Break out the integer sequence encoding into its own module.

This commit is contained in:
Pavel Krajcevski 2014-03-10 14:59:45 -04:00
parent 56c199fc5d
commit fb7d80b385
4 changed files with 613 additions and 165 deletions

View file

@ -57,10 +57,12 @@ INCLUDE_DIRECTORIES(${FasTC_BINARY_DIR}/Base/include)
SET( HEADERS
include/ASTCCompressor.h
src/IntegerEncoding.h
)
SET( SOURCES
src/Decompressor.cpp
src/IntegerEncoding.cpp
)
#CONFIGURE_FILE(

View file

@ -58,43 +58,16 @@
#include <vector>
#include "Utils.h"
#include "IntegerEncoding.h"
#include "TexCompTypes.h"
#include "Bits.h"
using FasTC::Bits;
#include "BitStream.h"
using FasTC::BitStreamReadOnly;
namespace ASTCC {
// According to table C.2.7
void GetBitEncoding(uint8 &nQuints, uint8 &nTrits, uint8 &nBits,
const uint32 maxWeight) {
nQuints = nTrits = nBits = 0;
switch(maxWeight) {
case 1: nBits = 1; return;
case 2: nTrits = 1; return;
case 3: nBits = 2; return;
case 4: nQuints = 1; return;
case 5: nTrits = 1; nBits = 1; return;
case 7: nBits = 3; return;
case 9: nQuints = 1; nBits = 1; return;
case 11: nTrits = 1; nBits = 2; return;
case 15: nBits = 4; return;
case 19: nQuints = 1; nBits = 2; return;
case 23: nTrits = 1; nBits = 3; return;
case 31: nBits = 5; return;
default:
assert(!"Invalid maximum weight");
return;
}
}
class TexelWeightParams {
public:
struct TexelWeightParams {
uint32 m_Width;
uint32 m_Height;
bool m_bDualPlane;
@ -113,19 +86,7 @@ namespace ASTCC {
nIdxs *= 2;
}
// How are they encoded?
uint8 nQuints, nTrits, nBits;
GetBitEncoding(nQuints, nTrits, nBits, m_MaxWeight);
// nQuints and nTrits are mutually exclusive values of one.
assert(nQuints != 1 || nTrits == 0);
assert(nTrits != 1 || nQuints == 0);
// each index has at least as many bits per index as described.
uint32 totalBits = nBits * nIdxs;
totalBits += (nIdxs * 8 * nTrits + 4) / 5;
totalBits += (nIdxs * 7 * nQuints + 2) / 3;
return totalBits;
return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
}
};
@ -326,140 +287,192 @@ namespace ASTCC {
}
}
void DecodeTritBlock(BitStreamReadOnly &bits,
std::vector<uint32> &result,
uint32 nBitsPerValue) {
// Implement the algorithm in section C.2.12
uint32 m[5];
uint32 t[5];
uint32 T;
void DecodeColorValues(uint32 *out, uint8 *data, uint32 *modes, const uint32 nBitsForColorData) {
// First figure out how many color values we have
uint32 nValues = 0;
for(uint32 i = 0; i < 4; i++) {
nValues += ((modes[i]>>2) + 1) << 1;
}
// Read the trit encoded block according to
// table C.2.14
m[0] = bits.ReadBits(nBitsPerValue);
T = bits.ReadBits(2);
m[1] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBits(2) << 2;
m[2] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBit() << 4;
m[3] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBits(2) << 5;
m[4] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBit() << 7;
// Then based on the number of values and the remaining number of bits,
// figure out the max value for each of them...
uint32 range = 255;
while(range > 0) {
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
uint32 bitLength = val.GetBitLength(nValues);
if(bitLength < nBitsForColorData) {
// Find the smallest possible range that matches the given encoding
while(--range > 0) {
IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
