mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-01-24 13:21:08 +00:00
1024 lines
29 KiB
C++
1024 lines
29 KiB
C++
/* FasTC
|
|
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
#include "ASTCCompressor.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#include "Utils.h"
|
|
#include "IntegerEncoding.h"
|
|
|
|
#include "TexCompTypes.h"
|
|
|
|
#include "Bits.h"
|
|
#include "BitStream.h"
|
|
using FasTC::BitStreamReadOnly;
|
|
|
|
#include "Pixel.h"
|
|
|
|
namespace ASTCC {
|
|
|
|
struct TexelWeightParams {
|
|
uint32 m_Width;
|
|
uint32 m_Height;
|
|
bool m_bDualPlane;
|
|
uint32 m_MaxWeight;
|
|
bool m_bError;
|
|
bool m_bVoidExtent;
|
|
|
|
TexelWeightParams() {
|
|
memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
uint32 GetPackedBitSize() {
|
|
// How many indices do we have?
|
|
uint32 nIdxs = m_Height * m_Width;
|
|
if(m_bDualPlane) {
|
|
nIdxs *= 2;
|
|
}
|
|
|
|
return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
|
|
}
|
|
|
|
uint32 GetNumWeightValues() const {
|
|
uint32 ret = m_Width * m_Height;
|
|
if(m_bDualPlane) {
|
|
ret *= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
TexelWeightParams DecodeBlockInfo(BitStreamReadOnly &strm) {
|
|
TexelWeightParams params;
|
|
|
|
// Read the entire block mode all at once
|
|
uint16 modeBits = strm.ReadBits(11);
|
|
|
|
// Does this match the void extent block mode?
|
|
if((modeBits & 0x01FF) == 0x1FC) {
|
|
params.m_bVoidExtent = true;
|
|
return params;
|
|
}
|
|
|
|
// First check if the last four bits are zero
|
|
if((modeBits & 0xF) == 0) {
|
|
params.m_bError = true;
|
|
return params;
|
|
}
|
|
|
|
// If the last two bits are zero, then if bits
|
|
// [6-8] are all ones, this is also reserved.
|
|
if((modeBits & 0x3) == 0 &&
|
|
(modeBits & 0x1C0) == 0x1C0) {
|
|
params.m_bError = true;
|
|
return params;
|
|
}
|
|
|
|
// Otherwise, there is no error... Figure out the layout
|
|
// of the block mode. Layout is determined by a number
|
|
// between 0 and 9 corresponding to table C.2.8 of the
|
|
// ASTC spec.
|
|
uint32 layout = 0;
|
|
|
|
if((modeBits & 0x1) || (modeBits & 0x2)) {
|
|
// layout is in [0-4]
|
|
if(modeBits & 0x8) {
|
|
// layout is in [2-4]
|
|
if(modeBits & 0x4) {
|
|
// layout is in [3-4]
|
|
if(modeBits & 0x100) {
|
|
layout = 4;
|
|
} else {
|
|
layout = 3;
|
|
}
|
|
} else {
|
|
layout = 2;
|
|
}
|
|
} else {
|
|
// layout is in [0-1]
|
|
if(modeBits & 0x4) {
|
|
layout = 1;
|
|
} else {
|
|
layout = 0;
|
|
}
|
|
}
|
|
} else {
|
|
// layout is in [5-9]
|
|
if(modeBits & 0x100) {
|
|
// layout is in [7-9]
|
|
if(modeBits & 0x80) {
|
|
// layout is in [7-8]
|
|
assert((modeBits & 0x40) == 0U);
|
|
if(modeBits & 0x20) {
|
|
layout = 8;
|
|
} else {
|
|
layout = 7;
|
|
}
|
|
} else {
|
|
layout = 9;
|
|
}
|
|
} else {
|
|
// layout is in [5-6]
|
|
if(modeBits & 0x80) {
|
|
layout = 6;
|
|
} else {
|
|
layout = 5;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(layout < 10);
|
|
|
|
// Determine R
|
|
uint32 R = !!(modeBits & 0x10);
|
|
if(layout < 5) {
|
|
R |= (modeBits & 0x3) << 1;
|
|
} else {
|
|
R |= (modeBits & 0xC) >> 1;
|
|
}
|
|
assert(2 <= R && R <= 7);
|
|
|
|
// Determine width & height
|
|
switch(layout) {
|
|
case 0: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = B + 4;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 1: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = B + 8;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 2: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = B + 8;
