Merge PVRTC compressor into split library.

This commit is contained in:
Pavel Krajcevski 2013-09-27 17:30:16 -04:00
commit dcf389d346
29 changed files with 1228 additions and 205 deletions

View file

@ -150,4 +150,4 @@ ADD_LIBRARY( BPTCEncoder
${SOURCES}
)
TARGET_LINK_LIBRARIES( BPTCEncoder FasTCBase )
TARGET_LINK_LIBRARIES( BPTCEncoder FasTCBase )

View file

@ -49,17 +49,29 @@
class Image {
public:
Image(uint32 width, uint32 height, const uint32 *pixels);
Image(uint32 width, uint32 height,
const uint32 *pixels,
bool bBlockStreamOrder = false);
Image(const Image &);
Image &operator=(const Image &);
virtual ~Image();
virtual Image *Clone() const {
return new Image(*this);
};
const uint8 *RawData() const { return m_Data; }
uint32 GetWidth() const { return m_Width; }
uint32 GetHeight() const { return m_Height; }
void SetBlockStreamOrder(bool flag) { m_bBlockStreamOrder = flag; }
void SetBlockStreamOrder(bool flag) {
if(flag) {
ConvertToBlockStreamOrder();
} else {
ConvertFromBlockStreamOrder();
}
}
bool GetBlockStreamOrder() const { return m_bBlockStreamOrder; }
double ComputePSNR(Image *other);
@ -77,6 +89,9 @@ class Image {
protected:
uint8 *m_Data;
void ConvertToBlockStreamOrder();
void ConvertFromBlockStreamOrder();
};
#endif // __TEXCOMP_IMAGE_H__

View file

@ -67,10 +67,10 @@ Image::Image(const Image &other)
}
}
Image::Image(uint32 width, uint32 height, const uint32 *pixels)
Image::Image(uint32 width, uint32 height, const uint32 *pixels, bool bBlockStreamOrder)
: m_Width(width)
, m_Height(height)
, m_bBlockStreamOrder(false)
, m_bBlockStreamOrder(bBlockStreamOrder)
{
if(pixels) {
m_Data = new uint8[4 * m_Width * m_Height];
@ -80,6 +80,12 @@ Image::Image(uint32 width, uint32 height, const uint32 *pixels)
}
}
Image::~Image() {
if(m_Data) {
delete [] m_Data;
m_Data = 0;
}
}
Image &Image::operator=(const Image &other) {
@ -105,13 +111,6 @@ Image &Image::operator=(const Image &other) {
return *this;
}
Image::~Image() {
if(m_Data) {
delete [] m_Data;
m_Data = 0;
}
}
double Image::ComputePSNR(Image *other) {
if(!other)
return -1.0;
@ -130,42 +129,88 @@ double Image::ComputePSNR(Image *other) {
const uint8 *otherData =
reinterpret_cast<const uint8 *>(other->GetRGBA());
const double wr = 1.0;
const double wg = 1.0;
const double wb = 1.0;
// const double w[3] = { 0.2126, 0.7152, 0.0722 };
const double w[3] = { 1.0, 1.0, 1.0 };
double MSE = 0.0;
double mse = 0.0;
const uint32 imageSz = GetWidth() * GetHeight() * 4;
for(uint32 i = 0; i < imageSz; i+=4) {
const unsigned char *ourPixel = ourData + i;
const unsigned char *otherPixel = otherData + i;
const unsigned char *pixelDataRaw = ourData + i;
const unsigned char *pixelDataUncomp = otherData + i;
double ourAlphaScale = double(ourPixel[3]) / 255.0;
double otherAlphaScale = double(otherPixel[3]) / 255.0;
double dr = double(sad(ourAlphaScale * ourPixel[0],
otherAlphaScale * otherPixel[0])) * wr;
double dg = double(sad(ourAlphaScale * ourPixel[1],
otherAlphaScale * otherPixel[1])) * wg;
double db = double(sad(ourAlphaScale * ourPixel[2],
otherAlphaScale * otherPixel[2])) * wb;
const double pixelMSE =
(double(dr) * double(dr)) +
(double(dg) * double(dg)) +
(double(db) * double(db));
//fprintf(stderr, "Pixel MSE: %f\n", pixelMSE);
MSE += pixelMSE;
float r[4], u[4];
for(uint32 c = 0; c < 4; c++) {
if(c == 3) {
r[c] = pixelDataRaw[c] / 255.0;
u[c] = pixelDataUncomp[c] / 255.0;
} else {
r[c] = static_cast<double>(pixelDataRaw[c]) * w[c];
u[c] = static_cast<double>(pixelDataUncomp[c]) * w[c];
}
}
for(uint32 c = 0; c < 3; c++) {
double diff = (r[3] * r[c] - u[3] * u[c]);
mse += diff * diff;
}
}
MSE /= (double(GetWidth()) * double(GetHeight()));
mse /= GetWidth() * GetHeight();
double MAXI =
(255.0 * wr) * (255.0 * wr) +
(255.0 * wg) * (255.0 * wg) +
(255.0 * wb) * (255.0 * wb);
double PSNR = 10 * log10(MAXI/MSE);
return PSNR;
const double C = 255.0 * 255.0;
double maxi = (w[0]*w[0] + w[1]*w[1] + w[2]*w[2]) * C;
return 10 * log10(maxi/mse);
}
void Image::ConvertToBlockStreamOrder() {
if(m_bBlockStreamOrder || !m_Data)
return;
uint32 *newPixelData = new uint32[GetWidth() * GetHeight() * 4];
for(uint32 j = 0; j < GetHeight(); j+=4) {
for(uint32 i = 0; i < GetWidth(); i+=4) {
uint32 blockX = i / 4;
uint32 blockY = j / 4;
uint32 blockIdx = blockY * (GetWidth() / 4) + blockX;
uint32 offset = blockIdx * 4 * 4;
for(uint32 t = 0; t < 16; t++) {
uint32 x = i + t % 4;
uint32 y = j + t / 4;
newPixelData[offset + t] =
reinterpret_cast<uint32 *>(m_Data)[y*GetWidth() + x];
}
}
}
delete m_Data;
m_Data = reinterpret_cast<uint8 *>(newPixelData);
m_bBlockStreamOrder = true;
}
void Image::ConvertFromBlockStreamOrder() {
if(!m_bBlockStreamOrder || !m_Data)
return;
uint32 *newPixelData = new uint32[GetWidth() * GetHeight() * 4];
for(uint32 j = 0; j < GetHeight(); j+=4) {
for(uint32 i = 0; i < GetWidth(); i+=4) {
uint32 blockX = i / 4;
uint32 blockY = j / 4;
uint32 blockIdx = blockY * (GetWidth() / 4) + blockX;
uint32 offset = blockIdx * 4 * 4;
for(uint32 t = 0; t < 16; t++) {
uint32 x = i + t % 4;
uint32 y = j + t / 4;
newPixelData[y*GetWidth() + x] =
reinterpret_cast<uint32 *>(m_Data)[offset + t];
}
}
}
delete m_Data;
m_Data = reinterpret_cast<uint8 *>(newPixelData);
m_bBlockStreamOrder = false;
}

View file

@ -53,6 +53,7 @@
void PrintUsage() {
fprintf(stderr, "Usage: tc [OPTIONS] imagefile\n");
fprintf(stderr, "\n");
fprintf(stderr, "\t-f\t\tFormat to use. Either \"BPTC\" or \"PVRTC\". Default: BPTC\n");
fprintf(stderr, "\t-l\t\tSave an output log.\n");
fprintf(stderr, "\t-q <quality>\tSet compression quality level. Default: 50\n");
fprintf(stderr, "\t-n <num>\tCompress the image num times and give the average time and PSNR. Default: 1\n");
@ -92,7 +93,8 @@ int main(int argc, char **argv) {
bool bUseSIMD = false;
bool bSaveLog = false;
bool bUseAtomics = false;
ECompressionFormat format = eCompressionFormat_BPTC;
bool knowArg = false;
do {
knowArg = false;
@ -110,6 +112,23 @@ int main(int argc, char **argv) {
continue;
}
if(strcmp(argv[fileArg], "-f") == 0) {
fileArg++;
if(fileArg == argc) {
PrintUsage();
exit(1);
} else {
if(!strcmp(argv[fileArg], "PVRTC")) {
format = eCompressionFormat_PVRTC;
}
}
fileArg++;
knowArg = true;
continue;
}
if(strcmp(argv[fileArg], "-l") == 0) {
fileArg++;
bSaveLog = true;
@ -187,6 +206,9 @@ int main(int argc, char **argv) {
}
Image img = Image(*file.GetImage());
if(format == eCompressionFormat_PVRTC) {
img.SetBlockStreamOrder(false);
}
int numBlocks = (img.GetWidth() * img.GetHeight())/16;
BlockStatManager *statManager = NULL;
@ -195,6 +217,7 @@ int main(int argc, char **argv) {
}
SCompressionSettings settings;
settings.format = format;
settings.bUseSIMD = bUseSIMD;
settings.bUseAtomics = bUseAtomics;
settings.iNumThreads = numThreads;
@ -223,8 +246,13 @@ int main(int argc, char **argv) {
statManager->ToFile(logname);
}
Image cImg(*ci);
ImageFile cImgFile (strcat(basename, "-bc7.png"), eFileFormat_PNG, cImg);
if(format == eCompressionFormat_BPTC) {
strcat(basename, "-bc7.png");
} else if(format == eCompressionFormat_PVRTC) {
strcat(basename, "-pvrtc.png");
}
ImageFile cImgFile (basename, eFileFormat_PNG, *ci);
cImgFile.Write();
// Cleanup