if(!newval.MatchesEncoding(val)) {
break;
}
}
uint32 C = 0;
Bits<uint32> Tb(T);
if(Tb(2, 4) == 7) {
C = (Tb(5, 7) << 2) | Tb(0, 1);
t[4] = t[3] = 2;
} else {
C = Tb(0, 4);
if(Tb(5, 6) == 3) {
t[4] = 2;
t[3] = Tb[7];
} else {
t[4] = Tb[7];
t[3] = Tb(5, 6);
// Return to last matching range.
range++;
break;
}
}
Bits<uint32> Cb(C);
if(Cb(0, 1) == 3) {
t[2] = 2;
t[1] = Cb[4];
t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
} else if(Cb(2, 3) == 3) {
t[2] = 2;
t[1] = 2;
t[0] = Cb(0, 1);
} else {
t[2] = Cb[4];
t[1] = Cb(2, 3);
t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
}
// We now have enough to decode our integer sequence.
std::vector<IntegerEncodedValue> decodedColorValues;
FasTC::BitStreamReadOnly colorStream (data);
IntegerEncodedValue::
DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
assert(nValues == decodedColorValues.size());
for(uint32 i = 0; i < 5; i++) {
assert(t[i] < 3);
uint32 val = (t[i] << nBitsPerValue) + m[i];
result.push_back(val);
}
}
// Once we have the decoded values, we need to dequantize them to the 0-255 range
// This procedure is outlined in ASTC spec C.2.13
uint32 outIdx = 0;
std::vector<IntegerEncodedValue>::const_iterator itr;
for(itr = decodedColorValues.begin(); itr != decodedColorValues.end(); itr++) {
const IntegerEncodedValue &val = *itr;
uint32 bitlen = val.BaseBitLength();
uint32 bitval = val.GetBitValue();
void DecodeQuintBlock(BitStreamReadOnly &bits,
std::vector<uint32> &result,
uint32 nBitsPerValue) {
// Implement the algorithm in section C.2.12
uint32 m[3];
uint32 q[3];
uint32 Q;
assert(bitlen >= 1);
// Read the trit encoded block according to
// table C.2.15
m[0] = bits.ReadBits(nBitsPerValue);
Q = bits.ReadBits(3);
m[1] = bits.ReadBits(nBitsPerValue);
Q |= bits.ReadBits(2) << 3;
m[2] = bits.ReadBits(nBitsPerValue);
Q |= bits.ReadBits(2) << 5;
Bits<uint32> Qb(Q);
if(Qb(1, 2) == 3 && Qb(5, 6) == 0) {
q[0] = q[1] = 4;
q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
} else {
uint32 C = 0;
if(Qb(1, 2) == 3) {
q[2] = 4;
C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
} else {
q[2] = Qb(5, 6);
C = Qb(0, 4);
uint32 A = 0, B = 0, C = 0, D = 0;
// A is just the lsb replicated 8 times.
for(uint32 i = 0; i < 9; i++) {
A |= bitval & 1;
A <<= 1;
}
Bits<uint32> Cb(C);
if(Cb(0, 2) == 5) {
q[1] = 4;
q[0] = Cb(3, 4);
} else {
q[1] = Cb(3, 4);
q[0] = Cb(0, 2);
switch(val.GetEncoding()) {
// Replicate bits
case eIntegerEncoding_JustBits: {
uint32 result = bitval;
uint32 resultLen = bitlen;
while(resultLen < 8) {
result <<= bitlen;
result |= bitval & ((1 << std::min(8 - bitlen, bitlen)) - 1);
resultLen += bitlen;
}
out[outIdx++] = result;
}
break;
// Use algorithm in C.2.13
case eIntegerEncoding_Trit: {
D = val.GetTritValue();
switch(bitlen) {
case 1: {
C = 204;
}
break;
case 2: {
C = 93;
// B = b000b0bb0
uint32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
}
break;
case 3: {
C = 44;
// B = cb000cbcb
uint32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
}
break;
case 4: {
C = 22;
// B = dcb000dcb
uint32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
}
break;
case 5: {
C = 11;
// B = edcb000ed
uint32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
}
break;
case 6: {
C = 5;
// B = fedcb000f
uint32 fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
