libsoundio/src/coreaudio.c

1466 lines
56 KiB
C

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of libsoundio, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "coreaudio.h"
#include "soundio_private.h"
#include <assert.h>
static const int OUTPUT_ELEMENT = 0;
static const int INPUT_ELEMENT = 1;
static AudioObjectPropertyAddress device_listen_props[] = {
{
kAudioDevicePropertyDeviceHasChanged,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
},
{
kAudioObjectPropertyName,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyDeviceUID,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyStreamConfiguration,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyStreamConfiguration,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyPreferredChannelLayout,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyPreferredChannelLayout,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyNominalSampleRate,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyNominalSampleRate,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyAvailableNominalSampleRates,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyAvailableNominalSampleRates,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyBufferFrameSize,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyBufferFrameSize,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyBufferFrameSizeRange,
kAudioObjectPropertyScopeInput,
kAudioObjectPropertyElementMaster
},
{
kAudioDevicePropertyBufferFrameSizeRange,
kAudioObjectPropertyScopeOutput,
kAudioObjectPropertyElementMaster
},
};
static enum SoundIoDeviceAim aims[] = {
SoundIoDeviceAimInput,
SoundIoDeviceAimOutput,
};
SOUNDIO_MAKE_LIST_DEF(AudioDeviceID, SoundIoListAudioDeviceID, SOUNDIO_LIST_STATIC)
static OSStatus on_devices_changed(AudioObjectID in_object_id, UInt32 in_number_addresses,
const AudioObjectPropertyAddress in_addresses[], void *in_client_data)
{
struct SoundIoPrivate *si = (struct SoundIoPrivate*)in_client_data;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
SOUNDIO_ATOMIC_STORE(sica->device_scan_queued, true);
soundio_os_cond_signal(sica->scan_devices_cond, NULL);
return noErr;
}
static OSStatus on_service_restarted(AudioObjectID in_object_id, UInt32 in_number_addresses,
const AudioObjectPropertyAddress in_addresses[], void *in_client_data)
{
struct SoundIoPrivate *si = (struct SoundIoPrivate*)in_client_data;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
SOUNDIO_ATOMIC_STORE(sica->service_restarted, true);
soundio_os_cond_signal(sica->scan_devices_cond, NULL);
return noErr;
}
static void unsubscribe_device_listeners(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
for (int device_index = 0; device_index < sica->registered_listeners.length; device_index += 1) {
AudioDeviceID device_id = SoundIoListAudioDeviceID_val_at(&sica->registered_listeners, device_index);
for (int i = 0; i < ARRAY_LENGTH(device_listen_props); i += 1) {
AudioObjectRemovePropertyListener(device_id, &device_listen_props[i],
on_devices_changed, si);
}
}
SoundIoListAudioDeviceID_clear(&sica->registered_listeners);
}
static void destroy_ca(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
AudioObjectPropertyAddress prop_address = {
kAudioHardwarePropertyDevices,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
AudioObjectRemovePropertyListener(kAudioObjectSystemObject, &prop_address, on_devices_changed, si);
prop_address.mSelector = kAudioHardwarePropertyServiceRestarted;
AudioObjectRemovePropertyListener(kAudioObjectSystemObject, &prop_address, on_service_restarted, si);
unsubscribe_device_listeners(si);
SoundIoListAudioDeviceID_deinit(&sica->registered_listeners);
if (sica->thread) {
SOUNDIO_ATOMIC_FLAG_CLEAR(sica->abort_flag);
soundio_os_cond_signal(sica->scan_devices_cond, NULL);
soundio_os_thread_destroy(sica->thread);
}
if (sica->cond)
soundio_os_cond_destroy(sica->cond);
if (sica->have_devices_cond)
soundio_os_cond_destroy(sica->have_devices_cond);
if (sica->scan_devices_cond)
soundio_os_cond_destroy(sica->scan_devices_cond);
if (sica->mutex)
soundio_os_mutex_destroy(sica->mutex);
soundio_destroy_devices_info(sica->ready_devices_info);
}
// Possible errors:
// * SoundIoErrorNoMem
// * SoundIoErrorEncodingString
static int from_cf_string(CFStringRef string_ref, char **out_str, int *out_str_len) {
assert(string_ref);
CFIndex length = CFStringGetLength(string_ref);
CFIndex max_size = CFStringGetMaximumSizeForEncoding(length, kCFStringEncodingUTF8);
char *buf = ALLOCATE_NONZERO(char, max_size);
if (!buf)
return SoundIoErrorNoMem;
if (!CFStringGetCString(string_ref, buf, max_size, kCFStringEncodingUTF8)) {
free(buf);
return SoundIoErrorEncodingString;
}
*out_str = buf;
*out_str_len = strlen(buf);
return 0;
}
static int aim_to_scope(enum SoundIoDeviceAim aim) {
return (aim == SoundIoDeviceAimInput) ?