View file

@ -54,6 +54,7 @@
void PrintUsage() {
fprintf(stderr, "Usage: tc [OPTIONS] imagefile\n");
fprintf(stderr, "\n");
fprintf(stderr, "\t-f\t\tFormat to use. Either \"BPTC\" or \"PVRTC\". Default: BPTC\n");
fprintf(stderr, "\t-l\t\tSave an output log.\n");
fprintf(stderr, "\t-q <quality>\tSet compression quality level. Default: 50\n");
fprintf(stderr, "\t-n <num>\tCompress the image num times and give the average time and PSNR. Default: 1\n");
@ -93,11 +94,29 @@ int _tmain(int argc, _TCHAR* argv[])
bool bUseSIMD = false;
bool bSaveLog = false;
bool bUseAtomics = false;
ECompressionFormat format = eCompressionFormat_BPTC;
bool knowArg = false;
do {
knowArg = false;
if(strcmp(argv[fileArg], "-f") == 0) {
fileArg++;
if(fileArg == argc) {
PrintUsage();
exit(1);
} else {
if(!strcmp(argv[fileArg], "PVRTC")) {
format = eCompressionFormat_PVRTC;
}
}
fileArg++;
knowArg = true;
continue;
}
if(strcmp(argv[fileArg], "-n") == 0) {
fileArg++;
@ -192,15 +211,19 @@ int _tmain(int argc, _TCHAR* argv[])
return 1;
}
const Image *img = file.GetImage();
Image img (*file.GetImage())
if(format == eCompressionFormat_PVRTC) {
img.SetBlockStreamOrder(false);
}
int numBlocks = (img->GetWidth() * img->GetHeight())/16;
int numBlocks = (img.GetWidth() * img.GetHeight())/16;
BlockStatManager *statManager = NULL;
if(bSaveLog) {
statManager = new BlockStatManager(numBlocks);
}
SCompressionSettings settings;
settings.format = format;
settings.bUseSIMD = bUseSIMD;
settings.bUseAtomics = bUseAtomics;
settings.iNumThreads = numThreads;
@ -226,11 +249,16 @@ int _tmain(int argc, _TCHAR* argv[])
if(bSaveLog) {
strcat_s(basename, ".log");
statManager->ToFile(basename);
basename[strlen(basename) - 4] = '\0';
basename[strlen(basename) - 4] = '\0';
}
strcat_s(basename, "-bc7.png");
Image cImg (*ci);
ImageFile cImgFile (basename, eFileFormat_PNG, cImg);
if(format == eCompressionFormat_BPTC) {
strcat_s(basename, "-bc7.png");
} else if(format == eCompressionFormat_PVRTC) {
strcat_s(basename, "-pvrtc.png");
}
ImageFile cImgFile (basename, eFileFormat_PNG, *ci);
cImgFile.Write();
// Cleanup

View file

@ -56,30 +56,51 @@
# PVRTEXLIB_LIBRARIES - The libraries needed to use PVRTexLib
IF (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
SET( PVRTEXLIB_ROOT "/Applications/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library" )
find_path(
PVRTEXLIB_INCLUDE_DIR PVRTexture.h
PATHS "/Applications/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Include"
PATHS ${PVRTEXLIB_ROOT}/Include
)
find_library(PVRTEXLIB_LIB PVRTexLib
PATHS "/Applications/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/OSX_x86/Static"
"/Applications/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/OSX_x86/Dynamic"
PATHS ${PVRTEXLIB_ROOT}/OSX_x86/Static
${PVRTEXLIB_ROOT}/OSX_x86/Dynamic
)
ELSEIF(MSVC)
ELSEIF (${CMAKE_SYSTEM_NAME} MATCHES "Linux")
SET( PVRTEXLIB_ROOT "/opt/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library" )
find_path(
PVRTEXLIB_INCLUDE_DIR PVRTexture.h
PATHS "C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Include"
PATHS ${PVRTEXLIB_ROOT}/Include
)
IF(${CMAKE_SIZEOF_VOID_P} EQUAL 8)
find_library(PVRTEXLIB_LIB PVRTexLib
PATHS ${PVRTEXLIB_ROOT}/Linux_x86_64/Static
${PVRTEXLIB_ROOT}/Linux_x86_64/Dynamic
)
ELSE()
find_library(PVRTEXLIB_LIB PVRTexLib
PATHS ${PVRTEXLIB_ROOT}/Linux_x86_32/Static
${PVRTEXLIB_ROOT}/Linux_x86_32/Dynamic
)
ENDIF()
ELSEIF(MSVC)
SET( PVRTEXLIB_ROOT "C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library" )
find_path(
PVRTEXLIB_INCLUDE_DIR PVRTexture.h
PATHS ${PVRTEXLIB_ROOT}/Include
)
IF(${CMAKE_GENERATOR} MATCHES Win64)
find_library(PVRTEXLIB_LIB PVRTexLib
PATHS "C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Windows_x86_64/Static"
"C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Windows_x86_64/Dynamic"
PATHS ${PVRTEXLIB_ROOT}/Windows_x86_64/Static
${PVRTEXLIB_ROOT}/Windows_x86_64/Dynamic
)
ELSE()
find_library(PVRTEXLIB_LIB PVRTexLib
PATHS "C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Windows_x86_32/Static"
"C:/Imagination/PowerVR/GraphicsSDK/PVRTexTool/Library/Windows_x86_32/Dynamic"
PATHS ${PVRTEXLIB_ROOT}/Windows_x86_32/Static
${PVRTEXLIB_ROOT}/Windows_x86_32/Dynamic
)
ENDIF()
ENDIF()
@ -93,4 +114,4 @@ include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(PVRTexLib DEFAULT_MSG
PVRTEXLIB_LIB PVRTEXLIB_INCLUDE_DIR)
mark_as_advanced(PVRTEXLIB_INCLUDE_DIR PVRTEXLIB_LIB )
mark_as_advanced( PVRTEXLIB_ROOT PVRTEXLIB_INCLUDE_DIR PVRTEXLIB_LIB )

View file

@ -77,6 +77,8 @@ ELSE()
ENDIF()
INCLUDE_DIRECTORIES( ${FasTC_SOURCE_DIR}/Base/include )
INCLUDE_DIRECTORIES( ${FasTC_SOURCE_DIR} )
INCLUDE_DIRECTORIES( ${FasTC_SOURCE_DIR}/PVRTCEncoder/include )
INCLUDE_DIRECTORIES( ${FasTC_SOURCE_DIR}/BPTCEncoder/include )
INCLUDE_DIRECTORIES( ${FasTC_BINARY_DIR}/BPTCEncoder/include )
@ -157,6 +159,7 @@ ADD_LIBRARY( FasTCCore
TARGET_LINK_LIBRARIES( FasTCCore FasTCBase )
TARGET_LINK_LIBRARIES( FasTCCore FasTCIO )
TARGET_LINK_LIBRARIES( FasTCCore BPTCEncoder )
TARGET_LINK_LIBRARIES( FasTCCore PVRTCEncoder )
IF( THREAD_API MATCHES "Boost" )
TARGET_LINK_LIBRARIES( FasTCCore ${Boost_LIBRARIES} )

View file

@ -44,10 +44,13 @@
#ifndef _COMPRESSED_IMAGE_H_
#define _COMPRESSED_IMAGE_H_
#include "TexCompTypes.h"
enum ECompressionFormat {
eCompressionFormat_DXT1,
eCompressionFormat_DXT5,
eCompressionFormat_BPTC,
eCompressionFormat_PVRTC,
kNumCompressionFormats
};
@ -55,37 +58,47 @@ enum ECompressionFormat {
#include "Image.h"
class CompressedImage : public Image {
private:
ECompressionFormat m_Format;
uint32 *m_RGBAData;
uint32 m_DataSz;
void InitData(const unsigned char *withData);
public:
CompressedImage();
CompressedImage(const CompressedImage &);
CompressedImage &operator=(const CompressedImage &);
// Create a compressed image from the given data according to
// the passed format. The size of the data is expected to conform
// to the width, height, and format specified.
CompressedImage(
const unsigned int width,
const unsigned int height,
const uint32 width,
const uint32 height,
const ECompressionFormat format,
const unsigned char *data
const uint8 *data
);
CompressedImage( const CompressedImage &other );
virtual ~CompressedImage();
virtual Image *Clone() const {
return new CompressedImage(*this);
}
virtual void ComputeRGBA();
virtual const uint32 *GetRGBA() const { return m_RGBAData; }
static uint32 GetCompressedSize(uint32 uncompressedSize, ECompressionFormat format);
static uint32 GetUncompressedSize(uint32 compressedSize, ECompressionFormat format) {
uint32 cmp = GetCompressedSize(compressedSize, format);
return compressedSize * (compressedSize / cmp);
}
// Decompress the compressed image data into outBuf. outBufSz is expected
// to be the proper size determined by the width, height, and format.
// !FIXME! We should have a function to explicitly return the in/out buf
// size for a given compressed image.
bool DecompressImage(unsigned char *outBuf, unsigned int outBufSz) const;
bool DecompressImage(uint8 *outBuf, uint32 outBufSz) const;
ECompressionFormat GetFormat() const { return m_Format; }
};
#endif // _COMPRESSED_IMAGE_H_

