Split calculation of compression parameters from packing them.

This commit is contained in:
Pavel Krajcevski 2014-01-21 16:23:18 -05:00
parent ea953979fe
commit c37dca1068
4 changed files with 166 additions and 135 deletions

View file

@ -113,6 +113,30 @@ class CompressionMode {
{ } { }
~CompressionMode() { } ~CompressionMode() { }
// These are all of the parameters required to define the data in a compressed
// BPTC block. The mode determines how these parameters will be translated
// into actual bits.
struct Params {
const uint16 m_ShapeIdx;
RGBAVector m_P1[kMaxNumSubsets], m_P2[kMaxNumSubsets];
uint8 m_Indices[kMaxNumSubsets][kMaxNumDataPoints];
uint8 m_AlphaIndices[kMaxNumDataPoints];
uint8 m_PbitCombo[kMaxNumSubsets];
int8 m_RotationMode, m_IndexMode;
explicit Params(uint32 shape)
: m_RotationMode(-1), m_IndexMode(-1), m_ShapeIdx(shape) {
memset(m_Indices, 0xFF, sizeof(m_Indices));
memset(m_AlphaIndices, 0xFF, sizeof(m_AlphaIndices));
memset(m_PbitCombo, 0xFF, sizeof(m_PbitCombo));
}
};
// This outputs the parameters to the given bitstream based on the current
// compression mode. The first argument is not const because the mode and
// the value of the first index determines whether or not the indices need to
// be swapped. The final output bits will always be a valid BPTC block.
void Pack(Params &params, FasTC::BitStream &stream) const;
// This function compresses a group of clusters into the passed bitstream. The // This function compresses a group of clusters into the passed bitstream. The
// size of the clusters array is determined by the BC7 compression mode. // size of the clusters array is determined by the BC7 compression mode.
double Compress(FasTC::BitStream &stream, double Compress(FasTC::BitStream &stream,
@ -176,7 +200,7 @@ class CompressionMode {
} }
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; } int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
int GetNumberOfBitsPerIndex(int indexMode = -1) const { int GetNumberOfBitsPerIndex(int8 indexMode = -1) const {
if(indexMode < 0) indexMode = m_IndexMode; if(indexMode < 0) indexMode = m_IndexMode;
if(indexMode == 0) if(indexMode == 0)
return m_Attributes->numBitsPerIndex; return m_Attributes->numBitsPerIndex;
@ -184,7 +208,7 @@ class CompressionMode {
return m_Attributes->numBitsPerAlpha; return m_Attributes->numBitsPerAlpha;
} }
int GetNumberOfBitsPerAlpha(int indexMode = -1) const { int GetNumberOfBitsPerAlpha(int8 indexMode = -1) const {
if(indexMode < 0) indexMode = m_IndexMode; if(indexMode < 0) indexMode = m_IndexMode;
if(indexMode == 0) if(indexMode == 0)
return m_Attributes->numBitsPerAlpha; return m_Attributes->numBitsPerAlpha;
@ -261,8 +285,8 @@ class CompressionMode {
double OptimizeEndpointsForCluster( double OptimizeEndpointsForCluster(
const RGBACluster &cluster, const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, uint8 *bestIndices,
int &bestPbitCombo uint8 &bestPbitCombo
) const; ) const;
// This function performs the heuristic to choose the "best" neighboring // This function performs the heuristic to choose the "best" neighboring
@ -290,26 +314,26 @@ class CompressionMode {
// then we choose the best p-bit combo and return it as well. // then we choose the best p-bit combo and return it as well.
double CompressSingleColor(const RGBAVector &p, double CompressSingleColor(const RGBAVector &p,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int &bestPbitCombo) const; uint8 &bestPbitCombo) const;
// Compress the cluster using a generalized cluster fit. This figures out the // Compress the cluster using a generalized cluster fit. This figures out the
// proper endpoints assuming that we have no alpha. // proper endpoints assuming that we have no alpha.
double CompressCluster(const RGBACluster &cluster, double CompressCluster(const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, int &bestPbitCombo) const; uint8 *bestIndices, uint8 &bestPbitCombo) const;
// Compress the non-opaque cluster using a generalized cluster fit, and place // Compress the non-opaque cluster using a generalized cluster fit, and place
// the endpoints within p1 and p2. The color indices and alpha indices are // the endpoints within p1 and p2. The color indices and alpha indices are
// computed as well. // computed as well.