|
|
break;
|
|
}
|
|
|
|
case 3: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 7) & 0x1;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = B + 6;
|
|
break;
|
|
}
|
|
|
|
case 4: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 7) & 0x1;
|
|
params.m_Width = B + 2;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 5: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
params.m_Width = 12;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 6: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = 12;
|
|
break;
|
|
}
|
|
|
|
case 7: {
|
|
params.m_Width = 6;
|
|
params.m_Height = 10;
|
|
break;
|
|
}
|
|
|
|
case 8: {
|
|
params.m_Width = 10;
|
|
params.m_Height = 6;
|
|
break;
|
|
}
|
|
|
|
case 9: {
|
|
uint32 A = (modeBits >> 5) & 0x3;
|
|
uint32 B = (modeBits >> 9) & 0x3;
|
|
params.m_Width = A + 6;
|
|
params.m_Height = B + 6;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(!"Don't know this layout...");
|
|
params.m_bError = true;
|
|
break;
|
|
}
|
|
|
|
// Determine whether or not we're using dual planes
|
|
// and/or high precision layouts.
|
|
bool D = (layout != 9) && (modeBits & 0x400);
|
|
bool H = (layout != 9) && (modeBits & 0x200);
|
|
|
|
if(H) {
|
|
const uint32 maxWeights[6] = { 9, 11, 15, 19, 23, 31 };
|
|
params.m_MaxWeight = maxWeights[R-2];
|
|
} else {
|
|
const uint32 maxWeights[6] = { 1, 2, 3, 4, 5, 7 };
|
|
params.m_MaxWeight = maxWeights[R-2];
|
|
}
|
|
|
|
params.m_bDualPlane = D;
|
|
|
|
return params;
|
|
}
|
|
|
|
void FillError(uint32 *outBuf, uint32 blockWidth, uint32 blockHeight) {
|
|
for(uint32 j = 0; j < blockHeight; j++)
|
|
for(uint32 i = 0; i < blockWidth; i++) {
|
|
outBuf[j * blockWidth + i] = 0xFFFF00FF;
|
|
}
|
|
}
|
|
|
|
void DecodeColorValues(uint32 *out, uint8 *data, uint32 *modes,
|
|
const uint32 nPartitions, const uint32 nBitsForColorData) {
|
|
// First figure out how many color values we have
|
|
uint32 nValues = 0;
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
nValues += ((modes[i]>>2) + 1) << 1;
|
|
}
|
|
|
|
// Then based on the number of values and the remaining number of bits,
|
|
// figure out the max value for each of them...
|
|
uint32 range = 256;
|
|
while(--range > 0) {
|
|
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
|
|
uint32 bitLength = val.GetBitLength(nValues);
|
|
if(bitLength < nBitsForColorData) {
|
|
// Find the smallest possible range that matches the given encoding
|
|
while(--range > 0) {
|
|
IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
|
|
if(!newval.MatchesEncoding(val)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return to last matching range.
|
|
range++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We now have enough to decode our integer sequence.
|
|
std::vector<IntegerEncodedValue> decodedColorValues;
|
|
FasTC::BitStreamReadOnly colorStream (data);
|
|
IntegerEncodedValue::
|
|
DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
|
|
|
|
// Once we have the decoded values, we need to dequantize them to the 0-255 range
|
|
// This procedure is outlined in ASTC spec C.2.13
|
|
uint32 outIdx = 0;
|
|
std::vector<IntegerEncodedValue>::const_iterator itr;
|
|
for(itr = decodedColorValues.begin(); itr != decodedColorValues.end(); itr++) {
|
|
// Have we already decoded all that we need?