View file

@ -96,7 +96,8 @@ extern CompressedImage *CompressImage(Image *img, const SCompressionSettings &se
extern bool CompressImageData(
const unsigned char *data,
const unsigned int dataSz,
const unsigned int width,
const unsigned int height,
unsigned char *cmpData,
const unsigned int cmpDataSz,
const SCompressionSettings &settings

View file

@ -50,14 +50,18 @@
#include "TexCompTypes.h"
#include "BC7Compressor.h"
#include "PVRTCCompressor.h"
CompressedImage::CompressedImage( const CompressedImage &other )
: Image(other)
, m_Format(other.m_Format)
, m_RGBAData(0)
, m_DataSz(0)
, m_DataSz(other.m_DataSz)
{
InitData(other.m_Data);
if(other.m_RGBAData) {
m_RGBAData = new uint32[GetWidth() * GetHeight()];
memcpy(m_RGBAData, other.m_RGBAData, sizeof(uint32) * GetWidth() * GetHeight());
}
}
CompressedImage::CompressedImage(
@ -69,46 +73,36 @@ CompressedImage::CompressedImage(
: Image(width, height, NULL)
, m_Format(format)
, m_RGBAData(0)
, m_DataSz(0)
, m_DataSz(GetCompressedSize(GetWidth() * GetHeight() * 4, m_Format))
{
InitData(data);
if(m_DataSz > 0) {
assert(!m_Data);
m_Data = new unsigned char[m_DataSz];
memcpy(m_Data, data, m_DataSz);
}
}
void CompressedImage::InitData(const unsigned char *withData) {
m_DataSz = 0;
int uncompDataSz = GetWidth() * GetHeight() * 4;
switch(m_Format) {
default: assert(!"Not implemented!"); // Fall through V
case eCompressionFormat_DXT1: m_DataSz = uncompDataSz / 8; break;
case eCompressionFormat_DXT5: m_DataSz = uncompDataSz / 4; break;
case eCompressionFormat_BPTC: m_DataSz = uncompDataSz / 4; break;
}
if(m_DataSz > 0) {
m_Data = new unsigned char[m_DataSz];
memcpy(m_Data, withData, m_DataSz);
CompressedImage &CompressedImage::operator=(const CompressedImage &other) {
Image::operator=(other);
m_Format = other.m_Format;
m_DataSz = other.m_DataSz;
if(other.m_RGBAData) {
m_RGBAData = new uint32[GetWidth() * GetHeight()];
memcpy(m_RGBAData, other.m_RGBAData, sizeof(uint32) * GetWidth() * GetHeight());
}
}
CompressedImage::~CompressedImage() {
if(m_Data) {
delete [] m_Data;
m_Data = NULL;
if(m_RGBAData) {
delete m_RGBAData;
m_RGBAData = NULL;
}
}
bool CompressedImage::DecompressImage(unsigned char *outBuf, unsigned int outBufSz) const {
// First make sure that we have enough data
uint32 dataSz = 0;
switch(m_Format) {
default: assert(!"Not implemented!"); // Fall through V
case eCompressionFormat_DXT1: dataSz = m_DataSz * 8; break;
case eCompressionFormat_DXT5: dataSz = m_DataSz * 4; break;
case eCompressionFormat_BPTC: dataSz = m_DataSz * 4; break;
}
uint32 dataSz = GetUncompressedSize(m_DataSz, m_Format);
if(dataSz > outBufSz) {
fprintf(stderr, "Not enough space to store entire decompressed image! "
"Got %d bytes, but need %d!\n", outBufSz, dataSz);
@ -118,6 +112,12 @@ bool CompressedImage::DecompressImage(unsigned char *outBuf, unsigned int outBuf
DecompressionJob dj (m_Data, outBuf, GetWidth(), GetHeight());
switch(m_Format) {
case eCompressionFormat_PVRTC:
{
PVRTCC::Decompress(dj);
}
break;
case eCompressionFormat_BPTC:
{
BC7C::Decompress(dj);
@ -146,3 +146,26 @@ void CompressedImage::ComputeRGBA() {
uint8 *pixelData = reinterpret_cast<uint8 *>(m_RGBAData);
DecompressImage(pixelData, GetWidth() * GetHeight() * 4);
}
uint32 CompressedImage::GetCompressedSize(uint32 uncompressedSize, ECompressionFormat format) {
assert(uncompressedSize % 8 == 0);
uint32 cmpDataSzNeeded = 0;
switch(format) {
default:
assert(!"Not implemented!");
// Fall through V
case eCompressionFormat_DXT1:
case eCompressionFormat_PVRTC:
cmpDataSzNeeded = uncompressedSize / 8;
break;
case eCompressionFormat_DXT5:
case eCompressionFormat_BPTC:
cmpDataSzNeeded = uncompressedSize / 4;
break;
}
return cmpDataSzNeeded;
}

View file

@ -50,14 +50,14 @@
#include <cassert>
#include <iostream>
#include "CompressionFuncs.h"
#include "BC7Compressor.h"
#include "Thread.h"
#include "WorkerQueue.h"
#include "ThreadGroup.h"
#include "ImageFile.h"
#include "CompressionFuncs.h"
#include "Image.h"
#include "ImageFile.h"
#include "PVRTCCompressor.h"
#include "Thread.h"
#include "ThreadGroup.h"
#include "WorkerQueue.h"
template <typename T>
static void clamp(T &x, const T &minX, const T &maxX) {
@ -69,6 +69,10 @@ static inline T sad(const T &a, const T &b) {
return (a > b)? a - b : b - a;
}
static void CompressPVRTC(const CompressionJob &cj) {
PVRTCC::Compress(cj);
}
SCompressionSettings:: SCompressionSettings()
: format(eCompressionFormat_BPTC)
, bUseSIMD(false)
@ -87,6 +91,12 @@ static CompressionFuncWithStats ChooseFuncFromSettingsWithStats(const SCompress
}
break;
case eCompressionFormat_PVRTC:
{
// !FIXME! actually implement one of these methods...
return NULL;
}
default:
{
assert(!"Not implemented!");
@ -110,6 +120,11 @@ static CompressionFunc ChooseFuncFromSettings(const SCompressionSettings &s) {
}
break;
case eCompressionFormat_PVRTC:
{
return CompressPVRTC;
}
default:
{
assert(!"Not implemented!");
@ -124,8 +139,9 @@ static void ReportError(const char *msg) {
}
static double CompressImageInSerial(
const unsigned char *imgData,
const unsigned int imgDataSz,
const uint8 *imgData,
const uint32 imgWidth,
const uint32 imgHeight,
const SCompressionSettings &settings,
unsigned char *outBuf
) {
@ -134,14 +150,14 @@ static double CompressImageInSerial(
double cmpTimeTotal = 0.0;
StopWatch stopWatch = StopWatch();
for(int i = 0; i < settings.iNumCompressions; i++) {
StopWatch stopWatch = StopWatch();
stopWatch.Reset();
stopWatch.Start();
// !FIXME! We're assuming that we have 4x4 blocks here...
CompressionJob cj (imgData, outBuf, imgDataSz / 16, 4);
CompressionJob cj (imgData, outBuf, imgWidth, imgHeight);
if(fStats && settings.pStatManager) {
// !FIXME! Actually use the stat manager...
//(*fStats)(cj, *(settings.pStatManager));
@ -347,20 +363,14 @@ CompressedImage *CompressImage(
assert(dataSz > 0);
// Allocate data based on the compression method
int cmpDataSz = 0;
switch(settings.format) {
default: assert(!"Not implemented!"); // Fall Through V
case eCompressionFormat_DXT1: cmpDataSz = dataSz / 8; break;
case eCompressionFormat_DXT5: cmpDataSz = dataSz / 4; break;
case eCompressionFormat_BPTC: cmpDataSz = dataSz / 4; break;
}
uint32 cmpDataSz = CompressedImage::GetCompressedSize(dataSz, settings.format);
// Make sure that we have RGBA data...
img->ComputeRGBA();
unsigned char *cmpData = new unsigned char[cmpDataSz];
const uint8 *pixelData = reinterpret_cast<const uint8 *>(img->GetRGBA());
CompressImageData(pixelData, dataSz, cmpData, cmpDataSz, settings);
CompressImageData(pixelData, w, h, cmpData, cmpDataSz, settings);
outImg = new CompressedImage(w, h, settings.format, cmpData);
@ -370,12 +380,15 @@ CompressedImage *CompressImage(
bool CompressImageData(
const unsigned char *data,
const unsigned int dataSz,
const unsigned int width,
const unsigned int height,
unsigned char *cmpData,
const unsigned int cmpDataSz,
const SCompressionSettings &settings
) {
uint32 dataSz = width * height * 4;
// Make sure that platform supports SSE if they chose this
// option...
#ifndef HAS_SSE_41
@ -390,15 +403,23 @@ bool CompressImageData(
return false;
}
// Allocate data based on the compression method
uint32 cmpDataSzNeeded = 0;
switch(settings.format) {
default: assert(!"Not implemented!"); // Fall through V
case eCompressionFormat_DXT1: cmpDataSzNeeded = dataSz / 8; break;
case eCompressionFormat_DXT5: cmpDataSzNeeded = dataSz / 4; break;
case eCompressionFormat_BPTC: cmpDataSzNeeded = dataSz / 4; break;
uint32 numThreads = settings.iNumThreads;
if(settings.format == eCompressionFormat_PVRTC &&
(settings.iNumThreads > 1 || settings.pStatManager)) {
if(settings.iNumThreads > 1) {
ReportError("WARNING - PVRTC compressor does not support multithreading.");
numThreads = 1;
}
if(settings.pStatManager) {
ReportError("WARNING - PVRTC compressor does not support stat collection.");
}
}
// Allocate data based on the compression method
uint32 cmpDataSzNeeded =
CompressedImage::GetCompressedSize(dataSz, settings.format);
if(cmpDataSzNeeded == 0) {
ReportError("Unknown compression format");
return false;
@ -413,21 +434,17 @@ bool CompressImageData(
double cmpMSTime = 0.0;
if(settings.iNumThreads > 1) {
if(numThreads > 1) {
if(settings.bUseAtomics) {
//!KLUDGE!
unsigned int height = 4;
unsigned int width = dataSz / 16;
cmpMSTime = CompressImageWithAtomics(data, width, height, settings, cmpData);
}
else if(settings.iJobSize > 0)
} else if(settings.iJobSize > 0) {
cmpMSTime = CompressImageWithWorkerQueue(data, dataSz, settings, cmpData);
else
} else {
cmpMSTime = CompressImageWithThreads(data, dataSz, settings, cmpData);
}
}
else {
cmpMSTime = CompressImageInSerial(data, dataSz, settings, cmpData);
cmpMSTime = CompressImageInSerial(data, width, height, settings, cmpData);
}
// Report compression time