kAudioObjectPropertyScopeInput : kAudioObjectPropertyScopeOutput;
}
static enum SoundIoChannelId from_channel_descr(const AudioChannelDescription *descr) {
switch (descr->mChannelLabel) {
default: return SoundIoChannelIdInvalid;
case kAudioChannelLabel_Left: return SoundIoChannelIdFrontLeft;
case kAudioChannelLabel_Right: return SoundIoChannelIdFrontRight;
case kAudioChannelLabel_Center: return SoundIoChannelIdFrontCenter;
case kAudioChannelLabel_LFEScreen: return SoundIoChannelIdLfe;
case kAudioChannelLabel_LeftSurround: return SoundIoChannelIdBackLeft;
case kAudioChannelLabel_RightSurround: return SoundIoChannelIdBackRight;
case kAudioChannelLabel_LeftCenter: return SoundIoChannelIdFrontLeftCenter;
case kAudioChannelLabel_RightCenter: return SoundIoChannelIdFrontRightCenter;
case kAudioChannelLabel_CenterSurround: return SoundIoChannelIdBackCenter;
case kAudioChannelLabel_LeftSurroundDirect: return SoundIoChannelIdSideLeft;
case kAudioChannelLabel_RightSurroundDirect: return SoundIoChannelIdSideRight;
case kAudioChannelLabel_TopCenterSurround: return SoundIoChannelIdTopCenter;
case kAudioChannelLabel_VerticalHeightLeft: return SoundIoChannelIdTopFrontLeft;
case kAudioChannelLabel_VerticalHeightCenter: return SoundIoChannelIdTopFrontCenter;
case kAudioChannelLabel_VerticalHeightRight: return SoundIoChannelIdTopFrontRight;
case kAudioChannelLabel_TopBackLeft: return SoundIoChannelIdTopBackLeft;
case kAudioChannelLabel_TopBackCenter: return SoundIoChannelIdTopBackCenter;
case kAudioChannelLabel_TopBackRight: return SoundIoChannelIdTopBackRight;
case kAudioChannelLabel_RearSurroundLeft: return SoundIoChannelIdBackLeft;
case kAudioChannelLabel_RearSurroundRight: return SoundIoChannelIdBackRight;
case kAudioChannelLabel_LeftWide: return SoundIoChannelIdFrontLeftWide;
case kAudioChannelLabel_RightWide: return SoundIoChannelIdFrontRightWide;
case kAudioChannelLabel_LFE2: return SoundIoChannelIdLfe2;
case kAudioChannelLabel_LeftTotal: return SoundIoChannelIdFrontLeft;
case kAudioChannelLabel_RightTotal: return SoundIoChannelIdFrontRight;
case kAudioChannelLabel_HearingImpaired: return SoundIoChannelIdHearingImpaired;
case kAudioChannelLabel_Narration: return SoundIoChannelIdNarration;
case kAudioChannelLabel_Mono: return SoundIoChannelIdFrontCenter;
case kAudioChannelLabel_DialogCentricMix: return SoundIoChannelIdDialogCentricMix;
case kAudioChannelLabel_CenterSurroundDirect: return SoundIoChannelIdBackCenter;
case kAudioChannelLabel_Haptic: return SoundIoChannelIdHaptic;
case kAudioChannelLabel_Ambisonic_W: return SoundIoChannelIdAmbisonicW;
case kAudioChannelLabel_Ambisonic_X: return SoundIoChannelIdAmbisonicX;
case kAudioChannelLabel_Ambisonic_Y: return SoundIoChannelIdAmbisonicY;
case kAudioChannelLabel_Ambisonic_Z: return SoundIoChannelIdAmbisonicZ;
case kAudioChannelLabel_MS_Mid: return SoundIoChannelIdMsMid;
case kAudioChannelLabel_MS_Side: return SoundIoChannelIdMsSide;
case kAudioChannelLabel_XY_X: return SoundIoChannelIdXyX;
case kAudioChannelLabel_XY_Y: return SoundIoChannelIdXyY;
case kAudioChannelLabel_HeadphonesLeft: return SoundIoChannelIdHeadphonesLeft;
case kAudioChannelLabel_HeadphonesRight: return SoundIoChannelIdHeadphonesRight;
case kAudioChannelLabel_ClickTrack: return SoundIoChannelIdClickTrack;
case kAudioChannelLabel_ForeignLanguage: return SoundIoChannelIdForeignLanguage;
case kAudioChannelLabel_Discrete: return SoundIoChannelIdAux;
case kAudioChannelLabel_Discrete_0: return SoundIoChannelIdAux0;
case kAudioChannelLabel_Discrete_1: return SoundIoChannelIdAux1;
case kAudioChannelLabel_Discrete_2: return SoundIoChannelIdAux2;
case kAudioChannelLabel_Discrete_3: return SoundIoChannelIdAux3;
case kAudioChannelLabel_Discrete_4: return SoundIoChannelIdAux4;
case kAudioChannelLabel_Discrete_5: return SoundIoChannelIdAux5;
case kAudioChannelLabel_Discrete_6: return SoundIoChannelIdAux6;
case kAudioChannelLabel_Discrete_7: return SoundIoChannelIdAux7;
case kAudioChannelLabel_Discrete_8: return SoundIoChannelIdAux8;
case kAudioChannelLabel_Discrete_9: return SoundIoChannelIdAux9;
case kAudioChannelLabel_Discrete_10: return SoundIoChannelIdAux10;
case kAudioChannelLabel_Discrete_11: return SoundIoChannelIdAux11;
case kAudioChannelLabel_Discrete_12: return SoundIoChannelIdAux12;
case kAudioChannelLabel_Discrete_13: return SoundIoChannelIdAux13;
case kAudioChannelLabel_Discrete_14: return SoundIoChannelIdAux14;
case kAudioChannelLabel_Discrete_15: return SoundIoChannelIdAux15;
}
}
// See https://developer.apple.com/library/mac/documentation/MusicAudio/Reference/CoreAudioDataTypesRef/#//apple_ref/doc/constant_group/Audio_Channel_Layout_Tags
// Possible Errors:
// * SoundIoErrorIncompatibleDevice
// This does not handle all the possible layout enum values and it does not
// handle channel bitmaps.