}
break;
default:
assert(!"Unsupported trit encoding for color values!");
break;
} // switch(bitlen)
} // case eIntegerEncoding_Trit
break;
case eIntegerEncoding_Quint: {
D = val.GetQuintValue();
switch(bitlen) {
case 1: {
C = 113;
}
break;
case 2: {
C = 54;
// B = b0000bb00
uint32 b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
}
break;
case 3: {
C = 26;
// B = cb0000cbc
uint32 cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
}
break;
case 4: {
C = 13;
// B = dcb000dcb
uint32 dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
}
break;
case 5: {
C = 6;
// B = edcb0000e
uint32 edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
}
break;
default:
assert(!"Unsupported quint encoding for color values!");
break;
} // switch(bitlen)
} // case eIntegerEncoding_Quint
break;
} // switch(val.GetEncoding())
if(val.GetEncoding() != eIntegerEncoding_JustBits) {
uint32 T = D * C + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
out[outIdx++] = T;
}
}
for(uint32 i = 0; i < 3; i++) {
assert(q[i] < 5);
uint32 val = (q[i] << nBitsPerValue) + m[i];
result.push_back(val);
}
}
void DecodeIntegerSequence(BitStreamReadOnly &bits,
std::vector<uint32> &result,
uint32 maxRange,
uint32 nValues) {
// Clean our result vector
result.clear();
result.reserve(nValues);
// Determine encoding parameters
uint8 nQuints, nTrits, nBits;
GetBitEncoding(nQuints, nTrits, nBits, maxRange);
// Start decoding
uint32 nValsDecoded = 0;
while(nValsDecoded < nValues) {
if(nQuints) {
DecodeQuintBlock(bits, result, nBits);
nValsDecoded += 3;
} else if(nTrits) {
DecodeTritBlock(bits, result, nBits);
nValsDecoded += 5;
} else {
// Decode bit by bit
result.push_back(bits.ReadBits(nBits));
nValsDecoded++;
}
// Make sure that each of our values is in the proper range...
for(uint32 i = 0; i < nValues; i++) {
assert(out[i] <= 255);
}
}
@ -546,6 +559,7 @@ namespace ASTCC {
remainingBits -= planeSelectorBits;
// Read color data...
uint32 colorDataBits = remainingBits;
while(remainingBits > 0) {
uint32 nb = std::min(remainingBits, 8);
uint32 b = strm.ReadBits(nb);
@ -588,16 +602,37 @@ namespace ASTCC {
}
}
#ifndef NDEBUG
// Make sure everything up till here is sane.
for(uint32 i = 0; i < nPartitions; i++) {
assert(colorEndpointMode[i] < 16);
}
assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
#endif
// Read the texel weight data..
uint8 texelWeightData[16];
memset(texelWeightData, 0, sizeof(texelWeightData));
FasTC::BitStream texelWeightStream (texelWeightData, 16*8, 0);
int32 texelWeightBits = weightParams.GetPackedBitSize();
while(texelWeightBits > 0) {
uint32 nb = std::min(texelWeightBits, 8);
uint32 b = strm.ReadBits(nb);
texelWeightStream.WriteBits(b, nb);
texelWeightBits -= 8;
}
assert(strm.GetBitsRead() == 128);
// Decode both color data and texel weight data
uint32 colorValues[32]; // Four values, two endpoints, four maximum paritions
DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, colorDataBits);
std::vector<IntegerEncodedValue> texelWeightValues;
FasTC::BitStreamReadOnly weightStream (texelWeightData);
IntegerEncodedValue::
DecodeIntegerSequence(texelWeightValues, weightStream,
weightParams.m_MaxWeight,
weightParams.m_Width * weightParams.m_Height);
}
void Decompress(const FasTC::DecompressionJob &dcj, EASTCBlockSize blockSize) {