View file

@ -107,7 +107,7 @@ ImageFile::ImageFile(const CHAR *filename, EImageFileFormat format)
ImageFile::ImageFile(const char *filename, EImageFileFormat format, const Image &image)
: m_FileFormat(format)
, m_Image(new Image(image))
, m_Image(image.Clone())
{
strncpy(m_Filename, filename, kMaxFilenameSz);
}
@ -207,7 +207,7 @@ Image *ImageFile::LoadImage(const unsigned char *rawImageData) const {
}
uint32 *pixels = reinterpret_cast<uint32 *>(pixelData);
Image *i = new Image(loader->GetWidth(), loader->GetHeight(), pixels);
Image *i = new Image(loader->GetWidth(), loader->GetHeight(), pixels, true);
// Cleanup
delete loader;

View file

@ -84,11 +84,13 @@ public:
};
ImageWriterPNG::ImageWriterPNG(const Image &im)
ImageWriterPNG::ImageWriterPNG(Image &im)
: ImageWriter(im.GetWidth(), im.GetHeight(), im.RawData())
, m_bBlockStreamOrder(im.GetBlockStreamOrder())
, m_StreamPosition(0)
{
im.ComputeRGBA();
m_PixelData = reinterpret_cast<const uint8 *>(im.GetRGBA());
}
bool ImageWriterPNG::WriteImage() {
@ -111,7 +113,6 @@ bool ImageWriterPNG::WriteImage() {
}
/* Set image attributes. */
png_set_IHDR (png_ptr,
info_ptr,
m_Width,
@ -123,7 +124,6 @@ bool ImageWriterPNG::WriteImage() {
PNG_FILTER_TYPE_DEFAULT);
/* Initialize rows of PNG. */
row_pointers = (png_byte **)png_malloc (png_ptr, m_Height * sizeof (png_byte *));
for (uint32 y = 0; y < m_Height; ++y) {
png_byte *row = (png_byte *)png_malloc (png_ptr, sizeof (uint8) * m_Width * pixel_size);
@ -136,8 +136,8 @@ bool ImageWriterPNG::WriteImage() {
*row++ = GetChannelForPixel(x, y, ch);
}
} else {
*(reinterpret_cast<uint32 *>(row) + x) =
(reinterpret_cast<const uint32 *>(m_PixelData))[y * m_Width + x];
reinterpret_cast<uint32 *>(row)[x] =
reinterpret_cast<const uint32 *>(m_PixelData)[y * m_Width + x];
}
}
}

View file

@ -50,7 +50,7 @@
class Image;
class ImageWriterPNG : public ImageWriter {
public:
ImageWriterPNG(const Image &);
ImageWriterPNG(Image &);
virtual ~ImageWriterPNG() { }
virtual bool WriteImage();

View file

@ -62,6 +62,7 @@ SET( HEADERS
)
SET( SOURCES
src/Compressor.cpp
src/Decompressor.cpp
src/Pixel.cpp
src/Block.cpp

View file

@ -70,9 +70,18 @@ namespace PVRTCC {
// decompress the data.
void Decompress(const DecompressionJob &,
bool bTwoBitMode = false,
const EWrapMode wrapMode = eWrapMode_Clamp,
const EWrapMode wrapMode = eWrapMode_Wrap,
bool bDebugImages = false);
// Takes a stream of uncompressed RGBA8 data and compresses it into PVRTC
// version one. The width and height must be specified in order to properly
// decompress the data.
void Compress(const CompressionJob &,
bool bTwoBitMode = false,
const EWrapMode wrapMode = eWrapMode_Wrap);
static const uint32 kBlockSize = sizeof(uint64);
} // namespace PVRTCC
#endif // PVRTCENCODER_INCLUDE_PVRTCCOMPRESSOR_H_

View file

@ -83,6 +83,42 @@ namespace PVRTCC {
return m_ColorA;
}
Pixel Block::SetColor(const Pixel &c, bool transparent,
const uint8 (&tbd)[4], const uint8 (&obd)[4]) {
uint8 cDepth[4];
c.GetBitDepth(cDepth);
Pixel final = c;
if(transparent) {
final.ChangeBitDepth(tbd);
// If we went effectively transparent, then just switch over to opaque...
if(final.A() == 0x7) {
return SetColor(c, false, tbd, obd);
}
} else {
final.A() = 255;
final.ChangeBitDepth(obd);
}
return final;
}
void Block::SetColorA(const Pixel &c, bool transparent) {
const uint8 transparentBitDepth[4] = { 3, 4, 4, 4 };
const uint8 opaqueBitDepth[4] = { 0, 5, 5, 5 };
m_ColorA = SetColor(c, transparent, transparentBitDepth, opaqueBitDepth);
m_ColorACached = true;
}
void Block::SetColorB(const Pixel &c, bool transparent) {
const uint8 transparentBitDepth[4] = { 3, 4, 4, 3 };
const uint8 opaqueBitDepth[4] = { 0, 5, 5, 4 };
m_ColorB = SetColor(c, transparent, transparentBitDepth, opaqueBitDepth);
m_ColorBCached = true;
}
Pixel Block::GetColorB() {
if(m_ColorBCached) {
return m_ColorB;
@ -109,6 +145,17 @@ namespace PVRTCC {
return (m_LongData >> (texelIdx * 2)) & 0x3;
}
void Block::SetLerpValue(uint32 texelIdx, uint8 lerpVal) {
assert(texelIdx >= 0);
assert(texelIdx <= 15);
assert(lerpVal >= 0);
assert(lerpVal < 4);
m_LongData &= ~(static_cast<uint64>(0x3) << (texelIdx * 2));
m_LongData |= static_cast<uint64>(lerpVal & 0x3) << (texelIdx * 2);
}
Block::E2BPPSubMode Block::Get2BPPSubMode() const {
uint8 first = GetLerpValue(0);
if(!(first & 0x1)) {
@ -145,4 +192,65 @@ namespace PVRTCC {
return ret;
}
uint64 Block::Pack() {
assert(m_ColorACached);
assert(m_ColorBCached);
#ifndef NDEBUG
uint8 bitDepthA[4];
m_ColorA.GetBitDepth(bitDepthA);
uint32 sumA = 0;
for(int i = 0; i < 4; i++) {
sumA += bitDepthA[i];
}
assert(sumA == 15);
#endif
#ifndef NDEBUG
uint8 bitDepthB[4];
m_ColorB.GetBitDepth(bitDepthB);
uint32 sumB = 0;
for(int i = 0; i < 4; i++) {
sumB += bitDepthB[i];
}
assert(sumB == 14);
#endif
uint8 aBits[2], bBits[2];
memset(aBits, 0, sizeof(aBits));
memset(bBits, 0, sizeof(bBits));
m_ColorA.ToBits(aBits, 2);
m_ColorB.ToBits(bBits, 2, 1);
if(m_ColorA.A() == 0xFF) {
m_ByteData[7] |= 0x80;
} else {
m_ByteData[7] &= 0x7f;
}
m_ByteData[7] = aBits[1];
m_ByteData[6] = aBits[0];
bool modeBit = GetModeBit();
m_ByteData[5] = bBits[1];
m_ByteData[4] = bBits[0];
if(m_ColorB.A() == 0xFF) {
m_ByteData[5] |= 0x80;
} else {
m_ByteData[5] &= 0x7f;
}
if(modeBit) {
m_ByteData[4] |= 0x1;
} else {
m_ByteData[4] &= 0xFE;
}
// Modulation data should have already been set...
return m_LongData;
}
} // namespace PVRTCC

