|
|
}
|
|
|
|
int SDL_abs(int x)
|
|
{
|
|
#if defined(HAVE_ABS)
|
|
return abs(x);
|
|
#else
|
|
return (x < 0) ? -x : x;
|
|
#endif
|
|
}
|
|
|
|
#if defined(HAVE_CTYPE_H)
|
|
int SDL_isalpha(int x) { return isalpha(x); }
|
|
int SDL_isalnum(int x) { return isalnum(x); }
|
|
int SDL_isdigit(int x) { return isdigit(x); }
|
|
int SDL_isxdigit(int x) { return isxdigit(x); }
|
|
int SDL_ispunct(int x) { return ispunct(x); }
|
|
int SDL_isspace(int x) { return isspace(x); }
|
|
int SDL_isupper(int x) { return isupper(x); }
|
|
int SDL_islower(int x) { return islower(x); }
|
|
int SDL_isprint(int x) { return isprint(x); }
|
|
int SDL_isgraph(int x) { return isgraph(x); }
|
|
int SDL_iscntrl(int x) { return iscntrl(x); }
|
|
int SDL_toupper(int x) { return toupper(x); }
|
|
int SDL_tolower(int x) { return tolower(x); }
|
|
#else
|
|
int SDL_isalpha(int x) { return (SDL_isupper(x)) || (SDL_islower(x)); }
|
|
int SDL_isalnum(int x) { return (SDL_isalpha(x)) || (SDL_isdigit(x)); }
|
|
int SDL_isdigit(int x) { return ((x) >= '0') && ((x) <= '9'); }
|
|
int SDL_isxdigit(int x) { return (((x) >= 'A') && ((x) <= 'F')) || (((x) >= 'a') && ((x) <= 'f')) || (SDL_isdigit(x)); }
|
|
int SDL_ispunct(int x) { return (SDL_isgraph(x)) && (!SDL_isalnum(x)); }
|
|
int SDL_isspace(int x) { return ((x) == ' ') || ((x) == '\t') || ((x) == '\r') || ((x) == '\n') || ((x) == '\f') || ((x) == '\v'); }
|
|
int SDL_isupper(int x) { return ((x) >= 'A') && ((x) <= 'Z'); }
|
|
int SDL_islower(int x) { return ((x) >= 'a') && ((x) <= 'z'); }
|
|
int SDL_isprint(int x) { return ((x) >= ' ') && ((x) < '\x7f'); }
|
|
int SDL_isgraph(int x) { return (SDL_isprint(x)) && ((x) != ' '); }
|
|
int SDL_iscntrl(int x) { return (((x) >= '\0') && ((x) <= '\x1f')) || ((x) == '\x7f'); }
|
|
int SDL_toupper(int x) { return ((x) >= 'a') && ((x) <= 'z') ? ('A'+((x)-'a')) : (x); }
|
|
int SDL_tolower(int x) { return ((x) >= 'A') && ((x) <= 'Z') ? ('a'+((x)-'A')) : (x); }
|
|
#endif
|
|
|
|
/* This file contains a portable memcpy manipulation function for SDL */
|
|
|
|
void *
|
|
SDL_memcpy(SDL_OUT_BYTECAP(len) void *dst, SDL_IN_BYTECAP(len) const void *src, size_t len)
|
|
{
|
|
#ifdef __GNUC__
|
|
/* Presumably this is well tuned for speed.
|
|
On my machine this is twice as fast as the C code below.
|
|
*/
|
|
return __builtin_memcpy(dst, src, len);
|
|
#elif defined(HAVE_MEMCPY)
|
|
return memcpy(dst, src, len);
|
|
#elif defined(HAVE_BCOPY)
|
|
bcopy(src, dst, len);
|
|
return dst;
|
|
#else
|
|
/* GCC 4.9.0 with -O3 will generate movaps instructions with the loop
|
|
using Uint32* pointers, so we need to make sure the pointers are
|
|
aligned before we loop using them.
|
|
*/
|
|
if (((uintptr_t)src & 0x3) || ((uintptr_t)dst & 0x3)) {
|
|
/* Do an unaligned byte copy */
|
|
Uint8 *srcp1 = (Uint8 *)src;
|
|
Uint8 *dstp1 = (Uint8 *)dst;
|
|
|
|
while (len--) {
|
|
*dstp1++ = *srcp1++;
|
|
}
|
|
} else {
|
|
size_t left = (len % 4);
|
|
Uint32 *srcp4, *dstp4;
|
|
Uint8 *srcp1, *dstp1;
|
|
|
|
srcp4 = (Uint32 *) src;
|
|
dstp4 = (Uint32 *) dst;
|
|
len /= 4;
|
|
while (len--) {
|
|
*dstp4++ = *srcp4++;
|
|
}
|
|
|
|
srcp1 = (Uint8 *) srcp4;
|
|
dstp1 = (Uint8 *) dstp4;
|
|
switch (left) {
|
|
case 3:
|
|
*dstp1++ = *srcp1++;
|
|
case 2:
|
|
*dstp1++ = *srcp1++;
|
|
case 1:
|
|
*dstp1++ = *srcp1++;
|
|
}
|
|
}
|
|
return dst;
|
|
#endif /* __GNUC__ */
|
|
}
|
|
|
|
void *
|
|
SDL_memset(SDL_OUT_BYTECAP(len) void *dst, int c, size_t len)
|
|
{
|
|
#if defined(HAVE_MEMSET)
|
|
return memset(dst, c, len);
|
|
#else
|
|
size_t left;
|
|
Uint32 *dstp4;
|
|
Uint8 *dstp1 = (Uint8 *) dst;
|
|
Uint8 value1;
|
|
Uint32 value4;
|
|
|
|
/* The value used in memset() is a byte, passed as an int */
|
|
c &= 0xff;
|
|
|
|
/* The destination pointer needs to be aligned on a 4-byte boundary to
|
|
* execute a 32-bit set. Set first bytes manually if needed until it is
|
|
* aligned. */
|
|
value1 = (Uint8)c;
|
|
while ((uintptr_t)dstp1 & 0x3) {
|
|
if (len--) {
|
|
*dstp1++ = value1;
|
|
} else {
|
|
return dst;
|
|
}
|
|
}
|
|
|
|
value4 = ((Uint32)c | ((Uint32)c << 8) | ((Uint32)c << 16) | ((Uint32)c << 24));
|
|
dstp4 = (Uint32 *) dstp1;
|
|
left = (len % 4);
|
|
len /= 4;
|
|
while (len--) {
|
|
*dstp4++ = value4;
|
|
}
|
|
|
|
dstp1 = (Uint8 *) dstp4;
|
|
switch (left) {
|
|
case 3:
|
|
*dstp1++ = value1;
|
|
case 2:
|
|
*dstp1++ = value1;
|
|
case 1:
|
|
*dstp1++ = value1;
|
|
}
|
|
|
|
return dst;
|
|
#endif /* HAVE_MEMSET */
|
|
}
|
|
|
|
#if defined(HAVE_CTYPE_H) && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
|
|
int SDL_isblank(int x) { return isblank(x); }
|
|
#else
|
|
int SDL_isblank(int x) { return ((x) == ' ') || ((x) == '\t'); }
|
|
#endif
|
|
|
|
/* vi: set ts=4 sw=4 expandtab: */
|