View file

@ -0,0 +1,268 @@
/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "ASTCCompressor.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <vector>
#include "Utils.h"
#include "IntegerEncoding.h"
#include "Bits.h"
using FasTC::Bits;
#include "BitStream.h"
using FasTC::BitStreamReadOnly;
namespace ASTCC {
// Returns the number of bits required to encode nVals values.
uint32 IntegerEncodedValue::GetBitLength(uint32 nVals) {
uint32 totalBits = m_NumBits * nVals;
if(m_Encoding == eIntegerEncoding_Trit) {
totalBits += (nVals * 8 + 4) / 5;
} else if(m_Encoding == eIntegerEncoding_Quint) {
totalBits += (nVals * 7 + 2) / 3;
}
return totalBits;
}
IntegerEncodedValue IntegerEncodedValue::CreateEncoding(uint32 maxVal) {
while(maxVal > 0) {
uint32 check = maxVal + 1;
// Is maxVal a power of two?
if(!(check & (check - 1))) {
return IntegerEncodedValue(eIntegerEncoding_JustBits, Popcnt(maxVal));
}
// Is maxVal of the type 3*2^n - 1?
if((check % 3 == 0) && !((check/3) & ((check/3) - 1))) {
return IntegerEncodedValue(eIntegerEncoding_Trit, Popcnt(check/3 - 1));
}
// Is maxVal of the type 5*2^n - 1?
if((check % 5 == 0) && !((check/5) & ((check/5) - 1))) {
return IntegerEncodedValue(eIntegerEncoding_Quint, Popcnt(check/5 - 1));
}
// Apparently it can't be represented with a bounded integer sequence...
// just iterate.
maxVal--;
}
return IntegerEncodedValue(eIntegerEncoding_JustBits, 0);
}
uint32 IntegerEncodedValue::GetValue() {
switch(m_Encoding) {
case eIntegerEncoding_JustBits:
return m_BitValue;
case eIntegerEncoding_Trit:
return (m_TritValue << m_NumBits) + m_BitValue;
case eIntegerEncoding_Quint:
return (m_QuintValue << m_NumBits) + m_BitValue;
}
return 0;
}
void IntegerEncodedValue::DecodeTritBlock(
BitStreamReadOnly &bits,
std::vector<IntegerEncodedValue> &result,
uint32 nBitsPerValue
) {
// Implement the algorithm in section C.2.12
uint32 m[5];
uint32 t[5];
uint32 T;
// Read the trit encoded block according to
// table C.2.14
m[0] = bits.ReadBits(nBitsPerValue);
T = bits.ReadBits(2);
m[1] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBits(2) << 2;
m[2] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBit() << 4;
m[3] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBits(2) << 5;
m[4] = bits.ReadBits(nBitsPerValue);
T |= bits.ReadBit() << 7;
uint32 C = 0;
Bits<uint32> Tb(T);
if(Tb(2, 4) == 7) {
C = (Tb(5, 7) << 2) | Tb(0, 1);
t[4] = t[3] = 2;
} else {
C = Tb(0, 4);
if(Tb(5, 6) == 3) {
t[4] = 2;
t[3] = Tb[7];
} else {
t[4] = Tb[7];
t[3] = Tb(5, 6);
}
}
Bits<uint32> Cb(C);
if(Cb(0, 1) == 3) {
t[2] = 2;
t[1] = Cb[4];
t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
} else if(Cb(2, 3) == 3) {
t[2] = 2;
t[1] = 2;
t[0] = Cb(0, 1);
} else {
t[2] = Cb[4];
t[1] = Cb(2, 3);
t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
}
for(uint32 i = 0; i < 5; i++) {
IntegerEncodedValue val(eIntegerEncoding_Trit, nBitsPerValue);
val.SetBitValue(m[i]);
val.SetTritValue(t[i]);
result.push_back(val);
}
}
void IntegerEncodedValue::DecodeQuintBlock(
BitStreamReadOnly &bits,
std::vector<IntegerEncodedValue> &result,
uint32 nBitsPerValue
) {
// Implement the algorithm in section C.2.12
uint32 m[3];
uint32 q[3];
uint32 Q;
// Read the trit encoded block according to
// table C.2.15
m[0] = bits.ReadBits(nBitsPerValue);
Q = bits.ReadBits(3);
m[1] = bits.ReadBits(nBitsPerValue);
Q |= bits.ReadBits(2) << 3;
m[2] = bits.ReadBits(nBitsPerValue);
Q |= bits.ReadBits(2) << 5;
Bits<uint32> Qb(Q);
if(Qb(1, 2) == 3 && Qb(5, 6) == 0) {
q[0] = q[1] = 4;
q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
} else {
uint32 C = 0;
if(Qb(1, 2) == 3) {
q[2] = 4;
C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
} else {
q[2] = Qb(5, 6);
C = Qb(0, 4);
}
Bits<uint32> Cb(C);
if(Cb(0, 2) == 5) {
q[1] = 4;
q[0] = Cb(3, 4);
} else {
q[1] = Cb(3, 4);
q[0] = Cb(0, 2);
}
}
for(uint32 i = 0; i < 3; i++) {
IntegerEncodedValue val(eIntegerEncoding_Quint, nBitsPerValue);
val.m_BitValue = m[i];
val.m_QuintValue = q[i];
result.push_back(val);
}
}
void IntegerEncodedValue::DecodeIntegerSequence(
std::vector<IntegerEncodedValue> &result,
BitStreamReadOnly &bits,
uint32 maxRange,
uint32 nValues
) {
// Determine encoding parameters
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
// Start decoding
uint32 nValsDecoded = 0;
while(nValsDecoded < nValues) {
switch(val.GetEncoding()) {
case eIntegerEncoding_Quint:
DecodeQuintBlock(bits, result, val.BaseBitLength());
nValsDecoded += 3;
break;
case eIntegerEncoding_Trit:
DecodeTritBlock(bits, result, val.BaseBitLength());
nValsDecoded += 5;
break;
case eIntegerEncoding_JustBits:
val.SetBitValue(bits.ReadBits(val.BaseBitLength()));
result.push_back(val);
nValsDecoded++;
break;
}
}
}
} // namespace ASTCC