View file

@ -60,15 +60,29 @@ namespace PVRTCC {
class Block {
public:
Block(): m_LongData(0) { }
explicit Block(const uint8 *data);
// Accessors for the A and B colors of the block.
Pixel GetColorA();
void SetColorA(const Pixel &, bool transparent=false);
Pixel GetColorB();
void SetColorB(const Pixel &, bool transparent=false);
bool GetModeBit() const {
return static_cast<bool>((m_LongData >> 32) & 0x1);
}
void SetModeBit(bool flag) {
const uint64 bit = 0x100000000L;
if(flag) {
m_LongData |= bit;
} else {
m_LongData &= ~bit;
}
}
// For 2BPP PVRTC, if the mode bit is set, then we use the modulation data
// as 2 bits for every other texel in the 8x4 block in a checkerboard pattern.
// The interleaved texel data is decided by averaging nearby texel modulation
@ -100,6 +114,11 @@ class Block {
// 12 13 14 15
uint8 GetLerpValue(uint32 texelIdx) const;
// Sets the values in the data for this block according to the texel and
// modulation value passed. This happens immediately (i.e. a call to Pack()
// will reflect these changes).
void SetLerpValue(uint32 texelIdx, uint8 lerpVal);
// This returns the modulation value for the texel in the block interpreted as
// 2BPP. If the modulation bit is not set, then it expects a number from 0-31
// and does the same operation as GetLerpValue. If the modulation bit is set,
@ -109,6 +128,12 @@ class Block {
// global information.
uint8 Get2BPPLerpValue(uint32 texelIdx) const;
// Returns the 64-bit word that represents this block. This function packs the
// A and B colors based on their bit depths and preserves the corresponding mode
// bits. The color modes are determined by whether or not the alpha channel of
// each block is fully opaque or not.
uint64 Pack();
private:
union {
uint8 m_ByteData[8];
@ -120,6 +145,11 @@ class Block {
bool m_ColorBCached;
Pixel m_ColorB;
// tbd -- transparent bit depth
// obd -- opaque bit depth
static Pixel SetColor(const Pixel &c, bool transparent,
const uint8 (&tbd)[4], const uint8 (&obd)[4]);
};
} // namespace PVRTCC

View file

@ -0,0 +1,290 @@
/* FasTC
* Copyright (c) 2013 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "PVRTCCompressor.h"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
#include "Pixel.h"
#include "Image.h"
#include "Block.h"
namespace PVRTCC {
static uint32 Interleave(uint16 inx, uint16 iny) {
// Taken from:
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
static const uint32 S[] = {1, 2, 4, 8};
uint32 x = static_cast<uint32>(inx);
uint32 y = static_cast<uint32>(iny);
x = (x | (x << S[3])) & B[3];
x = (x | (x << S[2])) & B[2];
x = (x | (x << S[1])) & B[1];
x = (x | (x << S[0])) & B[0];
y = (y | (y << S[3])) & B[3];
y = (y | (y << S[2])) & B[2];
y = (y | (y << S[1])) & B[1];
y = (y | (y << S[0])) & B[0];
return x | (y << 1);
}
template <typename T>
static T Clamp(const T &v, const T &low, const T &high) {
return ::std::min(::std::max(low, v), high);
}
static const Pixel &Lookup(const Image &img,
int32 x, int32 y,
uint32 width, uint32 height,
const EWrapMode wrapMode) {
while(x >= width) {
if(wrapMode == eWrapMode_Wrap) {
x -= width;
} else {
x = width - 1;
}
}
while(x < 0) {
if(wrapMode == eWrapMode_Wrap) {
x += width;
} else {
x = 0;
}
}
while(y >= height) {
if(wrapMode == eWrapMode_Wrap) {
y -= height;
} else {
y = height - 1;
}
}
while(y < 0) {
if(wrapMode == eWrapMode_Wrap) {
y += height;
} else {
y = 0;
}
}
return img(x, y);
}
void Compress(const CompressionJob &dcj,
bool bTwoBitMode,
const EWrapMode wrapMode) {
Image img(dcj.height, dcj.width);
uint32 nPixels = dcj.height * dcj.width;
for(uint32 i = 0; i < nPixels; i++) {
uint32 x = i % dcj.width;
uint32 y = i / dcj.width;
const uint32 *pixels = reinterpret_cast<const uint32 *>(dcj.inBuf);
img(x, y).UnpackRGBA(pixels[i]);
}
Image original = img;
img.DebugOutput("Original");
// Downscale it using anisotropic diffusion based scheme in order to preserve
// image features, then reupscale and compute deltas. Use deltas to generate
// initial A & B images followed by modulation data.
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, true);
img.ContentAwareDownscale(1, 1, eWrapMode_Wrap, false);
Image downscaled = img;
// Upscale it again
img.BilinearUpscale(2, 2, eWrapMode_Wrap);
img.DebugOutput("Reconstruction");
// Compute difference...
::std::vector<int16> difference;
difference.resize(dcj.height * dcj.width * 4);
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
for(uint32 c = 0; c < 4; c++) {
int16 o = original(i, j).Component(c);
int16 n = img(i, j).Component(c);
difference[j*dcj.width*4 + i*4 + c] = o - n;
}
}
}
const uint32 blocksW = dcj.width / 4;
const uint32 blocksH = dcj.height / 4;
// Go over the 7x7 texel blocks and extract bounding box diagonals for each
// block. We should be able to choose which diagonal we want...
const uint32 kKernelSz = 7;
Image imgA = downscaled;
Image imgB = downscaled;
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
int32 startX = i*4 + 2 - (kKernelSz / 2);
int32 startY = j*4 + 2 - (kKernelSz / 2);
for(int32 y = startY; y < startY + kKernelSz; y++) {
for(int32 x = startX; x < startX + kKernelSz; x++) {
const Pixel &po = Lookup(original, x, y, dcj.width, dcj.height, wrapMode);
Pixel &pa = imgA(i, j);
Pixel &pb = imgB(i, j);
for(uint32 c = 0; c < 4; c++) {
pa.Component(c) = ::std::max(po.Component(c), pa.Component(c));
pb.Component(c) = ::std::min(po.Component(c), pb.Component(c));
}
}
}
}
}
imgA.DebugOutput("ImageA");
imgB.DebugOutput("ImageB");
// Determine modulation values...
Image upA = imgA;
Image upB = imgB;
upA.BilinearUpscale(2, 2, wrapMode);
upB.BilinearUpscale(2, 2, wrapMode);
assert(upA.GetHeight() == dcj.height && upA.GetWidth() == dcj.width);
assert(upB.GetHeight() == dcj.height && upB.GetWidth() == dcj.width);
upA.DebugOutput("UpscaledA");
upB.DebugOutput("UpscaledB");
// Choose the most appropriate modulation values for the two images...
::std::vector<uint8> modValues;
modValues.resize(dcj.width * dcj.height);
for(uint32 j = 0; j < dcj.height; j++) {
for(uint32 i = 0; i < dcj.width; i++) {
uint8 &mv = modValues[j * dcj.width + i];
const Pixel pa = upA(i, j);
const Pixel pb = upB(i, j);
const Pixel po = original(i, j);
// !FIXME! there are two modulation modes... we're only using one.
uint8 modSteps[4] = { 8, 5, 3, 0 };
uint8 bestMod = 0;
uint32 bestError = 0xFFFFFFFF;
for(uint32 s = 0; s < 4; s++) {
uint32 error = 0;
for(uint32 c = 0; c < 4; c++) {
uint16 va = static_cast<uint16>(pa.Component(c));
uint16 vb = static_cast<uint16>(pb.Component(c));
uint16 vo = static_cast<uint16>(po.Component(c));
uint16 lerpVal = modSteps[s];
uint16 res = (va * (8 - lerpVal) + vb * lerpVal) / 8;
uint16 e = (res > vo)? res - vo : vo - res;
error += e * e;
}
if(error < bestError) {
bestError = error;
bestMod = s;
}
}
mv = bestMod;
}
}
// Pack everything into a PVRTC blocks.
assert(imgA.GetHeight() == blocksH);
assert(imgA.GetWidth() == blocksW);
std::vector<uint64> blocks;
blocks.reserve(blocksW * blocksH);
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
Block b;
b.SetColorA(imgA(i, j), true);
b.SetColorB(imgB(i, j), true);
for(uint32 t = 0; t < 16; t++) {
uint32 x = i*4 + (t%4);
uint32 y = j*4 + (t/4);
b.SetLerpValue(t, modValues[y*dcj.width + x]);
}
blocks.push_back(b.Pack());
}
}
// Spit out the blocks...
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
// The blocks are initially arranged in morton order. Let's
// linearize them...
uint32 idx = Interleave(j, i);
uint64 *outPtr = reinterpret_cast<uint64 *>(dcj.outBuf);
outPtr[idx] = blocks[j*blocksW + i];
}
}
}
} // namespace PVRTCC