static int from_coreaudio_layout(const AudioChannelLayout *ca_layout, struct SoundIoChannelLayout *layout) {
switch (ca_layout->mChannelLayoutTag) {
case kAudioChannelLayoutTag_UseChannelDescriptions:
{
layout->channel_count = soundio_int_min(
SOUNDIO_MAX_CHANNELS,
ca_layout->mNumberChannelDescriptions
);
for (int i = 0; i < layout->channel_count; i += 1) {
layout->channels[i] = from_channel_descr(&ca_layout->mChannelDescriptions[i]);
}
break;
}
case kAudioChannelLayoutTag_UseChannelBitmap:
return SoundIoErrorIncompatibleDevice;
case kAudioChannelLayoutTag_Mono:
layout->channel_count = 1;
layout->channels[0] = SoundIoChannelIdFrontCenter;
break;
case kAudioChannelLayoutTag_Stereo:
case kAudioChannelLayoutTag_StereoHeadphones:
case kAudioChannelLayoutTag_MatrixStereo:
case kAudioChannelLayoutTag_Binaural:
layout->channel_count = 2;
layout->channels[0] = SoundIoChannelIdFrontLeft;
layout->channels[1] = SoundIoChannelIdFrontRight;
break;
case kAudioChannelLayoutTag_XY:
layout->channel_count = 2;
layout->channels[0] = SoundIoChannelIdXyX;
layout->channels[1] = SoundIoChannelIdXyY;
break;
case kAudioChannelLayoutTag_MidSide:
layout->channel_count = 2;
layout->channels[0] = SoundIoChannelIdMsMid;
layout->channels[1] = SoundIoChannelIdMsSide;
break;
case kAudioChannelLayoutTag_Ambisonic_B_Format:
layout->channel_count = 4;
layout->channels[0] = SoundIoChannelIdAmbisonicW;
layout->channels[1] = SoundIoChannelIdAmbisonicX;
layout->channels[2] = SoundIoChannelIdAmbisonicY;
layout->channels[3] = SoundIoChannelIdAmbisonicZ;
break;
case kAudioChannelLayoutTag_Quadraphonic:
layout->channel_count = 4;
layout->channels[0] = SoundIoChannelIdFrontLeft;
layout->channels[1] = SoundIoChannelIdFrontRight;
layout->channels[2] = SoundIoChannelIdBackLeft;
layout->channels[3] = SoundIoChannelIdBackRight;
break;
case kAudioChannelLayoutTag_Pentagonal:
layout->channel_count = 5;
layout->channels[0] = SoundIoChannelIdSideLeft;
layout->channels[1] = SoundIoChannelIdSideRight;
layout->channels[2] = SoundIoChannelIdBackLeft;
layout->channels[3] = SoundIoChannelIdBackRight;
layout->channels[4] = SoundIoChannelIdFrontCenter;
break;
case kAudioChannelLayoutTag_Hexagonal:
layout->channel_count = 6;
layout->channels[0] = SoundIoChannelIdFrontLeft;
layout->channels[1] = SoundIoChannelIdFrontRight;
layout->channels[2] = SoundIoChannelIdBackLeft;
layout->channels[3] = SoundIoChannelIdBackRight;
layout->channels[4] = SoundIoChannelIdFrontCenter;
layout->channels[5] = SoundIoChannelIdBackCenter;
break;
case kAudioChannelLayoutTag_Octagonal:
layout->channel_count = 8;
layout->channels[0] = SoundIoChannelIdFrontLeft;
layout->channels[1] = SoundIoChannelIdFrontRight;
layout->channels[2] = SoundIoChannelIdBackLeft;
layout->channels[3] = SoundIoChannelIdBackRight;
layout->channels[4] = SoundIoChannelIdFrontCenter;
layout->channels[5] = SoundIoChannelIdBackCenter;
layout->channels[6] = SoundIoChannelIdSideLeft;
layout->channels[7] = SoundIoChannelIdSideRight;
break;
case kAudioChannelLayoutTag_Cube:
layout->channel_count = 8;
layout->channels[0] = SoundIoChannelIdFrontLeft;
layout->channels[1] = SoundIoChannelIdFrontRight;
layout->channels[2] = SoundIoChannelIdBackLeft;
layout->channels[3] = SoundIoChannelIdBackRight;
layout->channels[4] = SoundIoChannelIdTopFrontLeft;
layout->channels[5] = SoundIoChannelIdTopFrontRight;
layout->channels[6] = SoundIoChannelIdTopBackLeft;
layout->channels[7] = SoundIoChannelIdTopBackRight;
break;
default:
return SoundIoErrorIncompatibleDevice;
}
soundio_channel_layout_detect_builtin(layout);
return 0;
}
static bool all_channels_invalid(const struct SoundIoChannelLayout *layout) {
for (int i = 0; i < layout->channel_count; i += 1) {
if (layout->channels[i] != SoundIoChannelIdInvalid)
return false;
}
return true;
}
struct RefreshDevices {
struct SoundIoPrivate *si;
struct SoundIoDevicesInfo *devices_info;
int devices_size;
AudioObjectID *devices;
CFStringRef string_ref;
char *device_name;
int device_name_len;
AudioBufferList *buffer_list;
struct SoundIoDevice *device;
AudioChannelLayout *audio_channel_layout;
char *device_uid;
int device_uid_len;
AudioValueRange *avr_array;
bool ok;
};
static void deinit_refresh_devices(struct RefreshDevices *rd) {
if (!rd->ok)
unsubscribe_device_listeners(rd->si);
soundio_destroy_devices_info(rd->devices_info);
free(rd->devices);
if (rd->string_ref)
CFRelease(rd->string_ref);
free(rd->device_name);
free(rd->buffer_list);
soundio_device_unref(rd->device);
free(rd->audio_channel_layout);
free(rd->device_uid);
free(rd->avr_array);
}
static int refresh_devices(struct SoundIoPrivate *si) {
struct SoundIo *soundio = &si->pub;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
UInt32 io_size;
OSStatus os_err;
int err;
unsubscribe_device_listeners(si);
struct RefreshDevices rd = {0};
rd.si = si;
if (!(rd.devices_info = ALLOCATE(struct SoundIoDevicesInfo, 1))) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
AudioObjectPropertyAddress prop_address = {
kAudioHardwarePropertyDevices,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if ((os_err = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject,
&prop_address, 0, NULL, &io_size)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
AudioObjectID default_input_id;
AudioObjectID default_output_id;
int device_count = io_size / (UInt32)sizeof(AudioObjectID);
if (device_count >= 1) {
rd.devices_size = io_size;
rd.devices = (AudioObjectID *)ALLOCATE(char, rd.devices_size);
if (!rd.devices) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
if ((os_err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &prop_address, 0, NULL,