double CompressCluster(const RGBACluster &cluster, double CompressCluster(const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, int *alphaIndices) const; uint8 *bestIndices, uint8 *alphaIndices) const;
// This function takes two endpoints in the continuous domain (as floats) and // This function takes two endpoints in the continuous domain (as floats) and
// clamps them to the nearest grid points based on the compression mode (and // clamps them to the nearest grid points based on the compression mode (and
// possible pbit values) // possible pbit values)
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2, void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2,
int &bestPBitCombo) const; uint8 &bestPBitCombo) const;
}; };
extern const uint32 kInterpolationValues[4][16][2]; extern const uint32 kInterpolationValues[4][16][2];

View file

@ -356,7 +356,7 @@ CompressionMode::kModeAttributes[kNumModes] = {
}; };
void CompressionMode::ClampEndpointsToGrid( void CompressionMode::ClampEndpointsToGrid(
RGBAVector &p1, RGBAVector &p2, int &bestPBitCombo RGBAVector &p1, RGBAVector &p2, uint8 &bestPBitCombo
) const { ) const {
const int nPbitCombos = GetNumPbitCombos(); const int nPbitCombos = GetNumPbitCombos();
const bool hasPbits = nPbitCombos > 1; const bool hasPbits = nPbitCombos > 1;
@ -397,11 +397,10 @@ void CompressionMode::ClampEndpointsToGrid(
double CompressionMode::CompressSingleColor( double CompressionMode::CompressSingleColor(
const RGBAVector &p, RGBAVector &p1, RGBAVector &p2, const RGBAVector &p, RGBAVector &p1, RGBAVector &p2,
int &bestPbitCombo uint8 &bestPbitCombo
) const { ) const {
const uint32 pixel = p.ToPixel(); const uint32 pixel = p.ToPixel();
float bestError = FLT_MAX; float bestError = FLT_MAX;
bestPbitCombo = -1;
for(int pbi = 0; pbi < GetNumPbitCombos(); pbi++) { for(int pbi = 0; pbi < GetNumPbitCombos(); pbi++) {
const int *pbitCombo = GetPBitCombo(pbi); const int *pbitCombo = GetPBitCombo(pbi);
@ -453,7 +452,7 @@ double CompressionMode::CompressSingleColor(
possValsL[i] |= (possValsL[i] >> nBits); possValsL[i] |= (possValsL[i] >> nBits);
} }
const uint32 bpi = GetNumberOfBitsPerIndex() - 1; const uint8 bpi = GetNumberOfBitsPerIndex() - 1;
const uint32 interpVal0 = kInterpolationValues[bpi][1][0]; const uint32 interpVal0 = kInterpolationValues[bpi][1][0];
const uint32 interpVal1 = kInterpolationValues[bpi][1][1]; const uint32 interpVal1 = kInterpolationValues[bpi][1][1];
@ -685,8 +684,8 @@ bool CompressionMode::AcceptNewEndpointError(
double CompressionMode::OptimizeEndpointsForCluster( double CompressionMode::OptimizeEndpointsForCluster(
const RGBACluster &cluster, const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, uint8 *bestIndices,
int &bestPbitCombo uint8 &bestPbitCombo
) const { ) const {
const uint32 nBuckets = (1 << GetNumberOfBitsPerIndex()); const uint32 nBuckets = (1 << GetNumberOfBitsPerIndex());
@ -731,7 +730,7 @@ double CompressionMode::OptimizeEndpointsForCluster(
float temp = static_cast<float>(energy) / static_cast<float>(maxEnergy-1); float temp = static_cast<float>(energy) / static_cast<float>(maxEnergy-1);
int indices[kMaxNumDataPoints]; uint8 indices[kMaxNumDataPoints];
RGBAVector np1, np2; RGBAVector np1, np2;
int nPbitCombo = 0; int nPbitCombo = 0;
@ -779,8 +778,8 @@ double CompressionMode::OptimizeEndpointsForCluster(
double CompressionMode::CompressCluster( double CompressionMode::CompressCluster(
const RGBACluster &cluster, const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, uint8 *bestIndices,
int *alphaIndices uint8 *alphaIndices
) const { ) const {
assert(GetModeNumber() == 4 || GetModeNumber() == 5); assert(GetModeNumber() == 4 || GetModeNumber() == 5);
assert(GetNumberOfSubsets() == 1); assert(GetNumberOfSubsets() == 1);
@ -796,7 +795,7 @@ double CompressionMode::CompressCluster(
"detected much earlier."); "detected much earlier.");
const RGBAVector &p = cluster.GetPoint(0); const RGBAVector &p = cluster.GetPoint(0);
int dummyPbit = 0; uint8 dummyPbit = 0;
double bestErr = CompressSingleColor(p, p1, p2, dummyPbit); double bestErr = CompressSingleColor(p, p1, p2, dummyPbit);
// We're assuming all indices will be index 1... // We're assuming all indices will be index 1...
