FasTC/PVRTCEncoder/src/Decompressor.cpp
2013-10-08 20:30:31 -04:00

391 lines
12 KiB
C++

/* FasTC
* Copyright (c) 2013 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#include "PVRTCCompressor.h"
#include <cassert>
#include <vector>
#include "Pixel.h"
#include "Block.h"
#include "PVRTCImage.h"
namespace PVRTCC {
static uint32 Interleave(uint16 inx, uint16 iny) {
// Taken from:
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
static const uint32 S[] = {1, 2, 4, 8};
uint32 x = static_cast<uint32>(inx);
uint32 y = static_cast<uint32>(iny);
x = (x | (x << S[3])) & B[3];
x = (x | (x << S[2])) & B[2];
x = (x | (x << S[1])) & B[1];
x = (x | (x << S[0])) & B[0];
y = (y | (y << S[3])) & B[3];
y = (y | (y << S[2])) & B[2];
y = (y | (y << S[1])) & B[1];
y = (y | (y << S[0])) & B[0];
return x | (y << 1);
}
static void Decompress4BPP(const Image &imgA, const Image &imgB,
const std::vector<Block> &blocks,
uint8 *const outBuf,
bool bDebugImages = false) {
const uint32 w = imgA.GetWidth();
const uint32 h = imgA.GetHeight();
assert(imgA.GetWidth() == imgB.GetWidth());
assert(imgA.GetHeight() == imgB.GetHeight());
Image debugModulation(w, h);
const uint8 debugModulationBitDepth[4] = { 8, 4, 4, 4 };
debugModulation.ChangeBitDepth(debugModulationBitDepth);
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
const uint32 blockWidth = 4;
const uint32 blockHeight = 4;
const uint32 blockIdx =
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
const Block &b = blocks[blockIdx];
const uint32 texelIndex =
(j % blockHeight) * blockWidth + (i % blockWidth);
const Pixel &pa = imgA(i, j);
const Pixel &pb = imgB(i, j);
bool punchThrough = false;
uint8 lerpVal = 0;
if(b.GetModeBit()) {
const uint8 lerpVals[3] = { 8, 4, 0 };
uint8 modVal = b.GetLerpValue(texelIndex);
if(modVal >= 2) {
if(modVal == 2) {
punchThrough = true;
}
modVal -= 1;
}
lerpVal = lerpVals[modVal];
} else {
const uint8 lerpVals[4] = { 8, 5, 3, 0 };
lerpVal = lerpVals[b.GetLerpValue(texelIndex)];
}
if(bDebugImages) {
Pixel &modPx = debugModulation(i, j);
modPx.A() = 0xFF;
for(uint32 c = 1; c < 4; c++) {
float fv = (static_cast<float>(lerpVal) / 8.0f) * 15.0f;
modPx.Component(c) = static_cast<uint8>(fv);
}
// Make punch through pixels red.
if(punchThrough) {
modPx.G() = modPx.B() = 0;
}
}
Pixel result = (pa * (8 - lerpVal) + pb * lerpVal) / 8;
if(punchThrough) {
result.A() = 0;
}
uint32 *outPixels = reinterpret_cast<uint32 *>(outBuf);
outPixels[(j * w) + i] = result.Pack();
}
}
if(bDebugImages) {
debugModulation.DebugOutput("Modulation");
}
}
static void Decompress2BPP(const Image &imgA, const Image &imgB,
const std::vector<Block> &blocks,
uint8 *const outBuf,
bool bDebugImages) {
const uint32 w = imgA.GetWidth();
const uint32 h = imgA.GetHeight();
assert(w > 0);
assert(h > 0);
assert(imgA.GetWidth() == imgB.GetWidth());
assert(imgA.GetHeight() == imgB.GetHeight());
std::vector<uint8> modValues;
modValues.reserve(w * h);
const uint32 blockWidth = 8;
const uint32 blockHeight = 4;
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
const uint32 blockIdx =
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
const Block &b = blocks[blockIdx];
const uint32 texelIndex =
(j % blockHeight) * blockWidth + (i % blockWidth);
uint8 lerpVal = 0;
if(b.GetModeBit()) {
uint32 texelX = texelIndex % blockWidth;
uint32 texelY = texelIndex / blockWidth;
const uint8 lerpVals[4] = { 8, 5, 3, 0 };
if(((texelX ^ texelY) & 0x1) == 0) {
uint32 lerpIdx = texelY * (blockWidth / 2) + (texelX / 2);
lerpVal = lerpVals[b.Get2BPPLerpValue(lerpIdx)];
}
} else {
lerpVal = b.Get2BPPLerpValue(texelIndex);
lerpVal = lerpVal? 0 : 8;
}
modValues.push_back(lerpVal);
}
}
assert(modValues.size() == w * h);
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
const uint32 blockIdx =
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
const Block &b = blocks[blockIdx];
uint8 lerpVal = 0;
#define GET_LERP_VAL(x, y) modValues[(y) * w + (x)]