&io_size, rd.devices)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
io_size = sizeof(AudioObjectID);
prop_address.mSelector = kAudioHardwarePropertyDefaultInputDevice;
if ((os_err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &prop_address,
0, NULL, &io_size, &default_input_id)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
io_size = sizeof(AudioObjectID);
prop_address.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
if ((os_err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &prop_address,
0, NULL, &io_size, &default_output_id)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
}
for (int device_i = 0; device_i < device_count; device_i += 1) {
AudioObjectID device_id = rd.devices[device_i];
for (int i = 0; i < ARRAY_LENGTH(device_listen_props); i += 1) {
if ((err = SoundIoListAudioDeviceID_add_one(&sica->registered_listeners))) {
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioObjectAddPropertyListener(device_id, &device_listen_props[i],
on_devices_changed, si)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
AudioDeviceID *last_device_id = SoundIoListAudioDeviceID_last_ptr(&sica->registered_listeners);
*last_device_id = device_id;
}
prop_address.mSelector = kAudioObjectPropertyName;
prop_address.mScope = kAudioObjectPropertyScopeGlobal;
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(CFStringRef);
if (rd.string_ref) {
CFRelease(rd.string_ref);
rd.string_ref = NULL;
}
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address,
0, NULL, &io_size, &rd.string_ref)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
free(rd.device_name);
rd.device_name = NULL;
if ((err = from_cf_string(rd.string_ref, &rd.device_name, &rd.device_name_len))) {
deinit_refresh_devices(&rd);
return err;
}
prop_address.mSelector = kAudioDevicePropertyDeviceUID;
prop_address.mScope = kAudioObjectPropertyScopeGlobal;
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(CFStringRef);
if (rd.string_ref) {
CFRelease(rd.string_ref);
rd.string_ref = NULL;
}
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address,
0, NULL, &io_size, &rd.string_ref)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
free(rd.device_uid);
rd.device_uid = NULL;
if ((err = from_cf_string(rd.string_ref, &rd.device_uid, &rd.device_uid_len))) {
deinit_refresh_devices(&rd);
return err;
}
for (int aim_i = 0; aim_i < ARRAY_LENGTH(aims); aim_i += 1) {
enum SoundIoDeviceAim aim = aims[aim_i];
io_size = 0;
prop_address.mSelector = kAudioDevicePropertyStreamConfiguration;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
if ((os_err = AudioObjectGetPropertyDataSize(device_id, &prop_address, 0, NULL, &io_size))) {
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
free(rd.buffer_list);
rd.buffer_list = (AudioBufferList*)ALLOCATE_NONZERO(char, io_size);
if (!rd.buffer_list) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, rd.buffer_list)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
int channel_count = 0;
for (int i = 0; i < rd.buffer_list->mNumberBuffers; i += 1) {
channel_count += rd.buffer_list->mBuffers[i].mNumberChannels;
}
if (channel_count <= 0)
continue;
struct SoundIoDevicePrivate *dev = ALLOCATE(struct SoundIoDevicePrivate, 1);
if (!dev) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
struct SoundIoDeviceCoreAudio *dca = &dev->backend_data.coreaudio;
dca->device_id = device_id;
assert(!rd.device);
rd.device = &dev->pub;
rd.device->ref_count = 1;
rd.device->soundio = soundio;
rd.device->is_raw = false;
rd.device->aim = aim;
rd.device->id = soundio_str_dupe(rd.device_uid, rd.device_uid_len);
rd.device->name = soundio_str_dupe(rd.device_name, rd.device_name_len);
if (!rd.device->id || !rd.device->name) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
prop_address.mSelector = kAudioDevicePropertyPreferredChannelLayout;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
if (!(os_err = AudioObjectGetPropertyDataSize(device_id, &prop_address,
0, NULL, &io_size)))
{
rd.audio_channel_layout = (AudioChannelLayout *)ALLOCATE(char, io_size);
if (!rd.audio_channel_layout) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, rd.audio_channel_layout)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
if ((err = from_coreaudio_layout(rd.audio_channel_layout, &rd.device->current_layout))) {
rd.device->current_layout.channel_count = channel_count;
}
}
if (all_channels_invalid(&rd.device->current_layout)) {
const struct SoundIoChannelLayout *guessed_layout =
soundio_channel_layout_get_default(channel_count);
if (guessed_layout)
rd.device->current_layout = *guessed_layout;
}
rd.device->layout_count = 1;
rd.device->layouts = &rd.device->current_layout;
rd.device->format_count = 4;
rd.device->formats = ALLOCATE(enum SoundIoFormat, rd.device->format_count);
if (!rd.device->formats)
return SoundIoErrorNoMem;
rd.device->formats[0] = SoundIoFormatS16LE;
rd.device->formats[1] = SoundIoFormatS32LE;
rd.device->formats[2] = SoundIoFormatFloat32LE;
rd.device->formats[3] = SoundIoFormatFloat64LE;
prop_address.mSelector = kAudioDevicePropertyNominalSampleRate;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(double);
double value;
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, &value)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
double floored_value = floor(value);
if (value != floored_value) {
deinit_refresh_devices(&rd);
return SoundIoErrorIncompatibleDevice;
}
rd.device->sample_rate_current = (int)floored_value;
// If you try to open an input stream with anything but the current
// nominal sample rate, AudioUnitRender returns an error.
