mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-23 23:21:04 +00:00
313 lines
12 KiB
C++
Executable file
313 lines
12 KiB
C++
Executable file
/* FasTC
|
|
* Copyright (c) 2012 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
// The original lisence from the code available at the following location:
|
|
// http://software.intel.com/en-us/vcsource/samples/fast-texture-compression
|
|
//
|
|
// This code has been modified significantly from the original.
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Copyright 2011 Intel Corporation
|
|
// All Rights Reserved
|
|
//
|
|
// Permission is granted to use, copy, distribute and prepare derivative works
|
|
// of this software for any purpose and without fee, provided, that the above
|
|
// copyright notice and this statement appear in all copies. Intel makes no
|
|
// representations about the suitability of this software for any purpose. THIS
|
|
// SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
|
|
// EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
|
|
// INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
|
|
// INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume
|
|
// any responsibility for any errors which may appear in this software nor any
|
|
// responsibility to update it.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
|
|
#ifndef BPTCENCODER_SRC_BC7COMPRESSIONMODE_H_
|
|
#define BPTCENCODER_SRC_BC7COMPRESSIONMODE_H_
|
|
|
|
#include "RGBAEndpoints.h"
|
|
|
|
// Forward Declarations
|
|
class BitStream;
|
|
struct VisitedState;
|
|
const int kMaxEndpoints = 3;
|
|
|
|
static const int kPBits[4][2] = {
|
|
{ 0, 0 },
|
|
{ 0, 1 },
|
|
{ 1, 0 },
|
|
{ 1, 1 }
|
|
};
|
|
|
|
class BC7CompressionMode {
|
|
|
|
public:
|
|
|
|
static const uint32 kMaxNumSubsets = 3;
|
|
static const uint32 kNumModes = 8;
|
|
|
|
// This initializes the compression variables used in order to compress a list
|
|
// of clusters. We can increase the speed a tad by specifying whether or not
|
|
// the block is opaque or not.
|
|
explicit BC7CompressionMode(int mode, bool opaque = true)
|
|
: m_IsOpaque(opaque)
|
|
, m_Attributes(&(kModeAttributes[mode]))
|
|
, m_RotateMode(0)
|
|
, m_IndexMode(0)
|
|
{ }
|
|
~BC7CompressionMode() { }
|
|
|
|
// This function compresses a group of clusters into the passed bitstream. The
|
|
// size of the clusters array is determined by the BC7 compression mode.
|
|
double Compress(BitStream &stream,
|
|
const int shapeIdx, const RGBACluster *clusters);
|
|
|
|
// This switch controls the quality of the simulated annealing optimizer. We
|
|
// will not make more than this many steps regardless of how bad the error is.
|
|
// Higher values will produce better quality results but will run slower.
|
|
// Default is 20.
|
|
static int MaxAnnealingIterations; // This is a setting
|
|
static const int kMaxAnnealingIterations = 256; // This is a limit
|
|
|
|
// P-bits are low-order bits that are shared across color channels. This enum
|
|
// says whether or not both endpoints share a p-bit or whether or not they
|
|
// even have a p-bit.
|
|
enum EPBitType {
|
|
ePBitType_Shared,
|
|
ePBitType_NotShared,
|
|
ePBitType_None
|
|
};
|
|
|
|
// These are all the per-mode attributes that can be set. They are specified
|
|
// in a table and we access them through the private m_Attributes variable.
|
|
static struct Attributes {
|
|
int modeNumber;
|
|
int numPartitionBits;
|
|
int numSubsets;
|
|
int numBitsPerIndex;
|
|
int numBitsPerAlpha;
|
|
int colorChannelPrecision;
|
|
int alphaChannelPrecision;
|
|
bool hasRotation;
|
|
bool hasIdxMode;
|
|
EPBitType pbitType;
|
|
} kModeAttributes[kNumModes];
|
|
|
|
// This returns the above attributes structure for the given mode.
|
|
static const Attributes *GetAttributesForMode(int mode) {
|
|
if(mode < 0 || mode >= 8) return NULL;
|
|
return &kModeAttributes[mode];
|
|
}
|
|
|
|
private:
|
|
|
|
const double m_IsOpaque;
|
|
const Attributes *const m_Attributes;
|
|
|
|
int m_RotateMode;
|
|
int m_IndexMode;
|
|
|
|
void SetIndexMode(int mode) { m_IndexMode = mode; }
|
|
void SetRotationMode(int mode) { m_RotateMode = mode; }
|
|
|
|
int GetRotationMode() const {
|
|
return m_Attributes->hasRotation? m_RotateMode : 0;
|
|
}
|
|
int GetModeNumber() const { return m_Attributes->modeNumber; }
|
|
|
|
int GetNumberOfPartitionBits() const {
|
|
return m_Attributes->numPartitionBits;
|
|
}
|
|
int GetNumberOfSubsets() const { return m_Attributes->numSubsets; }
|
|
|
|
int GetNumberOfBitsPerIndex(int indexMode = -1) const {
|
|
if(indexMode < 0) indexMode = m_IndexMode;
|
|
if(indexMode == 0)
|
|
return m_Attributes->numBitsPerIndex;
|
|
else
|
|
return m_Attributes->numBitsPerAlpha;
|
|
}
|
|
|
|
int GetNumberOfBitsPerAlpha(int indexMode = -1) const {
|
|
if(indexMode < 0) indexMode = m_IndexMode;
|
|
if(indexMode == 0)
|
|
return m_Attributes->numBitsPerAlpha;
|
|
else
|
|
return m_Attributes->numBitsPerIndex;
|
|
}
|
|
|
|
// If we handle alpha separately, then we will consider the alpha channel
|
|
// to be not used whenever we do any calculations...