if(b.GetModeBit() && ((i ^ j) & 0x1)) {
switch(b.Get2BPPSubMode()) {
case Block::e2BPPSubMode_Horizontal:
lerpVal += GET_LERP_VAL((i + w - 1) % w, j);
lerpVal += GET_LERP_VAL((i + w + 1) % w, j);
lerpVal /= 2;
break;
case Block::e2BPPSubMode_Vertical:
lerpVal += GET_LERP_VAL(i, (j + h - 1) % h);
lerpVal += GET_LERP_VAL(i, (j + h + 1) % h);
lerpVal /= 2;
break;
default:
case Block::e2BPPSubMode_All:
lerpVal += GET_LERP_VAL(i, (j + h - 1) % h);
lerpVal += GET_LERP_VAL(i, (j + h + 1) % h);
lerpVal += GET_LERP_VAL((i + w - 1) % w, j);
lerpVal += GET_LERP_VAL((i + w + 1) % w, j);
lerpVal = (lerpVal + 1) / 4;
break;
}
GET_LERP_VAL(i, j) = lerpVal;
} else {
lerpVal = GET_LERP_VAL(i, j);
}
#undef GET_LERP_VAL
const Pixel &pa = imgA(i, j);
const Pixel &pb = imgB(i, j);
Pixel result = (pa * (8 - lerpVal) + pb * lerpVal) / 8;
uint32 *outPixels = reinterpret_cast<uint32 *>(outBuf);
outPixels[(j * w) + i] = result.Pack();
}
}
if(bDebugImages) {
Image dbgMod(w, h);
for(uint32 i = 0; i < h*w; i++) {
float fb = static_cast<float>(modValues[i]);
uint8 val = static_cast<uint8>((fb / 8.0f) * 15.0f);
for(uint32 k = 1; k < 4; k++) {
dbgMod(i%w, i/w).Component(k) = val;
}
dbgMod(i%w, i/w).A() = 0xFF;
}
dbgMod.DebugOutput("Modulation");
}
}
void Decompress(const DecompressionJob &dcj,
const bool bTwoBitMode,
const EWrapMode wrapMode,
bool bDebugImages) {
const uint32 w = dcj.width;
const uint32 h = dcj.height;
assert(w > 0);
assert(h > 0);
assert(bTwoBitMode || w % 4 == 0);
assert(!bTwoBitMode || w % 8 == 0);
assert(h % 4 == 0);
// First, extract all of the block information...
std::vector<Block> blocks;
const uint32 blocksW = bTwoBitMode? (w / 8) : (w / 4);
const uint32 blocksH = h / 4;
blocks.reserve(blocksW * blocksH);
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
// The blocks are initially arranged in morton order. Let's
// linearize them...
uint32 idx = Interleave(j, i);
uint32 offset = idx * kBlockSize;
blocks.push_back( Block(dcj.inBuf + offset) );
}
}
assert(blocks.size() > 0);
// Extract the endpoints into A and B images
Image imgA(blocksW, blocksH);
Image imgB(blocksW, blocksH);
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
uint32 idx = j * blocksW + i;
assert(idx < static_cast<uint32>(blocks.size()));
Block &b = blocks[idx];
imgA(i, j) = b.GetColorA();
imgB(i, j) = b.GetColorB();
}
}
// Change the pixel mode so that all of the pixels are at the same
// bit depth.
const uint8 scaleDepths[4] = { 4, 5, 5, 5 };
imgA.ChangeBitDepth(scaleDepths);
if(bDebugImages)
imgA.DebugOutput("UnscaledImgA");
imgB.ChangeBitDepth(scaleDepths);
if(bDebugImages)
imgB.DebugOutput("UnscaledImgB");
// Go through and change the alpha value of any pixel that came from
// a transparent block. For some reason, alpha is not treated the same
// as the other channels (to minimize hardware costs?) and the channels
// do not their MSBs replicated.
for(uint32 j = 0; j < blocksH; j++) {
for(uint32 i = 0; i < blocksW; i++) {
const uint32 blockIdx = j * blocksW + i;
Block &b = blocks[blockIdx];
uint8 bitDepths[4];
b.GetColorA().GetBitDepth(bitDepths);
if(bitDepths[0] > 0) {
Pixel &p = imgA(i, j);
p.A() = p.A() & 0xFE;
}
b.GetColorB().GetBitDepth(bitDepths);
if(bitDepths[0] > 0) {
Pixel &p = imgB(i, j);
p.A() = p.A() & 0xFE;
}
}
}
// Bilinearly upscale the images.
if(bTwoBitMode) {
imgA.BilinearUpscale(3, 2, wrapMode);
imgB.BilinearUpscale(3, 2, wrapMode);
} else {
imgA.BilinearUpscale(2, 2, wrapMode);
imgB.BilinearUpscale(2, 2, wrapMode);
}
if(bDebugImages) {
imgA.DebugOutput("RawScaledImgA");
imgB.DebugOutput("RawScaledImgB");
}
// Change the bitdepth to full resolution
imgA.ExpandTo8888();
imgB.ExpandTo8888();
if(bDebugImages) {
imgA.DebugOutput("ScaledImgA");
imgB.DebugOutput("ScaledImgB");
}
if(bTwoBitMode) {
Decompress2BPP(imgA, imgB, blocks, dcj.outBuf, bDebugImages);
} else {
Decompress4BPP(imgA, imgB, blocks, dcj.outBuf, bDebugImages);
}
}
} // namespace PVRTCC