View file

@ -304,11 +304,10 @@ namespace PVRTCC {
// First, extract all of the block information...
std::vector<Block> blocks;
blocks.reserve(w * h);
const uint32 blocksW = bTwoBitMode? (w / 8) : (w / 4);
const uint32 blocksH = h / 4;
const uint32 blockSz = 8;
blocks.reserve(blocksW * blocksH);
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
@ -317,7 +316,7 @@ namespace PVRTCC {
// linearize them...
uint32 idx = Interleave(j, i);
uint32 offset = idx * blockSz;
uint32 offset = idx * kBlockSize;
blocks.push_back( Block(dcj.inBuf + offset) );
}
}

View file

@ -52,15 +52,32 @@
#include "Image.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cmath>
#if _MSC_VER
# define _CRT_SECURE_NO_WARNINGS
# define snprintf _snprintf
#endif
#include "Pixel.h"
#include "../../Base/include/Image.h"
#include "../../IO/include/ImageFile.h"
template <typename T>
inline T Clamp(const T &v, const T &a, const T &b) {
return ::std::min(::std::max(a, v), b);
}
static float ConvertChannelToFloat(uint8 channel, uint8 bitDepth) {
float denominator = static_cast<float>((1 << bitDepth) - 1);
return static_cast<float>(channel) / denominator;
}
namespace PVRTCC {
Image::Image(uint32 height, uint32 width)
@ -83,27 +100,27 @@ Image::Image(uint32 height, uint32 width, const Pixel *pixels)
}
Image::Image(const Image &other)
: m_Width(other.m_Width)
, m_Height(other.m_Height)
, m_Pixels(new Pixel[other.m_Width * other.m_Height])
, m_FractionalPixels(new Pixel[other.m_Width * other.m_Height]) {
memcpy(m_Pixels, other.m_Pixels, m_Width * m_Height * sizeof(Pixel));
: m_Width(other.GetWidth())
, m_Height(other.GetHeight())
, m_Pixels(new Pixel[other.GetWidth() * other.GetHeight()])
, m_FractionalPixels(new Pixel[other.GetWidth() * other.GetHeight()]) {
memcpy(m_Pixels, other.m_Pixels, GetWidth() * GetHeight() * sizeof(Pixel));
}
Image &Image::operator=(const Image &other) {
m_Width = other.m_Width;
m_Height = other.m_Height;
m_Width = other.GetWidth();
m_Height = other.GetHeight();
assert(m_Pixels);
delete m_Pixels;
m_Pixels = new Pixel[other.m_Width * other.m_Height];
memcpy(m_Pixels, other.m_Pixels, m_Width * m_Height * sizeof(Pixel));
m_Pixels = new Pixel[other.GetWidth() * other.GetHeight()];
memcpy(m_Pixels, other.m_Pixels, GetWidth() * GetHeight() * sizeof(Pixel));
assert(m_FractionalPixels);
delete m_FractionalPixels;
m_FractionalPixels = new Pixel[other.m_Width * other.m_Height];
m_FractionalPixels = new Pixel[other.GetWidth() * other.GetHeight()];
memcpy(m_FractionalPixels, other.m_FractionalPixels,
m_Width * m_Height * sizeof(Pixel));
GetWidth() * GetHeight() * sizeof(Pixel));
return *this;
}
@ -129,8 +146,8 @@ static bool CompareBitDepths(const uint8 (&depth1)[4],
void Image::BilinearUpscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode) {
const uint32 newWidth = m_Width << xtimes;
const uint32 newHeight = m_Height << ytimes;
const uint32 newWidth = GetWidth() << xtimes;
const uint32 newHeight = GetHeight() << ytimes;
const uint32 xscale = 1 << xtimes;
const uint32 xoffset = xscale >> 1;
@ -213,10 +230,152 @@ void Image::BilinearUpscale(uint32 xtimes, uint32 ytimes,
m_Height = newHeight;
}
void Image::ContentAwareDownscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode, bool bOffsetNewPixels) {
const uint32 w = GetWidth();
const uint32 h = GetHeight();
const uint32 newWidth = w >> xtimes;
const uint32 newHeight = h >> ytimes;
Pixel *downscaledPixels = new Pixel[newWidth * newHeight];
const uint32 numDownscaledPixels = newWidth * newHeight;
uint8 bitDepth[4];
m_Pixels[0].GetBitDepth(bitDepth);
for(uint32 i = 0; i < numDownscaledPixels; i++) {
downscaledPixels[i].ChangeBitDepth(bitDepth);
}
// Allocate memory
float *imgData = new float[19 * w * h];
float *I = imgData;
float *Ix[5] = {
imgData + (w * h),
imgData + (2 * w * h),
imgData + (3 * w * h),
imgData + (4 * w * h),
imgData + (18 * w * h),
};
float *Iy = imgData + (5 * w * h);
float *Ixx[4] = {
imgData + (6 * w * h),
imgData + (7 * w * h),
imgData + (8 * w * h),
imgData + (9 * w * h)
};
float *Iyy[4] = {
imgData + (10 * w * h),
imgData + (11 * w * h),
imgData + (12 * w * h),
imgData + (13 * w * h)
};
float *Ixy[4] = {
imgData + (14 * w * h),
imgData + (15 * w * h),
imgData + (16 * w * h),
imgData + (17 * w * h)
};
// Then, compute the intensity of the image
for(uint32 i = 0; i < w * h; i++) {
// First convert the pixel values to floats using
// premultiplied alpha...
float a = ConvertChannelToFloat(m_Pixels[i].A(), bitDepth[0]);
float r = a * ConvertChannelToFloat(m_Pixels[i].R(), bitDepth[1]);
float g = a * ConvertChannelToFloat(m_Pixels[i].G(), bitDepth[2]);
float b = a * ConvertChannelToFloat(m_Pixels[i].B(), bitDepth[3]);
I[i] = r * 0.21 + g * 0.71 + b * 0.07;
}
// Use central differences to calculate Ix, Iy, Ixx, Iyy...
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
uint32 xmhidx = GetPixelIndex(i-1, j);
uint32 xphidx = GetPixelIndex(i+1, j);
uint32 ymhidx = GetPixelIndex(i, j-1);
uint32 yphidx = GetPixelIndex(i, j+1);
uint32 idx = GetPixelIndex(i, j);
uint32 upidx = GetPixelIndex(i + 1, j + 1);
uint32 downidx = GetPixelIndex(i - 1, j - 1);
Ix[4][idx] = (I[xphidx] - I[xmhidx]) / 2.0f;
Iy[idx] = (I[yphidx] - I[ymhidx]) / 2.0f;
for(uint32 c = 0; c <= 3; c++) {
#define CPNT(dx) ConvertChannelToFloat(m_Pixels[dx].Component(c), bitDepth[c])
Ix[c][idx] = (CPNT(xphidx) - CPNT(xmhidx)) / 2.0f;
Ixx[c][idx] = (CPNT(xphidx) - 2.0f*CPNT(idx) + CPNT(xmhidx)) / 2.0f;
Iyy[c][idx] = (CPNT(yphidx) - 2.0f*CPNT(idx) + CPNT(ymhidx)) / 2.0f;
Ixy[c][idx] = (CPNT(upidx) - CPNT(xphidx) - CPNT(yphidx) + 2.0f*CPNT(idx) -
CPNT(xmhidx) - CPNT(ymhidx) + CPNT(downidx)) / 2.0f;
#undef CPNT
}
}
}
// Now, for each pixel that we take into consideration, use
// a smoothing step that is taken from the anisotropic diffusion
// equation:
// I_t = (I_x^2I_yy - 2I_xyI_xI_y + I_y^2I_xx)(I_x^2 + I_y^2)
for(uint32 j = 0; j < newHeight; j++) {
for(uint32 i = 0; i < newWidth; i++) {
// Map this new pixel back into the original space...
uint32 scalex = 1 << xtimes;
uint32 scaley = 1 << ytimes;
uint32 x = scalex * i;
uint32 y = scaley * j;
if(bOffsetNewPixels) {
x += scalex >> 1;
y += scaley >> 1;
}
uint32 idx = GetPixelIndex(x, y);
Pixel current = m_Pixels[idx];
Pixel result;
result.ChangeBitDepth(bitDepth);
float Ixsq = Ix[4][idx] * Ix[4][idx];
float Iysq = Iy[idx] * Iy[idx];
float denom = Ixsq + Iysq;
for(uint32 c = 0; c < 4; c++) {
float I0 = ConvertChannelToFloat(current.Component(c), bitDepth[c]);
float It = Ixx[c][idx] + Iyy[c][idx];
if(fabs(denom) > 1e-6) {
It -= (Ixsq * Ixx[c][idx] +
2 * Ix[4][idx] * Iy[idx] * Ixy[c][idx] +
Iysq * Iyy[c][idx]) / denom;
}
float scale = static_cast<float>((1 << bitDepth[c]) - 1);
result.Component(c) = static_cast<uint8>(Clamp(I0 + 0.25f*It, 0.0f, 1.0f) * scale + 0.5f);
}
downscaledPixels[j * newHeight + i] = result;
}
}
delete m_Pixels;
m_Pixels = downscaledPixels;
m_Width = newWidth;
m_Height = newHeight;
delete [] imgData;
}
void Image::ChangeBitDepth(const uint8 (&depths)[4]) {
for(uint32 j = 0; j < m_Height; j++) {
for(uint32 i = 0; i < m_Width; i++) {
uint32 pidx = j * m_Width + i;
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
uint32 pidx = j * GetWidth() + i;
m_Pixels[pidx].ChangeBitDepth(depths);
}
}
@ -229,10 +388,10 @@ void Image::ExpandTo8888() {
uint8 fractionDepth[4];
const uint8 fullDepth[4] = { 8, 8, 8, 8 };
for(uint32 j = 0; j < m_Height; j++) {
for(uint32 i = 0; i < m_Width; i++) {
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
uint32 pidx = j * m_Width + i;
uint32 pidx = j * GetWidth() + i;
m_Pixels[pidx].ChangeBitDepth(fullDepth);
m_FractionalPixels[pidx].GetBitDepth(fractionDepth);
@ -252,20 +411,24 @@ void Image::ExpandTo8888() {
}
}
const Pixel &Image::GetPixel(int32 i, int32 j, EWrapMode wrapMode) {
const Pixel &Image::GetPixel(int32 i, int32 j, EWrapMode wrapMode) const {
return m_Pixels[GetPixelIndex(i, j, wrapMode)];
}
const uint32 Image::GetPixelIndex(int32 i, int32 j, EWrapMode wrapMode) const {
while(i < 0) {
if(wrapMode == eWrapMode_Clamp) {
i = 0;
} else {
i += m_Width;
i += GetWidth();
}
}
while(i >= static_cast<int32>(m_Width)) {
while(i >= static_cast<int32>(GetWidth())) {
if(wrapMode == eWrapMode_Clamp) {
i = m_Width - 1;
i = GetWidth() - 1;
} else {
i -= m_Width;
i -= GetWidth();
}
}
@ -273,46 +436,51 @@ const Pixel &Image::GetPixel(int32 i, int32 j, EWrapMode wrapMode) {
if(wrapMode == eWrapMode_Clamp) {
j = 0;
} else {
j += m_Height;
j += GetHeight();
}
}
while(j >= static_cast<int32>(m_Height)) {
while(j >= static_cast<int32>(GetHeight())) {
if(wrapMode == eWrapMode_Clamp) {
j = m_Height - 1;
j = GetHeight() - 1;
} else {
j -= m_Height;
j -= GetHeight();
}
}
return m_Pixels[j * m_Width + i];
uint32 idx = j * GetWidth() + i;
assert(idx >= 0);
assert(idx < GetWidth() * GetHeight());
return idx;
}
Pixel & Image::operator()(uint32 i, uint32 j) {
assert(i < m_Width);
assert(j < m_Height);
return m_Pixels[j * m_Width + i];
assert(i < GetWidth());
assert(j < GetHeight());
return m_Pixels[j * GetWidth() + i];
}
const Pixel & Image::operator()(uint32 i, uint32 j) const {
assert(i < m_Width);
assert(j < m_Height);
return m_Pixels[j * m_Width + i];
assert(i < GetWidth());
assert(j < GetHeight());
return m_Pixels[j * GetWidth() + i];
}
void Image::DebugOutput(const char *filename) const {
uint32 *outPixels = new uint32[m_Width * m_Height];
uint32 *outPixels = new uint32[GetWidth() * GetHeight()];
const uint8 fullDepth[4] = { 8, 8, 8, 8 };
for(uint32 j = 0; j < m_Height; j++) {
for(uint32 i = 0; i < m_Width; i++) {
uint32 idx = j * m_Width + i;
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
uint32 idx = j * GetWidth() + i;
Pixel p = m_Pixels[idx];
p.ChangeBitDepth(fullDepth);
p.A() = 255;
outPixels[idx] = p.PackRGBA();
}
}
::Image img(m_Width, m_Height, outPixels);
::Image img(GetWidth(), GetHeight(), outPixels);
char debugFilename[256];
snprintf(debugFilename, sizeof(debugFilename), "%s.png", filename);