|
|
int GetAlphaChannelPrecision() const {
|
|
return m_Attributes->alphaChannelPrecision;
|
|
}
|
|
|
|
// This returns the proper error metric even if we have rotation bits set
|
|
RGBAVector GetErrorMetric() const {
|
|
const float *w = BC7C::GetErrorMetric();
|
|
switch(GetRotationMode()) {
|
|
default:
|
|
case 0: return RGBAVector(w[0], w[1], w[2], w[3]);
|
|
case 1: return RGBAVector(w[3], w[1], w[2], w[0]);
|
|
case 2: return RGBAVector(w[0], w[3], w[2], w[1]);
|
|
case 3: return RGBAVector(w[0], w[1], w[3], w[2]);
|
|
}
|
|
}
|
|
|
|
EPBitType GetPBitType() const { return m_Attributes->pbitType; }
|
|
|
|
// This function creates an integer that represents the maximum values in each
|
|
// channel. We can use this to figure out the proper endpoint values for a
|
|
// given mode.
|
|
unsigned int GetQuantizationMask() const {
|
|
const int maskSeed = 0x80000000;
|
|
const uint32 alphaPrec = GetAlphaChannelPrecision();
|
|
const uint32 cbits = m_Attributes->colorChannelPrecision - 1;
|
|
const uint32 abits = GetAlphaChannelPrecision() - 1;
|
|
if(alphaPrec > 0) {
|
|
return (
|
|
(maskSeed >> (24 + cbits) & 0xFF) |
|
|
(maskSeed >> (16 + cbits) & 0xFF00) |
|
|
(maskSeed >> (8 + cbits) & 0xFF0000) |
|
|
(maskSeed >> abits & 0xFF000000)
|
|
);
|
|
} else {
|
|
return (
|
|
((maskSeed >> (24 + cbits) & 0xFF) |
|
|
(maskSeed >> (16 + cbits) & 0xFF00) |
|
|
(maskSeed >> (8 + cbits) & 0xFF0000)) &
|
|
(0x00FFFFFF)
|
|
);
|
|
}
|
|
}
|
|
|
|
int GetNumPbitCombos() const {
|
|
switch(GetPBitType()) {
|
|
case ePBitType_Shared: return 2;
|
|
case ePBitType_NotShared: return 4;
|
|
default:
|
|
case ePBitType_None: return 1;
|
|
}
|
|
}
|
|
|
|
const int *GetPBitCombo(int idx) const {
|
|
switch(GetPBitType()) {
|
|
case ePBitType_Shared: return (idx)? kPBits[3] : kPBits[0];
|
|
case ePBitType_NotShared: return kPBits[idx % 4];
|
|
default:
|
|
case ePBitType_None: return kPBits[0];
|
|
}
|
|
}
|
|
|
|
// This performs simulated annealing on the endpoints p1 and p2 based on the
|
|
// current MaxAnnealingIterations. This is set by calling the function
|
|
// SetQualityLevel
|
|
double OptimizeEndpointsForCluster(
|
|
const RGBACluster &cluster,
|
|
RGBAVector &p1, RGBAVector &p2,
|
|
int *bestIndices,
|
|
int &bestPbitCombo
|
|
) const;
|
|
|
|
// This function performs the heuristic to choose the "best" neighboring
|
|
// endpoints to p1 and p2 based on the compression mode (index precision,
|
|
// endpoint precision etc)
|
|
void PickBestNeighboringEndpoints(
|
|
const RGBACluster &cluster,
|
|
const RGBAVector &p1, const RGBAVector &p2,
|
|
const int curPbitCombo,
|
|
RGBAVector &np1, RGBAVector &np2,
|
|
int &nPbitCombo,
|
|
const VisitedState *visitedStates,
|
|
int nVisited,
|
|
float stepSz = 1.0f
|
|
) const;
|
|
|
|
// This is used by simulated annealing to determine whether or not the
|
|
// newError (from the neighboring endpoints) is sufficient to continue the
|
|
// annealing process from these new endpoints based on how good the oldError
|
|
// was, and how long we've been annealing (t)
|
|
bool AcceptNewEndpointError(double newError, double oldError, float t) const;
|
|
|
|
// This function figures out the best compression for the single color p, and
|
|
// places the endpoints in p1 and p2. If the compression mode supports p-bits,
|
|
// then we choose the best p-bit combo and return it as well.
|
|
double CompressSingleColor(const RGBAVector &p,
|
|
RGBAVector &p1, RGBAVector &p2,
|
|
int &bestPbitCombo) const;
|
|
|
|
// Compress the cluster using a generalized cluster fit. This figures out the
|
|
// proper endpoints assuming that we have no alpha.
|
|
double CompressCluster(const RGBACluster &cluster,
|
|
RGBAVector &p1, RGBAVector &p2,
|
|
int *bestIndices, int &bestPbitCombo) const;
|
|
|
|
// Compress the non-opaque cluster using a generalized cluster fit, and place
|
|
// the endpoints within p1 and p2. The color indices and alpha indices are
|
|
// computed as well.
|
|
double CompressCluster(const RGBACluster &cluster,
|
|
RGBAVector &p1, RGBAVector &p2,
|
|
int *bestIndices, int *alphaIndices) const;
|
|
|
|
// This function takes two endpoints in the continuous domain (as floats) and
|
|
// clamps them to the nearest grid points based on the compression mode (and
|
|
// possible pbit values)
|
|
void ClampEndpointsToGrid(RGBAVector &p1, RGBAVector &p2,
|
|
int &bestPBitCombo) const;
|
|
};
|
|
|
|
extern const uint32 kBC7InterpolationValues[4][16][2];
|
|
|
|
#endif // BPTCENCODER_SRC_BC7COMPRESSIONMODE_H_
|