Fleshes out the worker queue implementation.

This commit is contained in:
Pavel Krajcevski 2012-09-21 18:14:38 -04:00
parent 62ca4ffee0
commit c7bb6170f3
3 changed files with 173 additions and 149 deletions

View file

@ -6,10 +6,13 @@
#include <assert.h>
#include "BC7Compressor.h"
#include "WorkerQueue.h"
#include "ThreadGroup.h"
#include "ImageFile.h"
#include "Image.h"
template <typename T>
static T min(const T &a, const T &b) {
return (a < b)? a : b;
@ -125,12 +128,22 @@ static double CompressImageWithThreads(
}
static double CompressImageWithWorkerQueue(
const ImageFile &img,
const unsigned char *imgData,
const unsigned int imgDataSz,
const SCompressionSettings &settings,
const CompressionFunc f,
unsigned char *outBuf
) {
return 0.0;
WorkerQueue wq (
settings.iNumThreads,
settings.iJobSize,
imgData,
imgDataSz,
f,
outBuf
);
wq.Run();
}
bool CompressImageData(
@ -178,6 +191,9 @@ bool CompressImageData(
double cmpMSTime = 0.0;
if(settings.iNumThreads > 1) {
if(settings.iJobSize > 0)
cmpMSTime = CompressImageWithWorkerQueue(data, dataSz, settings, f, cmpData);
else
cmpMSTime = CompressImageWithThreads(data, dataSz, settings, f, cmpData);
}
else {