|
|
if(outIdx >= nValues) {
|
|
break;
|
|
}
|
|
|
|
const IntegerEncodedValue &val = *itr;
|
|
uint32 bitlen = val.BaseBitLength();
|
|
uint32 bitval = val.GetBitValue();
|
|
|
|
assert(bitlen >= 1);
|
|
|
|
uint32 A = 0, B = 0, C = 0, D = 0;
|
|
// A is just the lsb replicated 9 times.
|
|
A = FasTC::Replicate(bitval & 1, 1, 9);
|
|
|
|
switch(val.GetEncoding()) {
|
|
// Replicate bits
|
|
case eIntegerEncoding_JustBits:
|
|
out[outIdx++] = FasTC::Replicate(bitval, bitlen, 8);
|
|
break;
|
|
|
|
// Use algorithm in C.2.13
|
|
case eIntegerEncoding_Trit: {
|
|
|
|
D = val.GetTritValue();
|
|
|
|
switch(bitlen) {
|
|
case 1: {
|
|
C = 204;
|
|
}
|
|
break;
|
|
|
|
case 2: {
|
|
C = 93;
|
|
// B = b000b0bb0
|
|
uint32 b = (bitval >> 1) & 1;
|
|
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
|
|
}
|
|
break;
|
|
|
|
case 3: {
|
|
C = 44;
|
|
// B = cb000cbcb
|
|
uint32 cb = (bitval >> 1) & 3;
|
|
B = (cb << 7) | (cb << 2) | cb;
|
|
}
|
|
break;
|
|
|
|
case 4: {
|
|
C = 22;
|
|
// B = dcb000dcb
|
|
uint32 dcb = (bitval >> 1) & 7;
|
|
B = (dcb << 6) | dcb;
|
|
}
|
|
break;
|
|
|
|
case 5: {
|
|
C = 11;
|
|
// B = edcb000ed
|
|
uint32 edcb = (bitval >> 1) & 0xF;
|
|
B = (edcb << 5) | (edcb >> 2);
|
|
}
|
|
break;
|
|
|
|
case 6: {
|
|
C = 5;
|
|
// B = fedcb000f
|
|
uint32 fedcb = (bitval >> 1) & 0x1F;
|
|
B = (fedcb << 4) | (fedcb >> 4);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(!"Unsupported trit encoding for color values!");
|
|
break;
|
|
} // switch(bitlen)
|
|
} // case eIntegerEncoding_Trit
|
|
break;
|
|
|
|
case eIntegerEncoding_Quint: {
|
|
|
|
D = val.GetQuintValue();
|
|
|
|
switch(bitlen) {
|
|
case 1: {
|
|
C = 113;
|
|
}
|
|
break;
|
|
|
|
case 2: {
|
|
C = 54;
|
|
// B = b0000bb00
|
|
uint32 b = (bitval >> 1) & 1;
|
|
B = (b << 8) | (b << 3) | (b << 2);
|
|
}
|
|
break;
|
|
|
|
case 3: {
|
|
C = 26;
|
|
// B = cb0000cbc
|
|
uint32 cb = (bitval >> 1) & 3;
|
|
B = (cb << 7) | (cb << 1) | (cb >> 1);
|
|
}
|
|
break;
|
|
|
|
case 4: {
|
|
C = 13;
|
|
// B = dcb000dcb
|
|
uint32 dcb = (bitval >> 1) & 7;
|
|
B = (dcb << 6) | dcb;
|
|
}
|
|
break;
|
|
|
|
case 5: {
|
|
C = 6;
|
|
// B = edcb0000e
|
|
uint32 edcb = (bitval >> 1) & 0xF;
|
|
B = (edcb << 5) | (edcb >> 3);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(!"Unsupported quint encoding for color values!");
|
|
break;
|
|
} // switch(bitlen)
|
|
} // case eIntegerEncoding_Quint
|
|
break;
|
|
} // switch(val.GetEncoding())
|
|
|
|
if(val.GetEncoding() != eIntegerEncoding_JustBits) {
|
|
uint32 T = D * C + B;
|
|
T ^= A;
|
|
T = (A & 0x80) | (T >> 2);
|
|
out[outIdx++] = T;
|
|
}
|
|
}
|
|
|
|
// Make sure that each of our values is in the proper range...