@ -843,7 +842,7 @@ double CompressionMode::CompressCluster(
rgbCluster.AddPoint(v); rgbCluster.AddPoint(v);
} }
int dummyPbit = 0; uint8 dummyPbit = 0;
RGBAVector rgbp1, rgbp2; RGBAVector rgbp1, rgbp2;
double rgbError = CompressCluster( double rgbError = CompressCluster(
rgbCluster, rgbp1, rgbp2, bestIndices, dummyPbit rgbCluster, rgbp1, rgbp2, bestIndices, dummyPbit
@ -1070,8 +1069,8 @@ double CompressionMode::CompressCluster(
double CompressionMode::CompressCluster( double CompressionMode::CompressCluster(
const RGBACluster &cluster, const RGBACluster &cluster,
RGBAVector &p1, RGBAVector &p2, RGBAVector &p1, RGBAVector &p2,
int *bestIndices, uint8 *bestIndices,
int &bestPbitCombo uint8 &bestPbitCombo
) const { ) const {
// If all the points are the same in the cluster, then we need to figure out // If all the points are the same in the cluster, then we need to figure out
// what the best approximation to this point is.... // what the best approximation to this point is....
@ -1233,7 +1232,7 @@ double CompressionMode::CompressCluster(
ClampEndpointsToGrid(p1, p2, bestPbitCombo); ClampEndpointsToGrid(p1, p2, bestPbitCombo);
#ifdef _DEBUG #ifdef _DEBUG
int pBitCombo = bestPbitCombo; uint8 pBitCombo = bestPbitCombo;
RGBAVector tp1 = p1, tp2 = p2; RGBAVector tp1 = p1, tp2 = p2;
ClampEndpointsToGrid(tp1, tp2, pBitCombo); ClampEndpointsToGrid(tp1, tp2, pBitCombo);
@ -1249,99 +1248,29 @@ double CompressionMode::CompressCluster(
); );
} }
double CompressionMode::Compress( void CompressionMode::Pack(Params &params, BitStream &stream) const {
BitStream &stream, const int shapeIdx, const RGBACluster *clusters
) {
const int kModeNumber = GetModeNumber(); const int kModeNumber = GetModeNumber();
const int nPartitionBits = GetNumberOfPartitionBits(); const int nPartitionBits = GetNumberOfPartitionBits();
const int nSubsets = GetNumberOfSubsets(); const int nSubsets = GetNumberOfSubsets();
// Mode # // Mode #
stream.WriteBits(1 << kModeNumber, kModeNumber + 1); stream.WriteBits(1 << kModeNumber, kModeNumber + 1);
// Partition # // Partition #
assert((((1 << nPartitionBits) - 1) & shapeIdx) == shapeIdx); assert((((1 << nPartitionBits) - 1) & params.m_ShapeIdx) == params.m_ShapeIdx);
stream.WriteBits(shapeIdx, nPartitionBits); stream.WriteBits(params.m_ShapeIdx, nPartitionBits);
RGBAVector p1[kMaxNumSubsets], p2[kMaxNumSubsets]; stream.WriteBits(params.m_RotationMode, m_Attributes->hasRotation? 2 : 0);
stream.WriteBits(params.m_IndexMode, m_Attributes->hasIdxMode? 1 : 0);
int bestIndices[kMaxNumSubsets][kMaxNumDataPoints];
memset(bestIndices, 0xFF, sizeof(bestIndices));
int bestAlphaIndices[kMaxNumDataPoints];