View file

@ -6,9 +6,22 @@
#include <stdio.h>
#include <boost/thread/thread.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
template <typename T>
static inline T max(const T &a, const T &b) {
return (a > b)? a : b;
}
template <typename T>
static inline T min(const T &a, const T &b) {
return (a < b)? a : b;
}
template <typename T>
static inline void clamp(T &x, const T &min, const T &max) {
if(x < min) x = min;
else if(x > max) x = max;
}
WorkerThread::WorkerThread(WorkerQueue * parent, uint32 idx)
: m_ThreadIdx(idx)
@ -28,159 +41,131 @@ void WorkerThread::operator()() {
return;
}
while(1) {
EAction action = m_Parent->AcceptThreadData(m_ThreadIdx);
if(eAction_Quit == action) {
break;
}
const uint8 *src = m_Parent->GetSrcForThread(m_ThreadIdx);
uint8 *dst = m_Parent->GetDstForThread(m_ThreadIdx);
(*f)(src, dst, 4 * m_Parent->GetNumBlocksForThread(m_ThreadIdx), 4);
}
m_Parent->NotifyWorkerFinished();
return;
}
#if 0
ThreadGroup::ThreadGroup( int numThreads, const unsigned char *inBuf, unsigned int inBufSz, CompressionFunc func, unsigned char *outBuf )
: m_StartBarrier(new boost::barrier(numThreads + 1))
, m_FinishMutex(new boost::mutex())
, m_FinishCV(new boost::condition_variable())
, m_NumThreads(numThreads)
WorkerQueue::WorkerQueue(
uint32 numThreads,
uint32 jobSize,
const uint8 *inBuf,
uint32 inBufSz,
CompressionFunc func,
uint8 *outBuf
)
: m_NumThreads(numThreads)
, m_ActiveThreads(0)
, m_Func(func)
, m_ImageDataSz(inBufSz)
, m_ImageData(inBuf)
, m_JobSize(max(uint32(1), jobSize))
, m_InBufSz(inBufSz)
, m_InBuf(inBuf)
, m_OutBuf(outBuf)
, m_ThreadState(eThreadState_Done)
, m_ExitFlag(false)
, m_CompressionFunc(func)
{
for(int i = 0; i < kMaxNumThreads; i++) {
// Thread synchronization primitives
m_Threads[i].m_ParentCounterLock = m_FinishMutex;
m_Threads[i].m_FinishCV = m_FinishCV;
m_Threads[i].m_ParentCounter = &m_ThreadsFinished;
m_Threads[i].m_StartBarrier = m_StartBarrier;
m_Threads[i].m_ParentExitFlag = &m_ExitFlag;
clamp(m_NumThreads, uint32(1), kMaxNumWorkerThreads);
#ifndef NDEBUG
if(m_InBufSz % 64) {
fprintf(stderr, "WorkerQueue.cpp -- WARNING: InBufSz not a multiple of 64. Are you sure that your image dimensions are correct?");
}
}
ThreadGroup::~ThreadGroup() {
delete m_StartBarrier;
delete m_FinishMutex;
delete m_FinishCV;
}
unsigned int ThreadGroup::GetCompressedBlockSize() {
if(m_Func == BC7C::CompressImageBC7) return 16;
#ifdef HAS_SSE_41
if(m_Func == BC7C::CompressImageBC7SIMD) return 16;
#endif
}
unsigned int ThreadGroup::GetUncompressedBlockSize() {
if(m_Func == BC7C::CompressImageBC7) return 64;
#ifdef HAS_SSE_41
if(m_Func == BC7C::CompressImageBC7SIMD) return 64;
#endif
}
void WorkerQueue::Run() {
bool ThreadGroup::PrepareThreads() {
// Make sure that threads aren't running.
if(m_ThreadState != eThreadState_Done) {
return false;
}
// Have we already activated the thread group?
if(m_ActiveThreads > 0) {
m_ThreadState = eThreadState_Waiting;
return true;
}
// We can assume that the image data is in block stream order
// so, the size of the data given to each thread will be (nb*4)x4
int numBlocks = m_ImageDataSz / 64;
int blocksProcessed = 0;
int blocksPerThread = (numBlocks/m_NumThreads) + ((numBlocks % m_NumThreads)? 1 : 0);
// Currently no threads are finished...
m_ThreadsFinished = 0;
// Spawn a bunch of threads...
boost::unique_lock<boost::mutex> lock(m_Mutex);
for(int i = 0; i < m_NumThreads; i++) {
if(m_ActiveThreads >= kMaxNumThreads)
break;
int numBlocksThisThread = blocksPerThread;
if(blocksProcessed + numBlocksThisThread > numBlocks) {
numBlocksThisThread = numBlocks - blocksProcessed;
}
CmpThread &t = m_Threads[m_ActiveThreads];
t.m_Height = 4;
t.m_Width = numBlocksThisThread * 4;
t.m_CmpFunc = m_Func;
t.m_OutBuf = m_OutBuf + (blocksProcessed * GetCompressedBlockSize());
t.m_InBuf = m_ImageData + (blocksProcessed * GetUncompressedBlockSize());
blocksProcessed += numBlocksThisThread;
WorkerThread t (this, i);
m_ThreadHandles[m_ActiveThreads] = new boost::thread(t);
m_ActiveThreads++;
}
m_ThreadState = eThreadState_Waiting;
return true;
}
bool ThreadGroup::Start() {
if(m_ActiveThreads <= 0) {
return false;
// Wait for them to finish...
while(m_ActiveThreads > 0) {
m_CV.wait(lock);
}
if(m_ThreadState != eThreadState_Waiting) {
return false;
}
m_StopWatch.Reset();
m_StopWatch.Start();
// Last thread to activate the barrier is this one.
m_ThreadState = eThreadState_Running;
m_StartBarrier->wait();
return true;
}
bool ThreadGroup::CleanUpThreads() {
// Are the threads currently running?
if(m_ThreadState == eThreadState_Running) {
// ... if so, wait for them to finish
Join();
}
assert(m_ThreadState == eThreadState_Done || m_ThreadState == eThreadState_Waiting);
// Mark all threads for exit
m_ExitFlag = true;
// Hit the barrier to signal them to go.
m_StartBarrier->wait();
// Clean up.
for(int i = 0; i < m_ActiveThreads; i++) {
// Join them all together..
for(int i = 0; i < m_NumThreads; i++) {
m_ThreadHandles[i]->join();
delete m_ThreadHandles[i];
}
// Reset active number of threads...
m_ActiveThreads = 0;
m_ExitFlag = false;
}
void ThreadGroup::Join() {
void WorkerQueue::NotifyWorkerFinished() {
{
boost::lock_guard<boost::mutex> lock(m_Mutex);
m_ActiveThreads--;
}
m_CV.notify_one();
}
boost::unique_lock<boost::mutex> lock(*m_FinishMutex);
while(m_ThreadsFinished != m_ActiveThreads) {
m_FinishCV->wait(lock);
WorkerThread::EAction WorkerQueue::AcceptThreadData(uint32 threadIdx) {
if(threadIdx < 0 || threadIdx >= m_ActiveThreads) {
return WorkerThread::eAction_Quit;
}
m_StopWatch.Stop();
m_ThreadState = eThreadState_Done;
m_ThreadsFinished = 0;
// How many blocks total do we have?
const uint32 totalBlocks = m_InBufSz / 64;
// Make sure we have exclusive access...
boost::lock_guard<boost::mutex> lock(m_Mutex);
// If we've completed all blocks, then mark the thread for
// completion.
if(m_NextBlock >= totalBlocks) {
return WorkerThread::eAction_Quit;
}
// Otherwise, this thread's offset is the current block...
m_Offsets[threadIdx] = m_NextBlock;
// The number of blocks to process is either the job size
// or the number of blocks remaining.
int blocksProcessed = min(m_JobSize, totalBlocks - m_NextBlock);
m_NumBlocks[threadIdx] = blocksProcessed;
// Make sure the next block is updated.
m_NextBlock += blocksProcessed;
return WorkerThread::eAction_DoWork;
}
const uint8 *WorkerQueue::GetSrcForThread(const int threadIdx) const {
assert(m_Offsets[threadIdx] >= 0);
assert(threadIdx >= 0);
assert(threadIdx < m_NumThreads);
const uint32 inBufBlockSz = 16 * 4;
return m_InBuf + m_Offsets[threadIdx] * inBufBlockSz;
}
uint8 *WorkerQueue::GetDstForThread(const int threadIdx) const {
assert(m_Offsets[threadIdx] >= 0);
assert(threadIdx >= 0);
assert(threadIdx < m_NumThreads);
const uint32 outBufBlockSz = 16;
return m_OutBuf + m_Offsets[threadIdx] * outBufBlockSz;
}
uint32 WorkerQueue::GetNumBlocksForThread(const int threadIdx) const {
assert(m_Offsets[threadIdx] >= 0);
assert(threadIdx >= 0);
assert(threadIdx < m_NumThreads);
return m_NumBlocks[threadIdx];
}
#endif

