mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-25 06:21:13 +00:00
192 lines
6.3 KiB
C
192 lines
6.3 KiB
C
|
//--------------------------------------------------------------------------------------
|
||
|
// Copyright 2011 Intel Corporation
|
||
|
// All Rights Reserved
|
||
|
//
|
||
|
// Permission is granted to use, copy, distribute and prepare derivative works of this
|
||
|
// software for any purpose and without fee, provided, that the above copyright notice
|
||
|
// and this statement appear in all copies. Intel makes no representations about the
|
||
|
// suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS."
|
||
|
// INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY,
|
||
|
// INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE,
|
||
|
// INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE
|
||
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not
|
||
|
// assume any responsibility for any errors which may appear in this software nor any
|
||
|
// responsibility to update it.
|
||
|
//
|
||
|
//--------------------------------------------------------------------------------------
|
||
|
|
||
|
#ifndef __BC7_COMPRESSIONMODE_SIMD_H__
|
||
|
#define __BC7_COMPRESSIONMODE_SIMD_H__
|
||
|
|
||
|
#include "RGBAEndpoints.h"
|
||
|
|
||
|
// Forward Declarations
|
||
|
class BitStream;
|
||
|
const int kMaxEndpoints = 3;
|
||
|
|
||
|
static const int kPBits[4][2] = {
|
||
|
{ 0, 0 },
|
||
|
{ 0, 1 },
|
||
|
{ 1, 0 },
|
||
|
{ 1, 1 }
|
||
|
};
|
||
|
|
||
|
// Abstract class that outlines all of the different settings for BC7 compression modes
|
||
|
// Note that at the moment, we only support modes 0-3, so we don't deal with alpha channels.
|
||
|
class BC7CompressionMode {
|
||
|
public:
|
||
|
|
||
|
static const int kMaxNumSubsets = 3;
|
||
|
static const int kNumModes = 8;
|
||
|
|
||
|
explicit BC7CompressionMode(int mode, bool opaque = true) : m_IsOpaque(opaque), m_Attributes(&(kModeAttributes[mode])), m_RotateMode(0), m_IndexMode(0) { }
|
||
|
~BC7CompressionMode() { }
|
||
|
|
||
|
static int NumUses[8];
|
||
|
static void ResetNumUses() { memset(NumUses, 0, sizeof(NumUses)); }
|
||
|
double Compress(BitStream &stream, const int shapeIdx, const RGBACluster *clusters);
|
||
|
|
||
|
// This switch controls the quality of the simulated annealing optimizer. We will not make
|
||
|
// more than this many steps regardless of how bad the error is. Higher values will produce
|
||
|
// better quality results but will run slower. Default is 20.
|
||
|
static int MaxAnnealingIterations; // This is a setting
|
||
|
static const int kMaxAnnealingIterations = 256; // This is a limit
|
||
|
|
||
|
enum EPBitType {
|
||
|
ePBitType_Shared,
|
||
|
ePBitType_NotShared,
|
||
|
ePBitType_None
|
||
|
};
|
||
|
|
||
|
static struct Attributes {
|
||
|
int modeNumber;
|
||
|
int numPartitionBits;
|
||
|
int numSubsets;
|
||
|
int numBitsPerIndex;
|
||
|
int numBitsPerAlpha;
|
||
|
int colorChannelPrecision;
|
||
|
int alphaChannelPrecision;
|
||
|
bool hasRotation;
|
||
|
bool hasIdxMode;
|
||
|
EPBitType pbitType;
|
||
|
} kModeAttributes[kNumModes];
|
||
|
|
||
|
static const Attributes *GetAttributesForMode(int mode) {
|
||
|
if(mode < 0 || mode >= 8) return NULL;
|
||
|
return &kModeAttributes[mode];
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
const Attributes *const m_Attributes;
|
||
|
|
||
|
int m_RotateMode;
|
||
|
int m_IndexMode;
|
||
|
|
||
|
void SetIndexMode(int mode) { m_IndexMode = mode; }
|
||
|
void SetRotationMode(int mode) { m_RotateMode = mode; }
|
||
|
|
||
|
int GetRotationMode() const { return m_Attributes->hasRotation? m_RotateMode : 0; }
|
||
|
|
||
|
int GetModeNumber() const { return m_Attributes->modeNumber; }
|
||
|
int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; }
|
||
|
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
|
||
|
|
||
|
int GetNumberOfBitsPerIndex(int indexMode = -1) const {
|
||
|
if(indexMode < 0) indexMode = m_IndexMode;
|
||
|
if(indexMode == 0)
|
||
|
return m_Attributes->numBitsPerIndex;
|
||
|
else
|
||
|
return m_Attributes->numBitsPerAlpha;
|
||
|
}
|
||
|
|
||
|
int GetNumberOfBitsPerAlpha(int indexMode = -1) const {
|
||
|
if(indexMode < 0) indexMode = m_IndexMode;
|
||
|
if(indexMode == 0)
|
||
|
return m_Attributes->numBitsPerAlpha;
|
||
|
else
|
||
|
return m_Attributes->numBitsPerIndex;
|
||
|
}
|
||
|
|
||
|
// If we handle alpha separately, then we will consider the alpha channel
|
||
|
// to be not used whenever we do any calculations...