View file

@ -69,7 +69,17 @@ class Image {
~Image();
void BilinearUpscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode = eWrapMode_Clamp);
EWrapMode wrapMode = eWrapMode_Wrap);
// Downscales the image by taking an anisotropic diffusion approach
// with respect to the gradient of the intensity. In this way, we can
// preserve the most important image structures by not blurring across
// edge boundaries, which when upscaled will retain the structural
// image quality...
void ContentAwareDownscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode = eWrapMode_Wrap,
bool bOffsetNewPixels = false);
void ChangeBitDepth(const uint8 (&depths)[4]);
void ExpandTo8888();
@ -87,7 +97,8 @@ class Image {
Pixel *m_Pixels;
Pixel *m_FractionalPixels;
const Pixel &GetPixel(int32 i, int32 j, EWrapMode wrapMode = eWrapMode_Clamp);
const uint32 GetPixelIndex(int32 i, int32 j, EWrapMode wrapMode = eWrapMode_Clamp) const;
const Pixel &GetPixel(int32 i, int32 j, EWrapMode wrapMode = eWrapMode_Clamp) const;
};
} // namespace PVRTCC

View file

@ -108,6 +108,44 @@ namespace PVRTCC {
}
}
void Pixel::ToBits(uint8 *bits, uint32 numBytes, uint32 bitOffset) const {
#ifndef NDEBUG
uint32 bitDepthSum = bitOffset;
for(int i = 0; i < 4; i++) {
bitDepthSum += m_BitDepth[i];
}
assert((bitDepthSum / 8) < numBytes);
#endif
uint8 byteIdx = 0;
while(bitOffset > 8) {
byteIdx++;
bitOffset -= 8;
}
uint8 bitIdx = bitOffset;
for(int i = 3; i >= 0; i--) {
uint8 val = Component(i);
uint8 depth = m_BitDepth[i];
if(depth + bitIdx > 8) {
uint8 nextBitIdx = depth - (8 - bitIdx);
uint16 v = static_cast<uint16>(val);
bits[byteIdx++] |= (v << bitIdx) & 0xFF;
bitIdx = nextBitIdx;
bits[byteIdx] = (v >> (depth - bitIdx)) & 0xFF;
} else {
bits[byteIdx] |= (val << bitIdx) & 0xFF;
bitIdx += depth;
}
if(bitIdx == 8) {
bitIdx = 0;
byteIdx++;
}
}
}
uint8 Pixel::ChangeBitDepth(uint8 val, uint8 oldDepth, uint8 newDepth) {
assert(newDepth <= 8);
assert(oldDepth <= 8);
@ -134,7 +172,10 @@ namespace PVRTCC {
return 0xFF;
} else {
uint8 bitsWasted = oldDepth - newDepth;
return val >> bitsWasted;
uint16 v = static_cast<uint16>(val);
v = (v + (1 << (bitsWasted - 1))) >> bitsWasted;
v = ::std::min<uint16>(::std::max<uint16>(0, v), (1 << newDepth) - 1);
return v;
}
}

View file

@ -63,9 +63,14 @@ class Pixel {
for(int i = 0; i < 4; i++) m_BitDepth[i] = 8;
}
explicit Pixel(const uint8 *bits,
const uint8 channelDepth[4] = static_cast<uint8 *>(0),
uint8 bitOffset = 0) {
explicit Pixel(uint32 rgba) {
for(int i = 0; i < 4; i++) m_BitDepth[i] = 8;
UnpackRGBA(rgba);
}
Pixel(const uint8 *bits,
const uint8 channelDepth[4] = static_cast<uint8 *>(0),
uint8 bitOffset = 0) {
FromBits(bits, channelDepth, bitOffset);
}
@ -77,6 +82,13 @@ class Pixel {
const uint8 channelDepth[4] = static_cast<uint8 *>(0),
uint8 bitOffset = 0);
// This function is the converse of FromBits. It will pack a pixel
// into a specified buffer based on the bit depth of the pixel. The
// bitOffset determines at which bit to start from. The bits are written
// starting from the LSB of bits[0]. numBytes is a sanity check and isn't
// used in release mode.
void ToBits(uint8 *bits, uint32 numBytes, uint32 bitOffset = 0) const;
// Changes the depth of each pixel. This scales the values to
// the appropriate bit depth by either truncating the least
// significant bits when going from larger to smaller bit depth