|
|
for(uint32 i = 0; i < nValues; i++) {
|
|
assert(out[i] <= 255);
|
|
}
|
|
}
|
|
|
|
uint32 UnquantizeTexelWeight(const IntegerEncodedValue &val) {
|
|
uint32 bitval = val.GetBitValue();
|
|
uint32 bitlen = val.BaseBitLength();
|
|
|
|
uint32 A = FasTC::Replicate(bitval & 1, 1, 7);
|
|
uint32 B = 0, C = 0, D = 0;
|
|
|
|
uint32 result = 0;
|
|
switch(val.GetEncoding()) {
|
|
case eIntegerEncoding_JustBits:
|
|
result = FasTC::Replicate(bitval, bitlen, 6);
|
|
break;
|
|
|
|
case eIntegerEncoding_Trit: {
|
|
D = val.GetTritValue();
|
|
assert(D < 3);
|
|
|
|
switch(bitlen) {
|
|
case 0: {
|
|
uint32 results[3] = { 0, 32, 63 };
|
|
result = results[D];
|
|
}
|
|
break;
|
|
|
|
case 1: {
|
|
C = 50;
|
|
}
|
|
break;
|
|
|
|
case 2: {
|
|
C = 23;
|
|
uint32 b = (bitval >> 1) & 1;
|
|
B = (b << 6) | (b << 2) | b;
|
|
}
|
|
break;
|
|
|
|
case 3: {
|
|
C = 11;
|
|
uint32 cb = (bitval >> 1) & 3;
|
|
B = (cb << 5) | cb;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(!"Invalid trit encoding for texel weight");
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case eIntegerEncoding_Quint: {
|
|
D = val.GetQuintValue();
|
|
assert(D < 5);
|
|
|
|
switch(bitlen) {
|
|
case 0: {
|
|
uint32 results[5] = { 0, 16, 32, 47, 63 };
|
|
result = results[D];
|
|
}
|
|
break;
|
|
|
|
case 1: {
|
|
C = 28;
|
|
}
|
|
break;
|
|
|
|
case 2: {
|
|
C = 13;
|
|
uint32 b = (bitval >> 1) & 1;
|
|
B = (b << 6) | (b << 1);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(!"Invalid quint encoding for texel weight");
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if(val.GetEncoding() != eIntegerEncoding_JustBits && bitlen > 0) {
|
|
// Decode the value...
|
|
result = D * C + B;
|
|
result ^= A;
|
|
result = (A & 0x20) | (result >> 2);
|
|
}
|
|
|
|
assert(result < 64);
|
|
|
|
// Change from [0,63] to [0,64]
|
|
if(result > 32) {
|
|
result += 1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void UnquantizeTexelWeights(uint32 out[2][144],
|
|
std::vector<IntegerEncodedValue> &weights,
|
|
const TexelWeightParams ¶ms,
|
|
const uint32 blockWidth, const uint32 blockHeight) {
|
|
uint32 weightIdx = 0;
|
|
uint32 unquantized[2][144];
|
|
std::vector<IntegerEncodedValue>::const_iterator itr;
|
|
for(itr = weights.begin(); itr != weights.end(); itr++) {
|
|
unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
|
|
|
|
if(params.m_bDualPlane) {
|
|
itr++;
|
|
unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
|
|
if(itr == weights.end()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(++weightIdx >= (params.m_Width * params.m_Height))
|
|
break;
|
|
}
|
|
|
|
// Do infill if necessary (Section C.2.18) ...
