mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-08 06:35:33 +00:00
Add comments to BC7CompressionMode.h
This commit is contained in:
parent
a19f83d123
commit
921c3e9f16
|
@ -74,171 +74,211 @@ struct VisitedState;
|
|||
const int kMaxEndpoints = 3;
|
||||
|
||||
static const int kPBits[4][2] = {
|
||||
{ 0, 0 },
|
||||
{ 0, 1 },
|
||||
{ 1, 0 },
|
||||
{ 1, 1 }
|
||||
{ 0, 0 },
|
||||
{ 0, 1 },
|
||||
{ 1, 0 },
|
||||
{ 1, 1 }
|
||||
};
|
||||
|
||||
// Abstract class that outlines all of the different settings for BC7 compression modes
|
||||
// Note that at the moment, we only support modes 0-3, so we don't deal with alpha channels.
|
||||
class BC7CompressionMode {
|
||||
public:
|
||||
|
||||
static const uint32 kMaxNumSubsets = 3;
|
||||
static const uint32 kNumModes = 8;
|
||||
public:
|
||||
|
||||
explicit BC7CompressionMode(int mode, bool opaque = true) : m_IsOpaque(opaque), m_Attributes(&(kModeAttributes[mode])), m_RotateMode(0), m_IndexMode(0) { }
|
||||
~BC7CompressionMode() { }
|
||||
static const uint32 kMaxNumSubsets = 3;
|
||||
static const uint32 kNumModes = 8;
|
||||
|
||||
double Compress(BitStream &stream, const int shapeIdx, const RGBACluster *clusters);
|
||||
// This initializes the compression variables used in order to compress a list of clusters.
|
||||
// We can increase the speed a tad by specifying whether or not the block is opaque or not.
|
||||
explicit BC7CompressionMode(int mode, bool opaque = true)
|
||||
: m_IsOpaque(opaque)
|
||||
, m_Attributes(&(kModeAttributes[mode]))
|
||||
, m_RotateMode(0)
|
||||
, m_IndexMode(0)
|
||||
{ }
|
||||
~BC7CompressionMode() { }
|
||||
|
||||
// This switch controls the quality of the simulated annealing optimizer. We will not make
|
||||
// more than this many steps regardless of how bad the error is. Higher values will produce
|
||||
// better quality results but will run slower. Default is 20.
|
||||
static int MaxAnnealingIterations; // This is a setting
|
||||
static const int kMaxAnnealingIterations = 256; // This is a limit
|
||||
// This function compresses a group of clusters into the passed bitstream. The size of the
|
||||
// clusters array is determined by the BC7 compression mode.
|
||||
double Compress(BitStream &stream, const int shapeIdx, const RGBACluster *clusters);
|
||||
|
||||
enum EPBitType {
|
||||
ePBitType_Shared,
|
||||
ePBitType_NotShared,
|
||||
ePBitType_None
|
||||
};
|
||||
// This switch controls the quality of the simulated annealing optimizer. We will not make
|
||||
// more than this many steps regardless of how bad the error is. Higher values will produce
|
||||
// better quality results but will run slower. Default is 20.
|
||||
static int MaxAnnealingIterations; // This is a setting
|
||||
static const int kMaxAnnealingIterations = 256; // This is a limit
|
||||
|
||||
static struct Attributes {
|
||||
int modeNumber;
|
||||
int numPartitionBits;
|
||||
int numSubsets;
|
||||
int numBitsPerIndex;
|
||||
int numBitsPerAlpha;
|
||||
int colorChannelPrecision;
|
||||
int alphaChannelPrecision;
|
||||
bool hasRotation;
|
||||
bool hasIdxMode;
|
||||
EPBitType pbitType;
|
||||
} kModeAttributes[kNumModes];
|
||||
// P-bits are low-order bits that are shared across color channels. This enum says whether or not
|
||||
// both endpoints share a p-bit or whether or not they even have a p-bit.