View file

@ -241,3 +241,94 @@ TEST(Block, Get2BPPSubMode) {
b = PVRTCC::Block(data);
EXPECT_EQ(b.Get2BPPSubMode(), PVRTCC::Block::e2BPPSubMode_Vertical);
}
TEST(Block, SetColorAandB) {
PVRTCC::Block b;
PVRTCC::Pixel color;
color.A() = 212;
color.R() = 200;
color.G() = 100;
color.B() = -120;
b.SetColorA(color);
PVRTCC::Pixel cA = b.GetColorA();
uint8 bitDepth[4] = { 0, 5, 5, 5 };
color.ChangeBitDepth(bitDepth);
EXPECT_FALSE(memcmp(&color, &cA, sizeof(color)));
memset(bitDepth, 8, sizeof(bitDepth));
color.ChangeBitDepth(bitDepth);
color.A() = 212;
color.R() = 200;
color.G() = 100;
color.B() = -120;
b.SetColorB(color, true);
PVRTCC::Pixel cB = b.GetColorB();
uint8 tBitDepth[4] = { 0, 5, 5, 4 };
color.ChangeBitDepth(tBitDepth);
EXPECT_FALSE(memcmp(&color, &cB, sizeof(color)));
memset(bitDepth, 8, sizeof(bitDepth));
color.ChangeBitDepth(bitDepth);
color.A() = 100;
color.R() = 200;
color.G() = 100;
color.B() = -120;
b.SetColorB(color, true);
PVRTCC::Pixel cC = b.GetColorB();
uint8 uBitDepth[4] = { 3, 4, 4, 3 };
color.ChangeBitDepth(uBitDepth);
EXPECT_FALSE(memcmp(&color, &cC, sizeof(color)));
}
TEST(Block, SetLerpValue) {
PVRTCC::Block b;
for(int i = 0; i < 16; i++) {
b.SetLerpValue(i, i%4);
}
for(int i = 0; i < 16; i++) {
EXPECT_EQ(b.GetLerpValue(i), i % 4);
}
}
TEST(Block, PackBlock) {
PVRTCC::Block b;
PVRTCC::Pixel cA, cB;
cA.A() = 0xFF;
cA.R() = 0xFF;
cA.G() = 0x80;
cA.B() = 0x00;
cB.A() = 0x80;
cB.R() = 0x7F;
cB.G() = 0x00;
cB.B() = 0xFF;
b.SetColorA(cA);
b.SetColorB(cB, true);
for(int i = 0; i < 16; i++) {
b.SetLerpValue(i, i%4);
}
b.SetModeBit(false);
EXPECT_EQ(b.Pack(), 0xFE00480EE4E4E4E4UL);
b.SetModeBit(true);
EXPECT_EQ(b.Pack(), 0xFE00480FE4E4E4E4UL);
b.SetColorB(cB);
b.SetModeBit(false);
EXPECT_EQ(b.Pack(), 0xFE00C01EE4E4E4E4UL);
}

View file

@ -101,8 +101,16 @@ IF(PVRTEXLIB_FOUND)
TARGET_LINK_LIBRARIES(${TEST_NAME} FasTCIO)
TARGET_LINK_LIBRARIES(${TEST_NAME} FasTCCore)
ADD_TEST(${TEST_NAME}
${CMAKE_COMMAND} -E chdir ${CMAKE_BINARY_DIR}
${CMAKE_CURRENT_BINARY_DIR}/${TEST_NAME}
)
IF(MSVC)
ADD_TEST(${TEST_NAME}
${CMAKE_COMMAND} -E chdir ${CMAKE_BINARY_DIR}
${CMAKE_CURRENT_BINARY_DIR}/Debug/${TEST_NAME}
)
ELSE()
ADD_TEST(${TEST_NAME}
${CMAKE_COMMAND} -E chdir ${CMAKE_BINARY_DIR}
${CMAKE_CURRENT_BINARY_DIR}/${TEST_NAME}
)
ENDIF()
ENDIF(PVRTEXLIB_FOUND)

View file

@ -73,7 +73,7 @@ class ImageTester {
pvrtexture::CPVRTexture pvrTex(filename);
const uint8 *data = static_cast<const uint8 *>(pvrTex.getDataPtr());
ASSERT_TRUE(data);
assert(data);
const pvrtexture::CPVRTextureHeader &hdr = pvrTex.getHeader();
const uint32 w = hdr.getWidth();
@ -96,7 +96,7 @@ class ImageTester {
uint32 *libPixels = static_cast<uint32 *>(pvrTex.getDataPtr());
for(int i = 0; i < w*h; i++) {
for(uint32 i = 0; i < w*h; i++) {
EXPECT_EQ(PixelPrinter(libPixels[i]), PixelPrinter(outPixels[i]));
}

View file

@ -131,7 +131,7 @@ TEST(Image, BilinearUpscale) {
}
PVRTCC::Image img(4, 4, pxs);
img.BilinearUpscale(1, 1);
img.BilinearUpscale(1, 1, PVRTCC::eWrapMode_Clamp);
EXPECT_EQ(img.GetWidth(), static_cast<uint32>(8));
EXPECT_EQ(img.GetHeight(), static_cast<uint32>(8));
@ -171,7 +171,7 @@ TEST(Image, BilinearUpscaleMaintainsPixels) {
}
PVRTCC::Image img(w, h, pxs);
img.BilinearUpscale(2, 2);
img.BilinearUpscale(2, 2, PVRTCC::eWrapMode_Clamp);
EXPECT_EQ(img.GetWidth(), w << 2);
EXPECT_EQ(img.GetHeight(), h << 2);
@ -199,7 +199,7 @@ TEST(Image, NonuniformBilinearUpscale) {
}
PVRTCC::Image img(kHeight, kWidth, pxs);
img.BilinearUpscale(2, 1);
img.BilinearUpscale(2, 1, PVRTCC::eWrapMode_Clamp);
EXPECT_EQ(img.GetWidth(), static_cast<uint32>(kWidth << 2));
EXPECT_EQ(img.GetHeight(), static_cast<uint32>(kHeight << 1));
@ -279,6 +279,33 @@ TEST(Image, BilinearUpscaleWrapped) {
}
}
TEST(Image, ContentAwareDownscale) {
PVRTCC::Image img(8, 8);
for(uint32 j = 0; j < img.GetHeight(); j++) {
for(uint32 i = 0; i < img.GetWidth(); i++) {
if(j < 4) {
img(i, j) = PVRTCC::Pixel( 0xFF000000 );
} else {
img(i, j) = PVRTCC::Pixel( 0xFF0000FF );
}
}
}
img.ContentAwareDownscale(1, 1);
EXPECT_EQ(img.GetWidth(), static_cast<uint32>(4));
EXPECT_EQ(img.GetHeight(), static_cast<uint32>(4));
for(uint32 j = 0; j < img.GetHeight(); j++) {
for(uint32 i = 0; i < img.GetWidth(); i++) {
if(j < 2) {
EXPECT_EQ(img(i, j).R(), 0);
} else {
EXPECT_EQ(img(i, j).R(), 255);
}
}
}
}
TEST(Image, ChangeBitDepth) {
PVRTCC::Image img(4, 4);

View file

@ -133,13 +133,39 @@ TEST(Pixel, FromBitsAndAssociatedConstructor) {
}
}
TEST(Pixel, ToBits) {
PVRTCC::Pixel p;
uint8 bitDepth[4] = { 2, 8, 1, 7 };
p.ChangeBitDepth(bitDepth);
p.A() = 0x2;
p.R() = 0x56;
p.G() = 0;
p.B() = 0x4F;
uint8 bits[3];
memset(bits, 0, sizeof(bits));
p.ToBits(bits, sizeof(bits));
EXPECT_EQ(bits[0], 0x4F);
EXPECT_EQ(bits[1], 0x56);
EXPECT_EQ(bits[2], 0x2);
memset(bits, 0, sizeof(bits));
p.ToBits(bits, 3, 2);
EXPECT_EQ(bits[0], 0x3C);
EXPECT_EQ(bits[1], 0x59);
EXPECT_EQ(bits[2], 0x09);
}
TEST(Pixel, ChangeChannelBitDepth) {
uint8 val = 0x43;
uint8 depth = 7;
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 8), 0x87);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 7), 0x43);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 6), 0x21);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 6), 0x22);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 2), 0x2);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 0), 0xFF);
@ -149,7 +175,7 @@ TEST(Pixel, ChangeChannelBitDepth) {
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 8), 0x6D);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 6), 0x1B);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 3), 0x03);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 2), 0x01);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 2), 0x02);
EXPECT_EQ(PVRTCC::Pixel::ChangeBitDepth(val, depth, 0), 0xFF);
}
@ -206,11 +232,19 @@ TEST(Pixel, UnpackRGBA) {
EXPECT_EQ(p.G(), 0xB3);
EXPECT_EQ(p.R(), 0xFE);
p = PVRTCC::Pixel(rgba);
EXPECT_EQ(p.A(), 0x46);
EXPECT_EQ(p.B(), 0x19);
EXPECT_EQ(p.G(), 0xB3);
EXPECT_EQ(p.R(), 0xFE);
p = PVRTCC::Pixel();
uint8 newBitDepth[4] = { 3, 5, 2, 1 }; // A R G B
p.ChangeBitDepth(newBitDepth);
p.UnpackRGBA(rgba);
EXPECT_EQ(p.A(), 0x2);
EXPECT_EQ(p.B(), 0x0);
EXPECT_EQ(p.G(), 0x2);
EXPECT_EQ(p.G(), 0x3);
EXPECT_EQ(p.R(), 0x1f);
}