FasTC/Base/test/TestVector.cpp
Pavel Krajcevski 62cce58c2f Fix some of the vector multiplication and divide routines.
In general, we want the scalar division of vectors and matrices to
have the matrix come first and the scalar come second. It doesn't make
sense to divide a scalar by a vector or to divide a matrix by a vector,
so these should now produce errors at compile time.

Also, make sure to add additional types that can be multiplied together
using the * operator. If we multiply two vectors together, that's a dot
product. The size restrictions should be enforced at compile time by the
template parameters for VectorBase<T, N>::Dot

In this way, we can support vector/matrix multiplication by retaining the
* operator as well.
2014-02-20 14:49:35 -05:00

432 lines
11 KiB
C++

/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "gtest/gtest.h"
#include "VectorBase.h"
static const float kEpsilon = 1e-6;
TEST(VectorBase, Constructors) {
FasTC::VectorBase<float, 3> v3f;
FasTC::VectorBase<double, 1> v1d;
FasTC::VectorBase<int, 7> v7i;
FasTC::VectorBase<unsigned, 16> v16u;
#define TEST_VECTOR_COPY_CONS(v, t, n) \
do { \
FasTC::VectorBase<t, n> d##v (v); \
for(int i = 0; i < n; i++) { \
EXPECT_EQ(d##v [i], v[i]); \
} \
} while(0) \
TEST_VECTOR_COPY_CONS(v3f, float, 3);
TEST_VECTOR_COPY_CONS(v1d, double, 1);
TEST_VECTOR_COPY_CONS(v7i, int, 7);
TEST_VECTOR_COPY_CONS(v16u, unsigned, 16);
#undef TEST_VECTOR_COPY_CONS
}
TEST(VectorBase, Accessors) {
FasTC::VectorBase<float, 3> v3f;
v3f[0] = 1.0f;
v3f[1] = -2.3f;
v3f[2] = 1000;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f[i], v3f(i));
}
v3f(0) = -1.0f;
v3f(1) = 2.3f;
v3f(2) = -1000;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f(i), v3f[i]);
}
}
TEST(VectorBase, PointerConversion) {
FasTC::VectorBase<float, 3> v3f;
v3f[0] = 1.0f;
v3f[1] = -2.3f;
v3f[2] = 1000;
float cmp[3] = { 1.0f, -2.3f, 1000 };
const float *v3fp = v3f;
int result = memcmp(cmp, v3fp, 3 * sizeof(float));
EXPECT_EQ(result, 0);
cmp[0] = -1.0f;
cmp[1] = 2.3f;
cmp[2] = 1000.0f;
v3f = cmp;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3f[i], cmp[i]);
}
}
TEST(VectorBase, CastVector) {
FasTC::VectorBase<float, 3> v3f;
FasTC::VectorBase<double, 3> v3d = v3f;
FasTC::VectorBase<int, 3> v3i = v3f;
for(int i = 0; i < 3; i++) {
EXPECT_EQ(v3d(i), static_cast<double>(v3f(i)));
EXPECT_EQ(v3i(i), static_cast<int>(v3f(i)));
}
}
TEST(VectorBase, DotProduct) {
int iv[5] = { -2, -1, 0, 1, 2 };
FasTC::VectorBase<int, 5> v5i(iv);
unsigned uv[5] = { 1, 2, 3, 4, 5 };
FasTC::VectorBase<unsigned, 5> v5u(uv);
EXPECT_EQ(v5i.Dot(v5u), 10);
EXPECT_EQ(v5u.Dot(v5i), 10);
EXPECT_EQ(v5i * v5u, 10);
EXPECT_EQ(v5u * v5i, 10);
}
TEST(VectorBase, Length) {
int iv[5] = { 1, 2, 3, 4, 5 };
FasTC::VectorBase<int, 5> v5i (iv);
EXPECT_EQ(v5i.LengthSq(), 55);
EXPECT_EQ(v5i.Length(), 7);
float fv[6] = {1, 2, 3, 4, 5, 6};
FasTC::VectorBase<float, 6> v6f (fv);
EXPECT_EQ(v6f.LengthSq(), 91);
EXPECT_NEAR(v6f.Length(), sqrt(91.0f), kEpsilon);
}
TEST(VectorBase, Normalization) {
float fv[2] = {1, 0};
FasTC::VectorBase<float, 2> v2f (fv);
v2f.Normalize();
EXPECT_EQ(v2f[0], 1);
EXPECT_EQ(v2f[1], 0);
// Normalized vector should be sqrt(2) for each axis, although
// this can't be represented as integers...