View file

@ -0,0 +1,143 @@
/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#ifndef _ASTCENCODER_SRC_INTEGERENCODING_H_
#define _ASTCENCODER_SRC_INTEGERENCODING_H_
#include "TexCompTypes.h"
// Forward declares
namespace FasTC {
class BitStreamReadOnly;
}
namespace ASTCC {
enum EIntegerEncoding {
eIntegerEncoding_JustBits,
eIntegerEncoding_Quint,
eIntegerEncoding_Trit
};
class IntegerEncodedValue {
private:
const EIntegerEncoding m_Encoding;
const uint32 m_NumBits;
uint32 m_BitValue;
union {
uint32 m_QuintValue;
uint32 m_TritValue;
};
public:
// Jank, but we're not doing any heavy lifting in this class, so it's
// probably OK. It allows us to use these in std::vectors...
IntegerEncodedValue &operator=(const IntegerEncodedValue &other) {
new (this) IntegerEncodedValue(other);
return *this;
}
IntegerEncodedValue(EIntegerEncoding encoding, uint32 numBits)
: m_Encoding(encoding), m_NumBits(numBits) { }
EIntegerEncoding GetEncoding() const { return m_Encoding; }
uint32 BaseBitLength() const { return m_NumBits; }
uint32 GetBitValue() const { return m_BitValue; }
void SetBitValue(uint32 val) { m_BitValue = val; }
uint32 GetTritValue() const { return m_TritValue; }
void SetTritValue(uint32 val) { m_TritValue = val; }
uint32 GetQuintValue() const { return m_QuintValue; }
void SetQuintValue(uint32 val) { m_QuintValue = val; }
bool MatchesEncoding(const IntegerEncodedValue &other) {
return m_Encoding == other.m_Encoding && m_NumBits == other.m_NumBits;
}
// Returns the number of bits required to encode nVals values.
uint32 GetBitLength(uint32 nVals);
// Returns the value of this integer encoding.
uint32 GetValue();
// Returns a new instance of this struct that corresponds to the
// can take no more than maxval values
static IntegerEncodedValue CreateEncoding(uint32 maxVal);
// Fills result with the values that are encoded in the given
// bitstream. We must know beforehand what the maximum possible
// value is, and how many values we're decoding.
static void DecodeIntegerSequence(
std::vector<IntegerEncodedValue> &result,
FasTC::BitStreamReadOnly &bits,
uint32 maxRange,
uint32 nValues
);
private:
static void DecodeTritBlock(
FasTC::BitStreamReadOnly &bits,
std::vector<IntegerEncodedValue> &result,
uint32 nBitsPerValue
);
static void DecodeQuintBlock(
FasTC::BitStreamReadOnly &bits,
std::vector<IntegerEncodedValue> &result,
uint32 nBitsPerValue
);
};
}; // namespace ASTCC
#endif // _ASTCENCODER_SRC_INTEGERENCODING_H_