|
||||
enum EPBitType {
|
||||
ePBitType_Shared,
|
||||
ePBitType_NotShared,
|
||||
ePBitType_None
|
||||
};
|
||||
|
||||
static const Attributes *GetAttributesForMode(int mode) {
|
||||
if(mode < 0 || mode >= 8) return NULL;
|
||||
return &kModeAttributes[mode];
|
||||
}
|
||||
// These are all the per-mode attributes that can be set. They are specified in a table
|
||||
// and we access them through the private m_Attributes variable.
|
||||
static struct Attributes {
|
||||
int modeNumber;
|
||||
int numPartitionBits;
|
||||
int numSubsets;
|
||||
int numBitsPerIndex;
|
||||
int numBitsPerAlpha;
|
||||
int colorChannelPrecision;
|
||||
int alphaChannelPrecision;
|
||||
bool hasRotation;
|
||||
bool hasIdxMode;
|
||||
EPBitType pbitType;
|
||||
} kModeAttributes[kNumModes];
|
||||
|
||||
private:
|
||||
|
||||
const double m_IsOpaque;
|
||||
const Attributes *const m_Attributes;
|
||||
// This returns the above attributes structure for the given mode.
|
||||
static const Attributes *GetAttributesForMode(int mode) {
|
||||
if(mode < 0 || mode >= 8) return NULL;
|
||||
return &kModeAttributes[mode];
|
||||
}
|
||||
|
||||
int m_RotateMode;
|
||||
int m_IndexMode;
|
||||
private:
|
||||
|
||||
const double m_IsOpaque;
|
||||
const Attributes *const m_Attributes;
|
||||
|
||||
void SetIndexMode(int mode) { m_IndexMode = mode; }
|
||||
void SetRotationMode(int mode) { m_RotateMode = mode; }
|
||||
int m_RotateMode;
|
||||
int m_IndexMode;
|
||||
|
||||
int GetRotationMode() const { return m_Attributes->hasRotation? m_RotateMode : 0; }
|
||||
void SetIndexMode(int mode) { m_IndexMode = mode; }
|
||||
void SetRotationMode(int mode) { m_RotateMode = mode; }
|
||||
|
||||
int GetModeNumber() const { return m_Attributes->modeNumber; }
|
||||
int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; }
|
||||
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
|
||||
int GetRotationMode() const { return m_Attributes->hasRotation? m_RotateMode : 0; }
|
||||
int GetModeNumber() const { return m_Attributes->modeNumber; }
|
||||
|
||||
int GetNumberOfBitsPerIndex(int indexMode = -1) const {
|
||||
if(indexMode < 0) indexMode = m_IndexMode;
|
||||
if(indexMode == 0)
|
||||
return m_Attributes->numBitsPerIndex;
|
||||
else
|
||||
return m_Attributes->numBitsPerAlpha;
|
||||
}
|
||||
int GetNumberOfPartitionBits() const { return m_Attributes->numPartitionBits; }
|
||||
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
|
||||
|
||||
int GetNumberOfBitsPerAlpha(int indexMode = -1) const {
|
||||
if(indexMode < 0) indexMode = m_IndexMode;
|
||||
if(indexMode == 0)
|
||||
return m_Attributes->numBitsPerAlpha;
|
||||
else
|
||||
return m_Attributes->numBitsPerIndex;
|
||||
}
|
||||
int GetNumberOfBitsPerIndex(int indexMode = -1) const {
|
||||
if(indexMode < 0) indexMode = m_IndexMode;
|
||||
if(indexMode == 0)
|
||||
return m_Attributes->numBitsPerIndex;
|
||||
else
|
||||
return m_Attributes->numBitsPerAlpha;
|
||||
}
|
||||
|
||||
// If we handle alpha separately, then we will consider the alpha channel
|
||||
// to be not used whenever we do any calculations...