if (aim == SoundIoDeviceAimInput) {
rd.device->sample_rate_count = 1;
rd.device->sample_rates = &dev->prealloc_sample_rate_range;
rd.device->sample_rates[0].min = rd.device->sample_rate_current;
rd.device->sample_rates[0].max = rd.device->sample_rate_current;
} else {
prop_address.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
if ((os_err = AudioObjectGetPropertyDataSize(device_id, &prop_address, 0, NULL,
&io_size)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
int avr_array_len = io_size / sizeof(AudioValueRange);
rd.avr_array = (AudioValueRange*)ALLOCATE(char, io_size);
if (!rd.avr_array) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, rd.avr_array)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
if (avr_array_len == 1) {
rd.device->sample_rate_count = 1;
rd.device->sample_rates = &dev->prealloc_sample_rate_range;
rd.device->sample_rates[0].min = ceil_dbl_to_int(rd.avr_array[0].mMinimum);
rd.device->sample_rates[0].max = (int)(rd.avr_array[0].mMaximum);
} else {
rd.device->sample_rate_count = avr_array_len;
rd.device->sample_rates = ALLOCATE(struct SoundIoSampleRateRange, avr_array_len);
if (!rd.device->sample_rates) {
deinit_refresh_devices(&rd);
return SoundIoErrorNoMem;
}
for (int i = 0; i < avr_array_len; i += 1) {
AudioValueRange *avr = &rd.avr_array[i];
int min_val = ceil_dbl_to_int(avr->mMinimum);
int max_val = (int)(avr->mMaximum);
rd.device->sample_rates[i].min = min_val;
rd.device->sample_rates[i].max = max_val;
}
}
}
prop_address.mSelector = kAudioDevicePropertyBufferFrameSize;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(UInt32);
UInt32 buffer_frame_size;
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, &buffer_frame_size)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
double use_sample_rate = rd.device->sample_rate_current;
rd.device->software_latency_current = buffer_frame_size / use_sample_rate;
prop_address.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(AudioValueRange);
AudioValueRange avr;
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, &avr)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
rd.device->software_latency_min = avr.mMinimum / use_sample_rate;
rd.device->software_latency_max = avr.mMaximum / use_sample_rate;
prop_address.mSelector = kAudioDevicePropertyLatency;
prop_address.mScope = aim_to_scope(aim);
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = sizeof(UInt32);
if ((os_err = AudioObjectGetPropertyData(device_id, &prop_address, 0, NULL,
&io_size, &dca->latency_frames)))
{
deinit_refresh_devices(&rd);
return SoundIoErrorOpeningDevice;
}
struct SoundIoListDevicePtr *device_list;
if (rd.device->aim == SoundIoDeviceAimOutput) {
device_list = &rd.devices_info->output_devices;
if (device_id == default_output_id)
rd.devices_info->default_output_index = device_list->length;
} else {
assert(rd.device->aim == SoundIoDeviceAimInput);
device_list = &rd.devices_info->input_devices;
if (device_id == default_input_id)
rd.devices_info->default_input_index = device_list->length;
}
if ((err = SoundIoListDevicePtr_append(device_list, rd.device))) {
deinit_refresh_devices(&rd);
return err;
}
rd.device = NULL;
}
}
soundio_os_mutex_lock(sica->mutex);
soundio_destroy_devices_info(sica->ready_devices_info);
sica->ready_devices_info = rd.devices_info;
soundio_os_mutex_unlock(sica->mutex);
rd.devices_info = NULL;
rd.ok = true;
deinit_refresh_devices(&rd);
return 0;
}
static void shutdown_backend(struct SoundIoPrivate *si, int err) {
struct SoundIo *soundio = &si->pub;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
soundio_os_mutex_lock(sica->mutex);
sica->shutdown_err = err;
SOUNDIO_ATOMIC_STORE(sica->have_devices_flag, true);
soundio_os_mutex_unlock(sica->mutex);
soundio_os_cond_signal(sica->cond, NULL);
soundio_os_cond_signal(sica->have_devices_cond, NULL);
soundio->on_events_signal(soundio);
}
static void flush_events_ca(struct SoundIoPrivate *si) {
struct SoundIo *soundio = &si->pub;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
// block until have devices
while (!SOUNDIO_ATOMIC_LOAD(sica->have_devices_flag))
soundio_os_cond_wait(sica->have_devices_cond, NULL);
bool change = false;
bool cb_shutdown = false;
struct SoundIoDevicesInfo *old_devices_info = NULL;
soundio_os_mutex_lock(sica->mutex);
if (sica->shutdown_err && !sica->emitted_shutdown_cb) {
sica->emitted_shutdown_cb = true;
cb_shutdown = true;
} else if (sica->ready_devices_info) {
old_devices_info = si->safe_devices_info;
si->safe_devices_info = sica->ready_devices_info;
sica->ready_devices_info = NULL;
change = true;
}
soundio_os_mutex_unlock(sica->mutex);
if (cb_shutdown)
soundio->on_backend_disconnect(soundio, sica->shutdown_err);
else if (change)
soundio->on_devices_change(soundio);
soundio_destroy_devices_info(old_devices_info);
}
static void wait_events_ca(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
flush_events_ca(si);
soundio_os_cond_wait(sica->cond, NULL);
}
static void wakeup_ca(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
soundio_os_cond_signal(sica->cond, NULL);
}
static void force_device_scan_ca(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
SOUNDIO_ATOMIC_STORE(sica->device_scan_queued, true);
soundio_os_cond_signal(sica->scan_devices_cond, NULL);
}
static void device_thread_run(void *arg) {
struct SoundIoPrivate *si = (struct SoundIoPrivate *)arg;
struct SoundIo *soundio = &si->pub;
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
int err;
for (;;) {
if (!SOUNDIO_ATOMIC_FLAG_TEST_AND_SET(sica->abort_flag))
break;
if (SOUNDIO_ATOMIC_LOAD(sica->service_restarted)) {
shutdown_backend(si, SoundIoErrorBackendDisconnected);
return;
}
if (SOUNDIO_ATOMIC_EXCHANGE(sica->device_scan_queued, false)) {
err = refresh_devices(si);
if (err) {
shutdown_backend(si, err);
return;
}
if (!SOUNDIO_ATOMIC_EXCHANGE(sica->have_devices_flag, true))
soundio_os_cond_signal(sica->have_devices_cond, NULL);
soundio_os_cond_signal(sica->cond, NULL);
soundio->on_events_signal(soundio);
}
soundio_os_cond_wait(sica->scan_devices_cond, NULL);
}
}