|
|
uint32 Ds = (1024 + (blockWidth/2)) / (blockWidth - 1);
|
|
uint32 Dt = (1024 + (blockHeight/2)) / (blockHeight - 1);
|
|
|
|
for(uint32 plane = 0; plane < (params.m_bDualPlane? 2U : 1U); plane++)
|
|
for(uint32 t = 0; t < blockHeight; t++)
|
|
for(uint32 s = 0; s < blockWidth; s++) {
|
|
uint32 cs = Ds * s;
|
|
uint32 ct = Dt * t;
|
|
|
|
uint32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
|
|
uint32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
|
|
|
|
uint32 js = gs >> 4;
|
|
uint32 fs = gs & 0xF;
|
|
|
|
uint32 jt = gt >> 4;
|
|
uint32 ft = gt & 0x0F;
|
|
|
|
uint32 w11 = (fs * ft + 8) >> 4;
|
|
uint32 w10 = ft - w11;
|
|
uint32 w01 = fs - w11;
|
|
uint32 w00 = 16 - fs - ft + w11;
|
|
|
|
uint32 v0 = js + jt * params.m_Width;
|
|
|
|
#define FIND_TEXEL(tidx, bidx) \
|
|
uint32 p##bidx = 0; \
|
|
do { \
|
|
if(w##bidx > 0) { \
|
|
assert((tidx) < (params.m_Width * params.m_Height)); \
|
|
p##bidx = unquantized[plane][(tidx)]; \
|
|
} \
|
|
} \
|
|
while(0)
|
|
|
|
FIND_TEXEL(v0, 00);
|
|
FIND_TEXEL(v0 + 1, 01);
|
|
FIND_TEXEL(v0 + params.m_Width, 10);
|
|
FIND_TEXEL(v0 + params.m_Width + 1, 11);
|
|
|
|
#undef FIND_TEXEL
|
|
|
|
out[plane][t*blockWidth + s] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
|
|
}
|
|
}
|
|
|
|
// Section C.2.14
|
|
void ComputeEndpoints(FasTC::Pixel &ep1, FasTC::Pixel &ep2,
|
|
const uint32* &colorValues, uint32 colorEndpointMode) {
|
|
#define READ_UINT_VALUES(N) \
|
|
uint32 v[N]; \
|
|
for(uint32 i = 0; i < N; i++) { \
|
|
v[i] = *(colorValues++); \
|
|
}
|
|
|
|
#define READ_INT_VALUES(N) \
|
|
int32 v[N]; \
|
|
for(uint32 i = 0; i < N; i++) { \
|
|
v[i] = static_cast<int32>(*(colorValues++)); \
|
|
}
|
|
|
|
switch(colorEndpointMode) {
|
|
case 0: {
|
|
READ_UINT_VALUES(2)
|
|
ep1 = FasTC::Pixel(0xFF, v[0], v[0], v[0]);
|
|
ep2 = FasTC::Pixel(0xFF, v[1], v[1], v[1]);
|
|
}
|
|
break;
|
|
|
|
case 1: {
|
|
READ_UINT_VALUES(2)
|
|
uint32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
|
|
uint32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
|
|
ep1 = FasTC::Pixel(0xFF, L0, L0, L0);
|
|
ep2 = FasTC::Pixel(0xFF, L1, L1, L1);
|
|
}
|
|
break;
|
|
|
|
case 4: {
|
|
READ_UINT_VALUES(4)
|
|
ep1 = FasTC::Pixel(v[2], v[0], v[0], v[0]);
|
|
ep2 = FasTC::Pixel(v[3], v[1], v[1], v[1]);
|
|
}
|
|
break;
|
|
|
|
case 5: {
|
|
READ_INT_VALUES(4)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
ep1 = FasTC::Pixel(v[2], v[0], v[0], v[0]);
|
|
ep2 = FasTC::Pixel(v[2]+v[3], v[0]+v[1], v[0]+v[1], v[0]+v[1]);
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
}
|
|
break;
|
|
|
|
case 6: {
|
|
READ_UINT_VALUES(4)
|
|
ep1 = FasTC::Pixel(0xFF, v[0]*v[3] >> 8, v[1]*v[3] >> 8, v[2]*v[3] >> 8);
|
|
ep2 = FasTC::Pixel(0xFF, v[0], v[1], v[2]);
|
|
}
|
|
break;
|
|
|
|
case 8: {
|
|
READ_UINT_VALUES(6)
|
|
if(v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) {
|
|
ep1 = FasTC::Pixel(0xFF, v[0], v[2], v[4]);
|
|
ep2 = FasTC::Pixel(0xFF, v[1], v[3], v[5]);
|
|
} else {
|
|
ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
|
|
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 9: {
|