memset(bestAlphaIndices, 0xFF, sizeof(bestAlphaIndices));
int bestPbitCombo[kMaxNumSubsets] = { -1, -1, -1 };
int bestRotationMode = -1, bestIndexMode = -1;
double totalErr = 0.0;
for(int cidx = 0; cidx < nSubsets; cidx++) {
int indices[kMaxNumDataPoints] = {0};
if(m_Attributes->hasRotation) {
assert(nSubsets == 1);
int alphaIndices[kMaxNumDataPoints];
double bestError = DBL_MAX;
for(int rotMode = 0; rotMode < 4; rotMode++) {
SetRotationMode(rotMode);
const int nIdxModes = kModeNumber == 4? 2 : 1;
for(int idxMode = 0; idxMode < nIdxModes; idxMode++) {
SetIndexMode(idxMode);
RGBAVector v1, v2;
double error = CompressCluster(
clusters[cidx], v1, v2, indices, alphaIndices
);
if(error < bestError) {
bestError = error;
memcpy(bestIndices[cidx], indices, sizeof(indices));
memcpy(bestAlphaIndices, alphaIndices, sizeof(alphaIndices));
bestRotationMode = rotMode;
bestIndexMode = idxMode;
p1[cidx] = v1;
p2[cidx] = v2;
}
}
}
totalErr += bestError;
} else { // ! m_Attributes->hasRotation
// Compress this cluster
totalErr += CompressCluster(
clusters[cidx], p1[cidx], p2[cidx], indices, bestPbitCombo[cidx]
);
// Map the indices to their proper position.
int idx = 0;
for(int i = 0; i < 16; i++) {
int subs = GetSubsetForIndex(i, shapeIdx, GetNumberOfSubsets());
if(subs == cidx) {
bestIndices[cidx][i] = indices[idx++];
}
}
}
}
stream.WriteBits(bestRotationMode, m_Attributes->hasRotation? 2 : 0);
stream.WriteBits(bestIndexMode, m_Attributes->hasIdxMode? 1 : 0);
#ifdef _DEBUG #ifdef _DEBUG
for(int i = 0; i < kMaxNumDataPoints; i++) { for(int i = 0; i < kMaxNumDataPoints; i++) {
int nSet = 0; int nSet = 0;
for(int j = 0; j < nSubsets; j++) { for(int j = 0; j < nSubsets; j++) {
if(bestIndices[j][i] >= 0) if(params.m_Indices[j][i] < 255)
nSet++; nSet++;
} }
@ -1358,14 +1287,14 @@ double CompressionMode::Compress(
switch(GetPBitType()) { switch(GetPBitType()) {
default: default:
case ePBitType_None: case ePBitType_None:
pixel1[i] = p1[i].ToPixel(qmask); pixel1[i] = params.m_P1[i].ToPixel(qmask);
pixel2[i] = p2[i].ToPixel(qmask); pixel2[i] = params.m_P2[i].ToPixel(qmask);
break; break;
case ePBitType_Shared: case ePBitType_Shared:
case ePBitType_NotShared: case ePBitType_NotShared:
pixel1[i] = p1[i].ToPixel(qmask, GetPBitCombo(bestPbitCombo[i])[0]); pixel1[i] = params.m_P1[i].ToPixel(qmask, GetPBitCombo(params.m_PbitCombo[i])[0]);
pixel2[i] = p2[i].ToPixel(qmask, GetPBitCombo(bestPbitCombo[i])[1]); pixel2[i] = params.m_P2[i].ToPixel(qmask, GetPBitCombo(params.m_PbitCombo[i])[1]);
break; break;
} }
} }
@ -1374,28 +1303,28 @@ double CompressionMode::Compress(
// we need to swap EVERYTHING. // we need to swap EVERYTHING.