static OSStatus on_outstream_device_overload(AudioObjectID in_object_id, UInt32 in_number_addresses,
const AudioObjectPropertyAddress in_addresses[], void *in_client_data)
{
struct SoundIoOutStreamPrivate *os = (struct SoundIoOutStreamPrivate *)in_client_data;
struct SoundIoOutStream *outstream = &os->pub;
outstream->underflow_callback(outstream);
return noErr;
}
static void outstream_destroy_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os) {
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
struct SoundIoOutStream *outstream = &os->pub;
struct SoundIoDevice *device = outstream->device;
struct SoundIoDevicePrivate *dev = (struct SoundIoDevicePrivate *)device;
struct SoundIoDeviceCoreAudio *dca = &dev->backend_data.coreaudio;
AudioObjectPropertyAddress prop_address = {
kAudioDeviceProcessorOverload,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
AudioObjectRemovePropertyListener(dca->device_id, &prop_address, on_outstream_device_overload, os);
if (osca->instance) {
AudioOutputUnitStop(osca->instance);
AudioComponentInstanceDispose(osca->instance);
osca->instance = NULL;
}
}
static OSStatus write_callback_ca(void *userdata, AudioUnitRenderActionFlags *io_action_flags,
const AudioTimeStamp *in_time_stamp, UInt32 in_bus_number, UInt32 in_number_frames,
AudioBufferList *io_data)
{
struct SoundIoOutStreamPrivate *os = (struct SoundIoOutStreamPrivate *) userdata;
struct SoundIoOutStream *outstream = &os->pub;
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
osca->io_data = io_data;
osca->buffer_index = 0;
osca->frames_left = in_number_frames;
outstream->write_callback(outstream, osca->frames_left, osca->frames_left);
osca->io_data = NULL;
return noErr;
}
static int set_ca_desc(enum SoundIoFormat fmt, AudioStreamBasicDescription *desc) {
switch (fmt) {
case SoundIoFormatFloat32LE:
desc->mFormatFlags = kAudioFormatFlagIsFloat;
desc->mBitsPerChannel = 32;
break;
case SoundIoFormatFloat64LE:
desc->mFormatFlags = kAudioFormatFlagIsFloat;
desc->mBitsPerChannel = 64;
break;
case SoundIoFormatS32LE:
desc->mFormatFlags = kAudioFormatFlagIsSignedInteger;
desc->mBitsPerChannel = 32;
break;
case SoundIoFormatS16LE:
desc->mFormatFlags = kAudioFormatFlagIsSignedInteger;
desc->mBitsPerChannel = 16;
break;
default:
return SoundIoErrorIncompatibleDevice;
}
return 0;
}
static int outstream_open_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os) {
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
struct SoundIoOutStream *outstream = &os->pub;
struct SoundIoDevice *device = outstream->device;
struct SoundIoDevicePrivate *dev = (struct SoundIoDevicePrivate *)device;
struct SoundIoDeviceCoreAudio *dca = &dev->backend_data.coreaudio;
if (outstream->software_latency == 0.0)
outstream->software_latency = device->software_latency_current;
outstream->software_latency = soundio_double_clamp(
device->software_latency_min,
outstream->software_latency,
device->software_latency_max);
AudioComponentDescription desc = {0};
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_HALOutput;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
AudioComponent component = AudioComponentFindNext(NULL, &desc);
if (!component) {
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
OSStatus os_err;
if ((os_err = AudioComponentInstanceNew(component, &osca->instance))) {
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioUnitInitialize(osca->instance))) {
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
AudioStreamBasicDescription format = {0};
format.mSampleRate = outstream->sample_rate;
format.mFormatID = kAudioFormatLinearPCM;
int err;
if ((err = set_ca_desc(outstream->format, &format))) {
outstream_destroy_ca(si, os);
return err;
}
format.mBytesPerPacket = outstream->bytes_per_frame;
format.mFramesPerPacket = 1;
format.mBytesPerFrame = outstream->bytes_per_frame;
format.mChannelsPerFrame = outstream->layout.channel_count;
if ((os_err = AudioUnitSetProperty(osca->instance, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Input, OUTPUT_ELEMENT, &dca->device_id, sizeof(AudioDeviceID))))
{
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioUnitSetProperty(osca->instance, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Input, OUTPUT_ELEMENT, &format, sizeof(AudioStreamBasicDescription))))
{
outstream_destroy_ca(si, os);
return SoundIoErrorIncompatibleDevice;
}
AURenderCallbackStruct render_callback = {write_callback_ca, os};
if ((os_err = AudioUnitSetProperty(osca->instance, kAudioUnitProperty_SetRenderCallback,
kAudioUnitScope_Input, OUTPUT_ELEMENT, &render_callback, sizeof(AURenderCallbackStruct))))
{
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
AudioObjectPropertyAddress prop_address = {
kAudioDevicePropertyBufferFrameSize,
kAudioObjectPropertyScopeInput,
OUTPUT_ELEMENT
};
UInt32 buffer_frame_size = outstream->software_latency * outstream->sample_rate;
if ((os_err = AudioObjectSetPropertyData(dca->device_id, &prop_address,
0, NULL, sizeof(UInt32), &buffer_frame_size)))
{
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
prop_address.mSelector = kAudioDeviceProcessorOverload;
prop_address.mScope = kAudioObjectPropertyScopeGlobal;
prop_address.mElement = OUTPUT_ELEMENT;
if ((os_err = AudioObjectAddPropertyListener(dca->device_id, &prop_address,
on_outstream_device_overload, os)))
{
outstream_destroy_ca(si, os);
return SoundIoErrorOpeningDevice;
}
osca->hardware_latency = dca->latency_frames / (double)outstream->sample_rate;
return 0;
}
static int outstream_pause_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os, bool pause) {
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
OSStatus os_err;
if (pause) {
if ((os_err = AudioOutputUnitStop(osca->instance))) {
return SoundIoErrorStreaming;
}
} else {
if ((os_err = AudioOutputUnitStart(osca->instance))) {
return SoundIoErrorStreaming;
}
}
return 0;
}
static int outstream_start_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os) {
return outstream_pause_ca(si, os, false);
}
static int outstream_begin_write_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os,
struct SoundIoChannelArea **out_areas, int *frame_count)
{