|
||||
int GetAlphaChannelPrecision() const {
|
||||
return m_Attributes->alphaChannelPrecision;
|
||||
}
|
||||
int GetNumberOfBitsPerAlpha(int indexMode = -1) const {
|
||||
if(indexMode < 0) indexMode = m_IndexMode;
|
||||
if(indexMode == 0)
|
||||
return m_Attributes->numBitsPerAlpha;
|
||||
else
|
||||
return m_Attributes->numBitsPerIndex;
|
||||
}
|
||||
|
||||
RGBAVector GetErrorMetric() const {
|
||||
const float *w = BC7C::GetErrorMetric();
|
||||
switch(GetRotationMode()) {
|
||||
default:
|
||||
case 0: return RGBAVector(w[0], w[1], w[2], w[3]);
|
||||
case 1: return RGBAVector(w[3], w[1], w[2], w[0]);
|
||||
case 2: return RGBAVector(w[0], w[3], w[2], w[1]);
|
||||
case 3: return RGBAVector(w[0], w[1], w[3], w[2]);
|
||||
}
|
||||
}
|
||||
// If we handle alpha separately, then we will consider the alpha channel
|
||||
// to be not used whenever we do any calculations...
|
||||
int GetAlphaChannelPrecision() const {
|
||||
return m_Attributes->alphaChannelPrecision;
|
||||
}
|
||||
|
||||
EPBitType GetPBitType() const { return m_Attributes->pbitType; }
|
||||
// This returns the proper error metric even if we have rotation bits set
|
||||
RGBAVector GetErrorMetric() const {
|
||||
const float *w = BC7C::GetErrorMetric();
|
||||
switch(GetRotationMode()) {
|
||||
default:
|
||||
case 0: return RGBAVector(w[0], w[1], w[2], w[3]);
|
||||
case 1: return RGBAVector(w[3], w[1], w[2], w[0]);
|
||||
case 2: return RGBAVector(w[0], w[3], w[2], w[1]);
|
||||
case 3: return RGBAVector(w[0], w[1], w[3], w[2]);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int GetQuantizationMask() const {
|
||||
const int maskSeed = 0x80000000;
|
||||
const uint32 alphaPrec = GetAlphaChannelPrecision();
|
||||
if(alphaPrec > 0) {
|
||||
return (
|
||||
(maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) |
|
||||
(maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) |
|
||||
(maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000) |
|
||||
(maskSeed >> (GetAlphaChannelPrecision() - 1) & 0xFF000000)
|
||||
);
|
||||
}
|
||||
else {
|
||||
return (
|
||||
((maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) |
|
||||
(maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) |
|
||||
(maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000)) &
|
||||
(0x00FFFFFF)
|
||||
);
|
||||
}
|
||||
}
|
||||
EPBitType GetPBitType() const { return m_Attributes->pbitType; }
|
||||
|
||||
int GetNumPbitCombos() const {
|
||||
switch(GetPBitType()) {
|
||||
case ePBitType_Shared: return 2;
|
||||
case ePBitType_NotShared: return 4;
|
||||
default:
|
||||
case ePBitType_None: return 1;
|
||||
}
|
||||
}
|
||||
// This function creates an integer that represents the maximum values in each
|
||||
// channel. We can use this to figure out the proper endpoint values for a given
|
||||
// mode.
|
||||
unsigned int GetQuantizationMask() const {
|
||||
const int maskSeed = 0x80000000;
|
||||
const uint32 alphaPrec = GetAlphaChannelPrecision();
|
||||
if(alphaPrec > 0) {
|
||||
return (
|
||||
(maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) |
|
||||
(maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) |
|
||||
(maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000) |
|
||||
(maskSeed >> (GetAlphaChannelPrecision() - 1) & 0xFF000000)
|
||||
);
|
||||
}
|
||||
else {
|
||||
return (
|
||||
((maskSeed >> (24 + m_Attributes->colorChannelPrecision - 1) & 0xFF) |
|
||||
(maskSeed >> (16 + m_Attributes->colorChannelPrecision - 1) & 0xFF00) |
|
||||
(maskSeed >> (8 + m_Attributes->colorChannelPrecision - 1) & 0xFF0000)) &
|
||||
(0x00FFFFFF)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
const int *GetPBitCombo(int idx) const {
|
||||
switch(GetPBitType()) {
|
||||
case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0];
|
||||
case ePBitType_NotShared: return kPBits[idx % 4];
|
||||
default:
|
||||
case ePBitType_None: return kPBits[0];
|
||||
}
|
||||
}
|
||||
|
||||
double OptimizeEndpointsForCluster(