|
READ_INT_VALUES(6)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
BitTransferSigned(v[5], v[4]);
|
|
if(v[1]+v[3]+v[5] >= 0) {
|
|
ep1 = FasTC::Pixel(0xFF, v[0], v[2], v[4]);
|
|
ep2 = FasTC::Pixel(0xFF, v[0]+v[1], v[2]+v[3], v[4]+v[5]);
|
|
} else {
|
|
ep1 = BlueContract(0xFF, v[0]+v[1], v[2]+v[3], v[4]+v[5]);
|
|
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
|
|
}
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
}
|
|
break;
|
|
|
|
case 10: {
|
|
READ_UINT_VALUES(6)
|
|
ep1 = FasTC::Pixel(v[4], v[0]*v[3] >> 8, v[1]*v[3] >> 8, v[2]*v[3] >> 8);
|
|
ep2 = FasTC::Pixel(v[5], v[0], v[1], v[2]);
|
|
}
|
|
break;
|
|
|
|
case 12: {
|
|
READ_UINT_VALUES(8)
|
|
if(v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) {
|
|
ep1 = FasTC::Pixel(v[6], v[0], v[2], v[4]);
|
|
ep2 = FasTC::Pixel(v[7], v[1], v[3], v[5]);
|
|
} else {
|
|
ep1 = BlueContract(v[7], v[1], v[3], v[5]);
|
|
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 13: {
|
|
READ_INT_VALUES(8)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
BitTransferSigned(v[5], v[4]);
|
|
BitTransferSigned(v[7], v[6]);
|
|
if(v[1]+v[3]+v[5] >= 0) {
|
|
ep1 = FasTC::Pixel(v[6], v[0], v[2], v[4]);
|
|
ep2 = FasTC::Pixel(v[7]+v[6], v[0]+v[1], v[2]+v[3], v[4]+v[5]);
|
|
} else {
|
|
ep1 = BlueContract(v[6]+v[7], v[0]+v[1], v[2]+v[3], v[4]+v[5]);
|
|
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
|
|
}
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(!"Unsupported color endpoint mode (is it HDR?)");
|
|
break;
|
|
}
|
|
|
|
#undef READ_UINT_VALUES
|
|
#undef READ_INT_VALUES
|
|
}
|
|
|
|
void DecompressBlock(const uint8 inBuf[16],
|
|
const uint32 blockWidth, const uint32 blockHeight,
|
|
uint32 *outBuf) {
|
|
BitStreamReadOnly strm(inBuf);
|
|
TexelWeightParams weightParams = DecodeBlockInfo(strm);
|
|
|
|
// Was there an error?
|
|
if(weightParams.m_bError) {
|
|
assert(!"Invalid block mode");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if(weightParams.m_Width > blockWidth) {
|
|
assert(!"Texel weight grid width should be smaller than block width");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if(weightParams.m_Height > blockHeight) {
|
|
assert(!"Texel weight grid height should be smaller than block height");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
// Read num partitions
|
|
uint32 nPartitions = strm.ReadBits(2) + 1;
|
|
assert(nPartitions <= 4);
|
|
|
|
if(nPartitions == 4 && weightParams.m_bDualPlane) {
|
|
assert(!"Dual plane mode is incompatible with four partition blocks");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
// Based on the number of partitions, read the color endpoint mode for
|
|
// each partition.
|
|
|
|
// Determine partitions, partition index, and color endpoint modes
|
|
int32 planeIdx = -1;
|
|
uint32 partitionIndex = nPartitions;
|
|
uint32 colorEndpointMode[4] = {0, 0, 0, 0};
|
|
|
|
// Define color data.
|
|
uint8 colorEndpointData[16];
|
|
memset(colorEndpointData, 0, sizeof(colorEndpointData));
|
|
FasTC::BitStream colorEndpointStream (colorEndpointData, 16*8, 0);
|
|
|
|
// Read extra config data...