unsigned uv[2] = {2, 2};
FasTC::VectorBase<unsigned, 2> v2u (uv);
v2u.Normalize();
EXPECT_EQ(v2u[0], 1);
EXPECT_EQ(v2u[1], 1);
const float sqrt2 = sqrt(2)/2.0f;
for(int i = 2; i < 10; i++) {
v2f[0] = static_cast<float>(i);
v2f[1] = static_cast<float>(i);
v2f.Normalize();
EXPECT_NEAR(v2f[0], sqrt2, kEpsilon);
EXPECT_NEAR(v2f[1], sqrt2, kEpsilon);
}
}
TEST(VectorBase, Scaling) {
float fv[2] = {1.0f, 3.0f};
FasTC::VectorBase<float, 2> v2f (fv);
FasTC::VectorBase<float, 2> v2fd = v2f * 3.0f;
EXPECT_NEAR(v2fd[0], 3.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], 9.0f, kEpsilon);
v2fd = -1.0 * v2f;
EXPECT_NEAR(v2fd[0], -1.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], -3.0f, kEpsilon);
v2fd = v2f / 3;
EXPECT_NEAR(v2fd[0], 1.0f / 3.0f, kEpsilon);
EXPECT_NEAR(v2fd[1], 1.0f, kEpsilon);
unsigned uv[2] = {1, 3};
FasTC::VectorBase<unsigned, 2> v2u (uv);
FasTC::VectorBase<unsigned, 2> v2ud = v2u * 0.5;
EXPECT_EQ(v2ud[0], 0);
EXPECT_EQ(v2ud[1], 1);
v2ud = v2u / 0.5f;
EXPECT_EQ(v2ud[0], 2);
EXPECT_EQ(v2ud[1], 6);
}
TEST(VectorBase, Addition) {
float fv[2] = {1.1f, 3.2f};
FasTC::VectorBase<float, 2> v2f (fv);
int uv[2] = {5, 2};
FasTC::VectorBase<int, 2> v2u (uv);
FasTC::VectorBase<int, 2> au = v2u + v2f;
EXPECT_EQ(au[0], 6);
EXPECT_EQ(au[1], 5);
FasTC::VectorBase<float, 2> af = v2f + v2u;
EXPECT_NEAR(af[0], 6.1f, kEpsilon);
EXPECT_NEAR(af[1], 5.2f, kEpsilon);
au = v2u - v2f;
EXPECT_EQ(au[0], 3);
EXPECT_EQ(au[1], -1);
af = v2f - v2u;
EXPECT_NEAR(af[0], -3.9f, kEpsilon);
EXPECT_NEAR(af[1], 1.2f, kEpsilon);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec2
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector2.h"
TEST(Vector2, BaseFunctionality) {
FasTC::Vec2f v2f;
FasTC::Vec2d v2d;
v2f = v2d;
EXPECT_NEAR(v2f[0], v2d[0], kEpsilon);
EXPECT_NEAR(v2f[1], v2d[1], kEpsilon);
}
TEST(Vector2, Accessors) {
float fv[2] = { 1.0f, 2.0f };
FasTC::Vec2f v2f (fv);
EXPECT_EQ(v2f.X(), 1.0f);
EXPECT_EQ(v2f.Y(), 2.0f);
v2f.X() = 4.0f;
v2f.Y() = 5.0f;
EXPECT_EQ(v2f.X(), 4.0f);
EXPECT_EQ(v2f.Y(), 5.0f);
}
TEST(Vector2, Addition) {
float fv[2] = { 1.0f, 2.0f };
FasTC::Vec2f v2f (fv);
double dv[2] = { 4.3, -10.2 };
FasTC::Vec2d v2d (dv);
EXPECT_NEAR((v2f + v2d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v2f + v2d).Y(), -8.2, kEpsilon);
}
TEST(Vector2, Swizzle) {
float fv[2] = {1.0f, 2.0f};
FasTC::Vec2f v;
v = fv;
EXPECT_EQ(v.XX().X(), 1.0f);
EXPECT_EQ(v.XX().Y(), 1.0f);
EXPECT_EQ(v.YY().X(), 2.0f);
EXPECT_EQ(v.YY().Y(), 2.0f);
EXPECT_EQ(v.YX().X(), 2.0f);
EXPECT_EQ(v.YX().Y(), 1.0f);
EXPECT_EQ(v.XY().X(), 1.0f);
EXPECT_EQ(v.XY().Y(), 2.0f);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec3
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector3.h"
TEST(Vector3, BaseFunctionality) {
FasTC::Vec3f vf;
FasTC::Vec3d vd;