|
||||
int GetNumPbitCombos() const {
|
||||
switch(GetPBitType()) {
|
||||
case ePBitType_Shared: return 2;
|
||||
case ePBitType_NotShared: return 4;
|
||||
default:
|
||||
case ePBitType_None: return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const int *GetPBitCombo(int idx) const {
|
||||
switch(GetPBitType()) {
|
||||
case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0];
|
||||
case ePBitType_NotShared: return kPBits[idx % 4];
|
||||
default:
|
||||
case ePBitType_None: return kPBits[0];
|
||||
}
|
||||
}
|
||||
|
||||
// This performs simulated annealing on the endpoints p1 and p2 based on the
|
||||
// current MaxAnnealingIterations. This is set by calling the function
|
||||
// SetQualityLevel
|
||||
double OptimizeEndpointsForCluster(
|
||||
const RGBACluster &cluster,
|
||||
RGBAVector &p1, RGBAVector &p2,
|
||||
int *bestIndices,
|
||||
int &bestPbitCombo
|
||||
) const;
|
||||
|
||||
void PickBestNeighboringEndpoints(
|
||||
const RGBACluster &cluster,
|
||||
const RGBAVector &p1, const RGBAVector &p2,
|
||||
const int curPbitCombo,
|
||||
RGBAVector &np1, RGBAVector &np2,
|
||||
int &nPbitCombo,
|
||||
const VisitedState *visitedStates,
|
||||
int nVisited,
|
||||
float stepSz = 1.0f
|
||||
) const;
|
||||
// This function performs the heuristic to choose the "best" neighboring
|
||||
// endpoints to p1 and p2 based on the compression mode (index precision,
|
||||
// endpoint precision etc)
|
||||
void PickBestNeighboringEndpoints(
|
||||
const RGBACluster &cluster,
|
||||
const RGBAVector &p1, const RGBAVector &p2,
|
||||
const int curPbitCombo,
|
||||
RGBAVector &np1, RGBAVector &np2,
|
||||
int &nPbitCombo,
|
||||
const VisitedState *visitedStates,
|
||||
int nVisited,
|
||||
float stepSz = 1.0f
|
||||
) const;
|
||||
|
||||
bool AcceptNewEndpointError(double newError, double oldError, float temp) const;
|
||||
// This is used by simulated annealing to determine whether or not the newError
|
||||
// (from the neighboring endpoints) is sufficient to continue the annealing process
|
||||
// from these new endpoints based on how good the oldError was, and how long we've
|
||||
// been annealing (temp)
|
||||
bool AcceptNewEndpointError(double newError, double oldError, float temp) const;
|
||||
|
||||
double CompressSingleColor(const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, int &bestPbitCombo) const;
|
||||
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const;
|
||||
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int *alphaIndices) const;
|
||||
// This function figures out the best compression for the single color p, and places
|
||||
// the endpoints in p1 and p2. If the compression mode supports p-bits, then we
|
||||
// choose the best p-bit combo and return it as well.
|
||||
double CompressSingleColor(const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, int &bestPbitCombo) const;
|
||||
|
||||
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, int &bestPBitCombo) const;
|
||||
// Compress the cluster using a generalized cluster fit. This figures out the proper endpoints
|
||||
// assuming that we have no alpha.
|
||||
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int &bestPbitCombo) const;
|
||||
|
||||
// Compress the non-opaque cluster using a generalized cluster fit, and place the
|
||||
// endpoints within p1 and p2. The color indices and alpha indices are computed as well.
|
||||
double CompressCluster(const RGBACluster &cluster, RGBAVector &p1, RGBAVector &p2, int *bestIndices, int *alphaIndices) const;
|
||||
|
||||
// This function takes two endpoints in the continuous domain (as floats) and clamps them
|
||||
// to the nearest grid points based on the compression mode (and possible pbit values)
|
||||
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, int &bestPBitCombo) const;
|
||||
};
|
||||
|
||||
extern const uint32 kBC7InterpolationValues[4][16][2];
|
||||
|
|
Loading…
Reference in a new issue