|
|
uint32 baseCEM = 0;
|
|
if(nPartitions == 1) {
|
|
colorEndpointMode[0] = strm.ReadBits(4);
|
|
partitionIndex = 0;
|
|
} else {
|
|
partitionIndex = strm.ReadBits(10);
|
|
baseCEM = strm.ReadBits(6);
|
|
}
|
|
uint32 baseMode = (baseCEM & 3);
|
|
|
|
// Remaining bits are color endpoint data...
|
|
uint32 nWeightBits = weightParams.GetPackedBitSize();
|
|
int32 remainingBits = 128 - nWeightBits - strm.GetBitsRead();
|
|
|
|
// Consider extra bits prior to texel data...
|
|
uint32 extraCEMbits = 0;
|
|
if(baseMode) {
|
|
switch(nPartitions) {
|
|
case 2: extraCEMbits += 2; break;
|
|
case 3: extraCEMbits += 5; break;
|
|
case 4: extraCEMbits += 8; break;
|
|
default: assert(false); break;
|
|
}
|
|
}
|
|
remainingBits -= extraCEMbits;
|
|
|
|
// Do we have a dual plane situation?
|
|
uint32 planeSelectorBits = 0;
|
|
if(weightParams.m_bDualPlane) {
|
|
planeSelectorBits = 2;
|
|
}
|
|
remainingBits -= planeSelectorBits;
|
|
|
|
// Read color data...
|
|
uint32 colorDataBits = remainingBits;
|
|
while(remainingBits > 0) {
|
|
uint32 nb = std::min(remainingBits, 8);
|
|
uint32 b = strm.ReadBits(nb);
|
|
colorEndpointStream.WriteBits(b, nb);
|
|
remainingBits -= 8;
|
|
}
|
|
|
|
// Read the plane selection bits
|
|
planeIdx = strm.ReadBits(planeSelectorBits);
|
|
|
|
// Read the rest of the CEM
|
|
if(baseMode) {
|
|
uint32 extraCEM = strm.ReadBits(extraCEMbits);
|
|
uint32 CEM = (extraCEM << 6) | baseCEM;
|
|
CEM >>= 2;
|
|
|
|
bool C[4] = { 0 };
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
C[i] = CEM & 1;
|
|
CEM >>= 1;
|
|
}
|
|
|
|
uint8 M[4] = { 0 };
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
M[i] = CEM & 3;
|
|
CEM >>= 2;
|
|
assert(M[i] <= 3);
|
|
}
|
|
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
colorEndpointMode[i] = baseMode;
|
|
if(!(C[i])) colorEndpointMode[i] -= 1;
|
|
colorEndpointMode[i] <<= 2;
|
|
colorEndpointMode[i] |= M[i];
|
|
}
|
|
} else if(nPartitions > 1) {
|
|
uint32 CEM = baseCEM >> 2;
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
colorEndpointMode[i] = CEM;
|
|
}
|
|
}
|
|
|
|
// Make sure everything up till here is sane.
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
assert(colorEndpointMode[i] < 16);
|
|
}
|
|
assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
|
|
|
|
// Read the texel weight data..