View file

@ -1,18 +1,18 @@
#ifndef __TEXCOMP_WORKDER_QUEUE_H__
#define __TEXCOMP_WORKDER_QUEUE_H__
#include "TexCompTypes.h"
#include "TexComp.h"
// Forward declare...
class WorkerQueue;
namespace boost {
class thread;
class mutex;
class barrier;
class condition_variable;
}
// Necessary includes...
#include "TexCompTypes.h"
#include "TexComp.h"
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
struct WorkerThread {
friend class WorkerQueue;
public:
@ -20,6 +20,13 @@ public:
WorkerThread(WorkerQueue *, uint32 idx);
void operator ()();
enum EAction {
eAction_DoWork,
eAction_Quit,
kNumWorkerThreadActions
};
private:
uint32 m_ThreadIdx;
WorkerQueue *const m_Parent;
@ -39,21 +46,37 @@ class WorkerQueue {
~WorkerQueue() { }
// Runs the
// Runs the workers
void Run();
private:
static const int kMaxNumWorkerThreads = 256;
int m_Offsets[kMaxNumWorkerThreads];
uint32 m_NumThreads;
uint32 m_ActiveThreads;
uint32 m_JobSize;
uint32 m_InBufSz;
const uint8 *m_InBuf;
uint8 *m_OutBuf;
int GetOffsetForThread(const int threadIdx) const;
boost::condition_variable m_CV;
boost::mutex m_Mutex;
uint32 m_NextBlock;
static const uint32 kMaxNumWorkerThreads = 256;
uint32 m_Offsets[kMaxNumWorkerThreads];
uint32 m_NumBlocks[kMaxNumWorkerThreads];
boost::thread *m_ThreadHandles[kMaxNumWorkerThreads];
const uint8 *GetSrcForThread(const int threadIdx) const;
uint8 *GetDstForThread(const int threadIdx) const;
uint32 GetNumBlocksForThread(const int threadIdx) const;
const CompressionFunc m_CompressionFunc;
CompressionFunc GetCompressionFunc() const { return m_CompressionFunc; }
void SignalThreadReady(int threadIdx);
bool AcceptThreadData(int threadIdx) const;
WorkerThread::EAction AcceptThreadData(uint32 threadIdx);
void NotifyWorkerFinished();
};
#endif //__TEXCOMP_WORKDER_QUEUE_H__