for(int sidx = 0; sidx < nSubsets; sidx++) { for(int sidx = 0; sidx < nSubsets; sidx++) {
int anchorIdx = GetAnchorIndexForSubset(sidx, shapeIdx, nSubsets); int anchorIdx = GetAnchorIndexForSubset(sidx, params.m_ShapeIdx, nSubsets);
assert(bestIndices[sidx][anchorIdx] != -1); assert(params.m_Indices[sidx][anchorIdx] != 255);
const int nAlphaIndexBits = GetNumberOfBitsPerAlpha(bestIndexMode); const int nAlphaIndexBits = GetNumberOfBitsPerAlpha(params.m_IndexMode);
const int nIndexBits = GetNumberOfBitsPerIndex(bestIndexMode); const int nIndexBits = GetNumberOfBitsPerIndex(params.m_IndexMode);
if(bestIndices[sidx][anchorIdx] >> (nIndexBits - 1)) { if(params.m_Indices[sidx][anchorIdx] >> (nIndexBits - 1)) {
uint32 t = pixel1[sidx]; pixel1[sidx] = pixel2[sidx]; pixel2[sidx] = t; std::swap(pixel1[sidx], pixel2[sidx]);
int nIndexVals = 1 << nIndexBits; int nIndexVals = 1 << nIndexBits;
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
bestIndices[sidx][i] = (nIndexVals - 1) - bestIndices[sidx][i]; params.m_Indices[sidx][i] = (nIndexVals - 1) - params.m_Indices[sidx][i];
} }
int nAlphaIndexVals = 1 << nAlphaIndexBits; int nAlphaIndexVals = 1 << nAlphaIndexBits;
if(m_Attributes->hasRotation) { if(m_Attributes->hasRotation) {
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
bestAlphaIndices[i] = (nAlphaIndexVals - 1) - bestAlphaIndices[i]; params.m_AlphaIndices[i] = (nAlphaIndexVals - 1) - params.m_AlphaIndices[i];
} }
} }
} }
const bool rotated = (bestAlphaIndices[anchorIdx] >> (nAlphaIndexBits - 1)) > 0; const bool rotated = (params.m_AlphaIndices[anchorIdx] >> (nAlphaIndexBits - 1)) > 0;
if(m_Attributes->hasRotation && rotated) { if(m_Attributes->hasRotation && rotated) {
uint8 * bp1 = reinterpret_cast<uint8 *>(&pixel1[sidx]); uint8 * bp1 = reinterpret_cast<uint8 *>(&pixel1[sidx]);
uint8 * bp2 = reinterpret_cast<uint8 *>(&pixel2[sidx]); uint8 * bp2 = reinterpret_cast<uint8 *>(&pixel2[sidx]);
@ -1403,13 +1332,13 @@ double CompressionMode::Compress(
int nAlphaIndexVals = 1 << nAlphaIndexBits; int nAlphaIndexVals = 1 << nAlphaIndexBits;
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
bestAlphaIndices[i] = (nAlphaIndexVals - 1) - bestAlphaIndices[i]; params.m_AlphaIndices[i] = (nAlphaIndexVals - 1) - params.m_AlphaIndices[i];
} }
} }
assert(!(bestIndices[sidx][anchorIdx] >> (nIndexBits - 1))); assert(!(params.m_Indices[sidx][anchorIdx] >> (nIndexBits - 1)));
assert(!m_Attributes->hasRotation || assert(!m_Attributes->hasRotation ||
!(bestAlphaIndices[anchorIdx] >> (nAlphaIndexBits - 1))); !(params.m_AlphaIndices[anchorIdx] >> (nAlphaIndexBits - 1)));
} }
// Get the quantized values... // Get the quantized values...
@ -1459,7 +1388,7 @@ double CompressionMode::Compress(
// Write out the best pbits.. // Write out the best pbits..
if(GetPBitType() != ePBitType_None) { if(GetPBitType() != ePBitType_None) {
for(int s = 0; s < nSubsets; s++) { for(int s = 0; s < nSubsets; s++) {
const int *pbits = GetPBitCombo(bestPbitCombo[s]); const int *pbits = GetPBitCombo(params.m_PbitCombo[s]);
stream.WriteBits(pbits[0], 1); stream.WriteBits(pbits[0], 1);
if(GetPBitType() != ePBitType_Shared) if(GetPBitType() != ePBitType_Shared)
stream.WriteBits(pbits[1], 1); stream.WriteBits(pbits[1], 1);
@ -1468,14 +1397,14 @@ double CompressionMode::Compress(
// If our index mode has changed, then we need to write the alpha indices // If our index mode has changed, then we need to write the alpha indices
// first. // first.