|
|
uint8 texelWeightData[16];
|
|
memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
|
|
|
|
// Reverse everything
|
|
for(uint32 i = 0; i < 8; i++) {
|
|
// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
|
|
#define REVERSE_BYTE(b) (((b) * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
|
|
unsigned char a = REVERSE_BYTE(texelWeightData[i]);
|
|
unsigned char b = REVERSE_BYTE(texelWeightData[15 - i]);
|
|
#undef REVERSE_BYTE
|
|
|
|
texelWeightData[i] = b;
|
|
texelWeightData[15-i] = a;
|
|
}
|
|
|
|
// Decode both color data and texel weight data
|
|
uint32 colorValues[32]; // Four values, two endpoints, four maximum paritions
|
|
DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode,
|
|
nPartitions, colorDataBits);
|
|
|
|
std::vector<IntegerEncodedValue> texelWeightValues;
|
|
FasTC::BitStreamReadOnly weightStream (texelWeightData);
|
|
|
|
IntegerEncodedValue::
|
|
DecodeIntegerSequence(texelWeightValues, weightStream,
|
|
weightParams.m_MaxWeight,
|
|
weightParams.GetNumWeightValues());
|
|
|
|
FasTC::Pixel endpoints[4][2];
|
|
const uint32 *colorValuesPtr = colorValues;
|
|
for(uint32 i = 0; i < nPartitions; i++) {
|
|
ComputeEndpoints(endpoints[i][0], endpoints[i][1],
|
|
colorValuesPtr, colorEndpointMode[i]);
|
|
}
|
|
|
|
// Blocks can be at most 12x12, so we can have as many as 144 weights
|
|
uint32 weights[2][144];
|
|
UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
|
|
|
|
// Now that we have endpoints and weights, we can interpolate and generate
|
|
// the proper decoding...
|
|
for(uint32 j = 0; j < blockHeight; j++)
|
|
for(uint32 i = 0; i < blockWidth; i++) {
|
|
uint32 partition = Select2DPartition(
|
|
partitionIndex, i, j, nPartitions, (blockHeight * blockWidth) < 32
|
|
);
|
|
assert(partition < nPartitions);
|
|
|
|
FasTC::Pixel p;
|
|
for(uint32 c = 0; c < 4; c++) {
|
|
uint32 C0 = endpoints[partition][0].Component(c);
|
|
C0 = FasTC::Replicate(C0, 8, 16);
|
|
uint32 C1 = endpoints[partition][1].Component(c);
|
|
C1 = FasTC::Replicate(C1, 8, 16);
|
|
|
|
uint32 plane = 0;
|
|
if(weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
|
|
plane = 1;
|
|
}
|
|
|
|
uint32 weight = weights[plane][j * blockWidth + i];
|
|
uint32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
|
|
if(C == 65535) {
|
|
p.Component(c) = 255;
|
|
} else {
|
|
double Cf = static_cast<double>(C);
|
|
p.Component(c) = static_cast<uint16>(255.0 * (Cf / 65536.0) + 0.5);
|
|
}
|
|
}
|
|
|
|
outBuf[j * blockWidth + i] = p.Pack();
|
|
}
|
|
}
|
|
|
|
void Decompress(const FasTC::DecompressionJob &dcj) {
|
|
uint32 blockWidth = GetBlockWidth(dcj.Format());
|
|
uint32 blockHeight = GetBlockHeight(dcj.Format());
|
|
uint32 blockIdx = 0;
|
|
for(uint32 j = 0; j < dcj.Height(); j+=blockHeight) {
|
|
for(uint32 i = 0; i < dcj.Width(); i+=blockWidth) {
|
|
|
|
const uint8 *blockPtr = dcj.InBuf() + blockIdx*16;
|
|
|
|
// Blocks can be at most 12x12
|
|
uint32 uncompData[144];
|
|
DecompressBlock(blockPtr, blockWidth, blockHeight, uncompData);
|
|
|
|
uint8 *outRow = dcj.OutBuf() + (j*dcj.Width() + i)*4;
|
|
for(uint32 jj = 0; jj < blockHeight; jj++) {
|
|
memcpy(outRow + jj*dcj.Width()*4, uncompData + jj*blockWidth, blockWidth*4);
|
|
}
|
|
|
|
blockIdx++;
|
|
}
|
|
}
|
|
|
|
// Flip the image...
|
|
uint32 *imgStart = reinterpret_cast<uint32 *>(dcj.OutBuf());
|
|
for(uint32 j = 0; j < (dcj.Height() >> 1); j++) {
|
|
for(uint32 i = 0; i < dcj.Width(); i++) {
|
|
const uint32 rowA = j*dcj.Width();
|
|
const uint32 rowB = (dcj.Height() - j - 1) * dcj.Width();
|
|
std::swap(imgStart[rowA + i], imgStart[rowB + i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace ASTCC
|