|
||
|
int GetAlphaChannelPrecision() const {
|
||
|
if(m_Attributes->hasRotation) return 0;
|
||
|
else return m_Attributes->alphaChannelPrecision;
|
||
|
}
|
||
|
|
||
|
RGBAVector GetErrorMetric() const {
|
||
|
const float *w = BC7C::GetErrorMetric();
|
||
|
switch(GetRotationMode()) {
|
||
|
default:
|
||
|
case 0: return RGBAVector(w[0], w[1], w[2], w[3]);
|
||
|
case 1: return RGBAVector(w[3], w[1], w[2], w[0]);
|
||
|
case 2: return RGBAVector(w[0], w[3], w[2], w[1]);
|
||
|
case 3: return RGBAVector(w[0], w[1], w[3], w[2]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EPBitType GetPBitType() const { return m_Attributes->pbitType; }
|
||
|
|
||
|
unsigned int GetQuantizationMask() const {
|
||
|
const int maskSeed = 0x80000000;
|
||
|
return (
|
||
|
(maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) |
|
||
|
(maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) |
|
||
|
(maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000) |
|
||
|
(maskSeed >> (GetAlphaChannelPrecision() - 1) & 0xFF000000)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
int GetNumPbitCombos() const {
|
||
|
switch(GetPBitType()) {
|
||
|
case ePBitType_Shared: return 2;
|
||
|
case ePBitType_NotShared: return 4;
|
||
|
default:
|
||
|
case ePBitType_None: return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const int *GetPBitCombo(int idx) const {
|
||
|
switch(GetPBitType()) {
|
||
|
case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0];
|
||
|
case ePBitType_NotShared: return kPBits[idx % 4];
|
||
|
default:
|
||
|
case ePBitType_None: return kPBits[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double OptimizeEndpointsForCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const;
|
||
|
|
||
|
struct VisitedState {
|
||
|
RGBAVector p1;
|
||
|
RGBAVector p2;
|
||
|
int pBitCombo;
|
||
|
};
|
||
|
|
||
|
void PickBestNeighboringEndpoints(
|
||
|
const RGBACluster &cluster,
|
||
|
const RGBAVector &p1, const RGBAVector &p2,
|
||
|
const int curPbitCombo,
|
||
|
RGBAVector &np1, RGBAVector &np2,
|
||
|
int &nPbitCombo,
|
||
|
const VisitedState *visitedStates,
|
||
|
int nVisited,
|
||
|
float stepSz = 1.0f
|
||
|
) const;
|
||
|
|
||
|
bool AcceptNewEndpointError(double newError, double oldError, float temp) const;
|
||
|
|
||
|
double CompressSingleColor(const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, int &bestPbitCombo) const;
|
||
|
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const;
|
||
|
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int *alphaIndices) const;
|
||
|
|
||
|
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, int &bestPBitCombo) const;
|
||
|
|
||
|
const double m_IsOpaque;
|
||
|
};
|
||
|
|
||
|
extern const uint32 kBC7InterpolationValues[4][16][2];
|
||
|
|
||
|
#endif // __BC7_COMPRESSIONMODE_SIMD_H__
|