if(m_Attributes->hasIdxMode && bestIndexMode == 1) { if(m_Attributes->hasIdxMode && params.m_IndexMode == 1) {
assert(m_Attributes->hasRotation); assert(m_Attributes->hasRotation);
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
const int idx = bestAlphaIndices[i]; const int idx = params.m_AlphaIndices[i];
assert(GetAnchorIndexForSubset(0, shapeIdx, nSubsets) == 0); assert(GetAnchorIndexForSubset(0, params.m_ShapeIdx, nSubsets) == 0);
assert(GetNumberOfBitsPerAlpha(bestIndexMode) == 2); assert(GetNumberOfBitsPerAlpha(params.m_IndexMode) == 2);
assert(idx >= 0 && idx < (1 << 2)); assert(idx >= 0 && idx < (1 << 2));
assert(i != 0 || assert(i != 0 ||
!(idx >> 1) || !(idx >> 1) ||
@ -1484,10 +1413,10 @@ double CompressionMode::Compress(
} }
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
const int idx = bestIndices[0][i]; const int idx = params.m_Indices[0][i];
assert(GetSubsetForIndex(i, shapeIdx, nSubsets) == 0); assert(GetSubsetForIndex(i, params.m_ShapeIdx, nSubsets) == 0);
assert(GetAnchorIndexForSubset(0, shapeIdx, nSubsets) == 0); assert(GetAnchorIndexForSubset(0, params.m_ShapeIdx, nSubsets) == 0);
assert(GetNumberOfBitsPerIndex(bestIndexMode) == 3); assert(GetNumberOfBitsPerIndex(params.m_IndexMode) == 3);
assert(idx >= 0 && idx < (1 << 3)); assert(idx >= 0 && idx < (1 << 3));
assert(i != 0 || assert(i != 0 ||
!(idx >> 2) || !(idx >> 2) ||
@ -1496,10 +1425,10 @@ double CompressionMode::Compress(
} }
} else { } else {
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
const int subs = GetSubsetForIndex(i, shapeIdx, nSubsets); const int subs = GetSubsetForIndex(i, params.m_ShapeIdx, nSubsets);
const int idx = bestIndices[subs][i]; const int idx = params.m_Indices[subs][i];
const int anchorIdx = GetAnchorIndexForSubset(subs, shapeIdx, nSubsets); const int anchorIdx = GetAnchorIndexForSubset(subs, params.m_ShapeIdx, nSubsets);
const int nBitsForIdx = GetNumberOfBitsPerIndex(bestIndexMode); const int nBitsForIdx = GetNumberOfBitsPerIndex(params.m_IndexMode);
assert(idx >= 0 && idx < (1 << nBitsForIdx)); assert(idx >= 0 && idx < (1 << nBitsForIdx));
assert(i != anchorIdx || assert(i != anchorIdx ||
!(idx >> (nBitsForIdx - 1)) || !(idx >> (nBitsForIdx - 1)) ||
@ -1509,9 +1438,9 @@ double CompressionMode::Compress(
if(m_Attributes->hasRotation) { if(m_Attributes->hasRotation) {
for(int i = 0; i < 16; i++) { for(int i = 0; i < 16; i++) {
const int idx = bestAlphaIndices[i]; const int idx = params.m_AlphaIndices[i];
const int anchorIdx = 0; const int anchorIdx = 0;
const int nBitsForIdx = GetNumberOfBitsPerAlpha(bestIndexMode); const int nBitsForIdx = GetNumberOfBitsPerAlpha(params.m_IndexMode);
assert(idx >= 0 && idx < (1 << nBitsForIdx)); assert(idx >= 0 && idx < (1 << nBitsForIdx));
assert(i != anchorIdx || assert(i != anchorIdx ||
!(idx >> (nBitsForIdx - 1)) || !(idx >> (nBitsForIdx - 1)) ||
@ -1521,6 +1450,80 @@ double CompressionMode::Compress(
} }
} }
assert(stream.GetBitsWritten() == 128); assert(stream.GetBitsWritten() == 128);
}
double CompressionMode::Compress(
BitStream &stream, const int shapeIdx, const RGBACluster *clusters
) {
const int kModeNumber = GetModeNumber();
const int nPartitionBits = GetNumberOfPartitionBits();