struct SoundIoOutStream *outstream = &os->pub;
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
if (osca->buffer_index >= osca->io_data->mNumberBuffers)
return SoundIoErrorInvalid;
if (*frame_count != osca->frames_left)
return SoundIoErrorInvalid;
AudioBuffer *audio_buffer = &osca->io_data->mBuffers[osca->buffer_index];
assert(audio_buffer->mNumberChannels == outstream->layout.channel_count);
osca->write_frame_count = audio_buffer->mDataByteSize / outstream->bytes_per_frame;
*frame_count = osca->write_frame_count;
assert((audio_buffer->mDataByteSize % outstream->bytes_per_frame) == 0);
for (int ch = 0; ch < outstream->layout.channel_count; ch += 1) {
osca->areas[ch].ptr = ((char*)audio_buffer->mData) + outstream->bytes_per_sample * ch;
osca->areas[ch].step = outstream->bytes_per_frame;
}
*out_areas = osca->areas;
return 0;
}
static int outstream_end_write_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os) {
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
osca->buffer_index += 1;
osca->frames_left -= osca->write_frame_count;
assert(osca->frames_left >= 0);
return 0;
}
static int outstream_clear_buffer_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os) {
return SoundIoErrorIncompatibleBackend;
}
static int outstream_get_latency_ca(struct SoundIoPrivate *si, struct SoundIoOutStreamPrivate *os,
double *out_latency)
{
struct SoundIoOutStreamCoreAudio *osca = &os->backend_data.coreaudio;
*out_latency = osca->hardware_latency;
return 0;
}
static OSStatus on_instream_device_overload(AudioObjectID in_object_id, UInt32 in_number_addresses,
const AudioObjectPropertyAddress in_addresses[], void *in_client_data)
{
struct SoundIoInStreamPrivate *os = (struct SoundIoInStreamPrivate *)in_client_data;
struct SoundIoInStream *instream = &os->pub;
instream->overflow_callback(instream);
return noErr;
}
static void instream_destroy_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is) {
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
struct SoundIoInStream *instream = &is->pub;
struct SoundIoDevice *device = instream->device;
struct SoundIoDevicePrivate *dev = (struct SoundIoDevicePrivate *)device;
struct SoundIoDeviceCoreAudio *dca = &dev->backend_data.coreaudio;
AudioObjectPropertyAddress prop_address = {
kAudioDeviceProcessorOverload,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
AudioObjectRemovePropertyListener(dca->device_id, &prop_address, on_instream_device_overload, is);
if (isca->instance) {
AudioOutputUnitStop(isca->instance);
AudioComponentInstanceDispose(isca->instance);
isca->instance = NULL;
}
free(isca->buffer_list);
isca->buffer_list = NULL;
}
static OSStatus read_callback_ca(void *userdata, AudioUnitRenderActionFlags *io_action_flags,
const AudioTimeStamp *in_time_stamp, UInt32 in_bus_number, UInt32 in_number_frames,
AudioBufferList *io_data)
{
struct SoundIoInStreamPrivate *is = (struct SoundIoInStreamPrivate *) userdata;
struct SoundIoInStream *instream = &is->pub;
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
for (int i = 0; i < isca->buffer_list->mNumberBuffers; i += 1) {
isca->buffer_list->mBuffers[i].mData = NULL;
}
OSStatus os_err;
if ((os_err = AudioUnitRender(isca->instance, io_action_flags, in_time_stamp,
in_bus_number, in_number_frames, isca->buffer_list)))
{
instream->error_callback(instream, SoundIoErrorStreaming);
return noErr;
}
if (isca->buffer_list->mNumberBuffers == 1) {
AudioBuffer *audio_buffer = &isca->buffer_list->mBuffers[0];
assert(audio_buffer->mNumberChannels == instream->layout.channel_count);
assert(audio_buffer->mDataByteSize == in_number_frames * instream->bytes_per_frame);
for (int ch = 0; ch < instream->layout.channel_count; ch += 1) {
isca->areas[ch].ptr = ((char*)audio_buffer->mData) + (instream->bytes_per_sample * ch);
isca->areas[ch].step = instream->bytes_per_frame;
}
} else {
assert(isca->buffer_list->mNumberBuffers == instream->layout.channel_count);
for (int ch = 0; ch < instream->layout.channel_count; ch += 1) {
AudioBuffer *audio_buffer = &isca->buffer_list->mBuffers[ch];
assert(audio_buffer->mDataByteSize == in_number_frames * instream->bytes_per_sample);
isca->areas[ch].ptr = (char*)audio_buffer->mData;
isca->areas[ch].step = instream->bytes_per_sample;
}
}
isca->frames_left = in_number_frames;
instream->read_callback(instream, isca->frames_left, isca->frames_left);
return noErr;
}
static int instream_open_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is) {
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
struct SoundIoInStream *instream = &is->pub;
struct SoundIoDevice *device = instream->device;
struct SoundIoDevicePrivate *dev = (struct SoundIoDevicePrivate *)device;
struct SoundIoDeviceCoreAudio *dca = &dev->backend_data.coreaudio;
UInt32 io_size;
OSStatus os_err;
if (instream->software_latency == 0.0)
instream->software_latency = device->software_latency_current;
instream->software_latency = soundio_double_clamp(
device->software_latency_min,
instream->software_latency,
device->software_latency_max);
AudioObjectPropertyAddress prop_address;
prop_address.mSelector = kAudioDevicePropertyStreamConfiguration;
prop_address.mScope = kAudioObjectPropertyScopeInput;
prop_address.mElement = kAudioObjectPropertyElementMaster;
io_size = 0;
if ((os_err = AudioObjectGetPropertyDataSize(dca->device_id, &prop_address,
0, NULL, &io_size)))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
isca->buffer_list = (AudioBufferList*)ALLOCATE_NONZERO(char, io_size);
if (!isca->buffer_list) {
instream_destroy_ca(si, is);
return SoundIoErrorNoMem;
}
if ((os_err = AudioObjectGetPropertyData(dca->device_id, &prop_address,
0, NULL, &io_size, isca->buffer_list)))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
AudioComponentDescription desc = {0};
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_HALOutput;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
AudioComponent component = AudioComponentFindNext(NULL, &desc);
if (!component) {
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioComponentInstanceNew(component, &isca->instance))) {