vf = vd;
for(int i = 0; i < 3; i++) {
EXPECT_NEAR(vf[i], vd[i], kEpsilon);
}
}
TEST(Vector3, Accessors) {
float fv[3] = { 1.0f, 2.0f, 3.0f };
FasTC::Vec3f v3f (fv);
EXPECT_EQ(v3f.X(), 1.0f);
EXPECT_EQ(v3f.Y(), 2.0f);
EXPECT_EQ(v3f.Z(), 3.0f);
v3f.X() = 4.0f;
v3f.Y() = 5.0f;
v3f.Z() = 6.0f;
EXPECT_EQ(v3f.X(), 4.0f);
EXPECT_EQ(v3f.Y(), 5.0f);
EXPECT_EQ(v3f.Z(), 6.0f);
}
TEST(Vector3, Addition) {
float fv[3] = { 1.0f, 2.0f, 3.0f };
FasTC::Vec3f v3f (fv);
double dv[3] = { 4.3, -10.2, 0.0f };
FasTC::Vec3d v3d (dv);
EXPECT_NEAR((v3f + v3d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v3f + v3d).Y(), -8.2, kEpsilon);
EXPECT_NEAR((v3f + v3d).Z(), 3.0, kEpsilon);
}
TEST(Vector3, Swizzle) {
float fv[3] = {1.0f, 2.0f, 3.0f};
FasTC::Vec3f v;
v = fv;
EXPECT_EQ(v.XXX().Y(), 1.0f);
EXPECT_EQ(v.YZX().X(), 2.0f);
EXPECT_EQ(v.ZZY().Z(), 2.0f);
EXPECT_EQ(v.ZYZ().X(), 3.0f);
}
TEST(Vector3, CrossProduct) {
float fv[3] = {1.0f, 2.0f, 3.0f};
FasTC::Vec3f v1 (fv);
FasTC::Vec3f v2 = v1;
std::swap(v1.X(), v1.Z());
// Right handed coordinate system...
FasTC::Vec3f r = v1.Cross(v2);
EXPECT_NEAR(r.X(), 4.0f, kEpsilon);
EXPECT_NEAR(r.Y(), -8.0f, kEpsilon);
EXPECT_NEAR(r.Z(), 4.0f, kEpsilon);
v1.X() = v1.Y() = v2.X() = v2.Z() = 0.0f;
v1.Z() = v2.Y() = 1.0f;
r = v1.Cross(v2);
EXPECT_EQ(r.X(), -1.0f);
EXPECT_EQ(r.Y(), 0.0f);
EXPECT_EQ(r.Z(), 0.0f);
r = v2.Cross(v1);
EXPECT_EQ(r.X(), 1.0f);
EXPECT_EQ(r.Y(), 0.0f);
EXPECT_EQ(r.Z(), 0.0f);
}
////////////////////////////////////////////////////////////////////////////////
//
// Vec4
//
////////////////////////////////////////////////////////////////////////////////
#include "Vector4.h"
TEST(Vector4, BaseFunctionality) {
FasTC::Vec4f vf;
FasTC::Vec4d vd;
vf = vd;
for(int i = 0; i < 4; i++) {
EXPECT_NEAR(vf[i], vd[i], kEpsilon);
}
}
TEST(Vector4, Accessors) {
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
FasTC::Vec4f v4f (fv);
EXPECT_EQ(v4f.X(), 1.0f);
EXPECT_EQ(v4f.Y(), 2.0f);
EXPECT_EQ(v4f.Z(), 3.0f);
EXPECT_EQ(v4f.W(), 4.0f);
v4f.X() = 5.0f;
v4f.Y() = 6.0f;
v4f.Z() = 7.0f;
v4f.W() = 8.0f;
EXPECT_EQ(v4f.X(), 5.0f);
EXPECT_EQ(v4f.Y(), 6.0f);
EXPECT_EQ(v4f.Z(), 7.0f);
EXPECT_EQ(v4f.W(), 8.0f);
}
TEST(Vector4, Addition) {
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
FasTC::Vec4f v4f (fv);
double dv[4] = { 4.3, -10.2, 0.0f, -22.0f };
FasTC::Vec4d v3d (dv);
EXPECT_NEAR((v4f + v3d).X(), 5.3, kEpsilon);
EXPECT_NEAR((v4f + v3d).Y(), -8.2, kEpsilon);
EXPECT_NEAR((v4f + v3d).Z(), 3.0, kEpsilon);
EXPECT_NEAR((v4f + v3d).W(), -18.0, kEpsilon);
}
TEST(Vector4, Swizzle) {
float fv[4] = {1.0f, 2.0f, 3.0f, 4.0f};
FasTC::Vec4f v;
v = fv;
EXPECT_EQ(v.XXXX().Y(), 1.0f);
EXPECT_EQ(v.YZXW().X(), 2.0f);
EXPECT_EQ(v.ZWY().Z(), 2.0f);
EXPECT_EQ(v.ZZ().X(), 3.0f);
EXPECT_EQ(v.WWXY().W(), 2.0f);
}