const int nSubsets = GetNumberOfSubsets();
Params params(shapeIdx);
double totalErr = 0.0;
for(int cidx = 0; cidx < nSubsets; cidx++) {
uint8 indices[kMaxNumDataPoints] = {0};
if(m_Attributes->hasRotation) {
assert(nSubsets == 1);
uint8 alphaIndices[kMaxNumDataPoints];
double bestError = DBL_MAX;
for(int rotMode = 0; rotMode < 4; rotMode++) {
SetRotationMode(rotMode);
const int nIdxModes = kModeNumber == 4? 2 : 1;
for(int idxMode = 0; idxMode < nIdxModes; idxMode++) {
SetIndexMode(idxMode);
RGBAVector v1, v2;
double error = CompressCluster(
clusters[cidx], v1, v2, indices, alphaIndices
);
if(error < bestError) {
bestError = error;
memcpy(params.m_Indices[cidx], indices, sizeof(indices));
memcpy(params.m_AlphaIndices, alphaIndices, sizeof(alphaIndices));
params.m_RotationMode = rotMode;
params.m_IndexMode = idxMode;
params.m_P1[cidx] = v1;
params.m_P2[cidx] = v2;
}
}
}
totalErr += bestError;
} else { // ! m_Attributes->hasRotation
// Compress this cluster
totalErr += CompressCluster(
clusters[cidx],
params.m_P1[cidx], params.m_P2[cidx],
indices, params.m_PbitCombo[cidx]
);
// Map the indices to their proper position.
int idx = 0;
for(int i = 0; i < 16; i++) {
int subs = GetSubsetForIndex(i, shapeIdx, GetNumberOfSubsets());
if(subs == cidx) {
params.m_Indices[cidx][i] = indices[idx++];
}
}
}
}
Pack(params, stream);
assert(stream.GetBitsWritten() == 128);
return totalErr; return totalErr;
} }

View file

@ -419,7 +419,7 @@ uint32 RGBACluster::GetPowerMethodIterations() {
double RGBACluster::QuantizedError( double RGBACluster::QuantizedError(
const RGBAVector &p1, const RGBAVector &p2, const RGBAVector &p1, const RGBAVector &p2,
uint8 nBuckets, uint32 bitMask, const RGBAVector &errorMetricVec, uint8 nBuckets, uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2], int *indices const int pbits[2], uint8 *indices
) const { ) const {
// nBuckets should be a power of two. // nBuckets should be a power of two.
@ -457,7 +457,7 @@ double RGBACluster::QuantizedError(
const uint8 *pb = (const uint8 *)(&pixel); const uint8 *pb = (const uint8 *)(&pixel);
float minError = FLT_MAX; float minError = FLT_MAX;
int bestBucket = -1; uint8 bestBucket = 0;
for(int j = 0; j < nBuckets; j++) { for(int j = 0; j < nBuckets; j++) {
uint32 interp0 = (*interpVals)[j][0]; uint32 interp0 = (*interpVals)[j][0];

View file

@ -387,8 +387,12 @@ public:
Min = m_Min, Max = m_Max; Min = m_Min, Max = m_Max;
} }
// Returns the error if we were to quantize the colors right now with the given number of buckets and bit mask. // Returns the error if we were to quantize the colors right now with the
double QuantizedError(const RGBAVector &p1, const RGBAVector &p2, uint8 nBuckets, uint32 bitMask, const RGBAVector &errorMetricVec, const int pbits[2] = NULL, int *indices = NULL) const; // given number of buckets and bit mask.
double QuantizedError(
const RGBAVector &p1, const RGBAVector &p2,
uint8 nBuckets, uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2] = NULL, uint8 *indices = NULL) const;
// Returns the principal axis for this point cluster. // Returns the principal axis for this point cluster.
double GetPrincipalEigenvalue(); double GetPrincipalEigenvalue();