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioUnitInitialize(isca->instance))) {
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
UInt32 enable_io = 1;
if ((os_err = AudioUnitSetProperty(isca->instance, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Input, INPUT_ELEMENT, &enable_io, sizeof(UInt32))))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
enable_io = 0;
if ((os_err = AudioUnitSetProperty(isca->instance, kAudioOutputUnitProperty_EnableIO,
kAudioUnitScope_Output, OUTPUT_ELEMENT, &enable_io, sizeof(UInt32))))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
if ((os_err = AudioUnitSetProperty(isca->instance, kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Output, INPUT_ELEMENT, &dca->device_id, sizeof(AudioDeviceID))))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
AudioStreamBasicDescription format = {0};
format.mSampleRate = instream->sample_rate;
format.mFormatID = kAudioFormatLinearPCM;
format.mBytesPerPacket = instream->bytes_per_frame;
format.mFramesPerPacket = 1;
format.mBytesPerFrame = instream->bytes_per_frame;
format.mChannelsPerFrame = instream->layout.channel_count;
int err;
if ((err = set_ca_desc(instream->format, &format))) {
instream_destroy_ca(si, is);
return err;
}
if ((os_err = AudioUnitSetProperty(isca->instance, kAudioUnitProperty_StreamFormat,
kAudioUnitScope_Output, INPUT_ELEMENT, &format, sizeof(AudioStreamBasicDescription))))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
AURenderCallbackStruct input_callback = {read_callback_ca, is};
if ((os_err = AudioUnitSetProperty(isca->instance, kAudioOutputUnitProperty_SetInputCallback,
kAudioUnitScope_Output, INPUT_ELEMENT, &input_callback, sizeof(AURenderCallbackStruct))))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
prop_address.mSelector = kAudioDevicePropertyBufferFrameSize;
prop_address.mScope = kAudioObjectPropertyScopeOutput;
prop_address.mElement = INPUT_ELEMENT;
UInt32 buffer_frame_size = instream->software_latency * instream->sample_rate;
if ((os_err = AudioObjectSetPropertyData(dca->device_id, &prop_address,
0, NULL, sizeof(UInt32), &buffer_frame_size)))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
prop_address.mSelector = kAudioDeviceProcessorOverload;
prop_address.mScope = kAudioObjectPropertyScopeGlobal;
if ((os_err = AudioObjectAddPropertyListener(dca->device_id, &prop_address,
on_instream_device_overload, is)))
{
instream_destroy_ca(si, is);
return SoundIoErrorOpeningDevice;
}
isca->hardware_latency = dca->latency_frames / (double)instream->sample_rate;
return 0;
}
static int instream_pause_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is, bool pause) {
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
OSStatus os_err;
if (pause) {
if ((os_err = AudioOutputUnitStop(isca->instance))) {
return SoundIoErrorStreaming;
}
} else {
if ((os_err = AudioOutputUnitStart(isca->instance))) {
return SoundIoErrorStreaming;
}
}
return 0;
}
static int instream_start_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is) {
return instream_pause_ca(si, is, false);
}
static int instream_begin_read_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is,
struct SoundIoChannelArea **out_areas, int *frame_count)
{
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
if (*frame_count != isca->frames_left)
return SoundIoErrorInvalid;
*out_areas = isca->areas;
return 0;
}
static int instream_end_read_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is) {
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
isca->frames_left = 0;
return 0;
}
static int instream_get_latency_ca(struct SoundIoPrivate *si, struct SoundIoInStreamPrivate *is,
double *out_latency)
{
struct SoundIoInStreamCoreAudio *isca = &is->backend_data.coreaudio;
*out_latency = isca->hardware_latency;
return 0;
}
int soundio_coreaudio_init(struct SoundIoPrivate *si) {
struct SoundIoCoreAudio *sica = &si->backend_data.coreaudio;
int err;
SOUNDIO_ATOMIC_STORE(sica->have_devices_flag, false);
SOUNDIO_ATOMIC_STORE(sica->device_scan_queued, true);
SOUNDIO_ATOMIC_STORE(sica->service_restarted, false);
SOUNDIO_ATOMIC_FLAG_TEST_AND_SET(sica->abort_flag);
sica->mutex = soundio_os_mutex_create();
if (!sica->mutex) {
destroy_ca(si);
return SoundIoErrorNoMem;
}
sica->cond = soundio_os_cond_create();
if (!sica->cond) {
destroy_ca(si);
return SoundIoErrorNoMem;
}
sica->have_devices_cond = soundio_os_cond_create();
if (!sica->have_devices_cond) {
destroy_ca(si);
return SoundIoErrorNoMem;
}
sica->scan_devices_cond = soundio_os_cond_create();
if (!sica->scan_devices_cond) {
destroy_ca(si);
return SoundIoErrorNoMem;
}
AudioObjectPropertyAddress prop_address = {
kAudioHardwarePropertyDevices,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if ((err = AudioObjectAddPropertyListener(kAudioObjectSystemObject, &prop_address,
on_devices_changed, si)))
{
destroy_ca(si);
return SoundIoErrorSystemResources;
}
prop_address.mSelector = kAudioHardwarePropertyServiceRestarted;
if ((err = AudioObjectAddPropertyListener(kAudioObjectSystemObject, &prop_address,
on_service_restarted, si)))
{
destroy_ca(si);
return SoundIoErrorSystemResources;
}
if ((err = soundio_os_thread_create(device_thread_run, si, NULL, &sica->thread))) {
destroy_ca(si);
return err;
}
si->destroy = destroy_ca;
si->flush_events = flush_events_ca;
si->wait_events = wait_events_ca;
si->wakeup = wakeup_ca;
si->force_device_scan = force_device_scan_ca;
si->outstream_open = outstream_open_ca;
si->outstream_destroy = outstream_destroy_ca;
si->outstream_start = outstream_start_ca;
si->outstream_begin_write = outstream_begin_write_ca;
si->outstream_end_write = outstream_end_write_ca;
si->outstream_clear_buffer = outstream_clear_buffer_ca;
si->outstream_pause = outstream_pause_ca;
si->outstream_get_latency = outstream_get_latency_ca;
si->instream_open = instream_open_ca;
si->instream_destroy = instream_destroy_ca;
si->instream_start = instream_start_ca;
si->instream_begin_read = instream_begin_read_ca;
si->instream_end_read = instream_end_read_ca;
si->instream_pause = instream_pause_ca;
si->instream_get_latency = instream_get_latency_ca;
return 0;
}