mirror of
https://github.com/yuzu-emu/FasTC.git
synced 2025-02-03 13:41:05 +00:00
391 lines
12 KiB
C++
391 lines
12 KiB
C++
/* FasTC
|
|
* Copyright (c) 2013 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
#include "PVRTCCompressor.h"
|
|
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#include "Pixel.h"
|
|
#include "Block.h"
|
|
#include "PVRTCImage.h"
|
|
|
|
namespace PVRTCC {
|
|
|
|
static uint32 Interleave(uint16 inx, uint16 iny) {
|
|
// Taken from:
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
|
|
|
|
static const uint32 B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF};
|
|
static const uint32 S[] = {1, 2, 4, 8};
|
|
|
|
uint32 x = static_cast<uint32>(inx);
|
|
uint32 y = static_cast<uint32>(iny);
|
|
|
|
x = (x | (x << S[3])) & B[3];
|
|
x = (x | (x << S[2])) & B[2];
|
|
x = (x | (x << S[1])) & B[1];
|
|
x = (x | (x << S[0])) & B[0];
|
|
|
|
y = (y | (y << S[3])) & B[3];
|
|
y = (y | (y << S[2])) & B[2];
|
|
y = (y | (y << S[1])) & B[1];
|
|
y = (y | (y << S[0])) & B[0];
|
|
|
|
return x | (y << 1);
|
|
}
|
|
|
|
static void Decompress4BPP(const Image &imgA, const Image &imgB,
|
|
const std::vector<Block> &blocks,
|
|
uint8 *const outBuf,
|
|
bool bDebugImages = false) {
|
|
const uint32 w = imgA.GetWidth();
|
|
const uint32 h = imgA.GetHeight();
|
|
|
|
assert(imgA.GetWidth() == imgB.GetWidth());
|
|
assert(imgA.GetHeight() == imgB.GetHeight());
|
|
|
|
Image debugModulation(w, h);
|
|
const uint8 debugModulationBitDepth[4] = { 8, 4, 4, 4 };
|
|
debugModulation.ChangeBitDepth(debugModulationBitDepth);
|
|
|
|
for(uint32 j = 0; j < h; j++) {
|
|
for(uint32 i = 0; i < w; i++) {
|
|
const uint32 blockWidth = 4;
|
|
const uint32 blockHeight = 4;
|
|
|
|
const uint32 blockIdx =
|
|
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
|
|
const Block &b = blocks[blockIdx];
|
|
|
|
const uint32 texelIndex =
|
|
(j % blockHeight) * blockWidth + (i % blockWidth);
|
|
|
|
const Pixel &pa = imgA(i, j);
|
|
const Pixel &pb = imgB(i, j);
|
|
|
|
bool punchThrough = false;
|
|
uint8 lerpVal = 0;
|
|
if(b.GetModeBit()) {
|
|
const uint8 lerpVals[3] = { 8, 4, 0 };
|
|
uint8 modVal = b.GetLerpValue(texelIndex);
|
|
|
|
if(modVal >= 2) {
|
|
if(modVal == 2) {
|
|
punchThrough = true;
|
|
}
|
|
modVal -= 1;
|
|
}
|
|
|
|
lerpVal = lerpVals[modVal];
|
|
} else {
|
|
const uint8 lerpVals[4] = { 8, 5, 3, 0 };
|
|
lerpVal = lerpVals[b.GetLerpValue(texelIndex)];
|
|
}
|
|
|
|
if(bDebugImages) {
|
|
Pixel &modPx = debugModulation(i, j);
|
|
modPx.A() = 0xFF;
|
|
for(uint32 c = 1; c < 4; c++) {
|
|
float fv = (static_cast<float>(lerpVal) / 8.0f) * 15.0f;
|
|
modPx.Component(c) = static_cast<uint8>(fv);
|
|
}
|
|
|
|
// Make punch through pixels red.
|
|
if(punchThrough) {
|
|
modPx.G() = modPx.B() = 0;
|
|
}
|
|
}
|
|
|
|
Pixel result = (pa * (8 - lerpVal) + pb * lerpVal) / 8;
|
|
if(punchThrough) {
|
|
result.A() = 0;
|
|
}
|
|
|
|
uint32 *outPixels = reinterpret_cast<uint32 *>(outBuf);
|
|
outPixels[(j * w) + i] = result.Pack();
|
|
}
|
|
}
|
|
|
|
if(bDebugImages) {
|
|
debugModulation.DebugOutput("Modulation");
|
|
}
|
|
}
|
|
|
|
static void Decompress2BPP(const Image &imgA, const Image &imgB,
|
|
const std::vector<Block> &blocks,
|
|
uint8 *const outBuf,
|
|
bool bDebugImages) {
|
|
const uint32 w = imgA.GetWidth();
|
|
const uint32 h = imgA.GetHeight();
|
|
|
|
assert(w > 0);
|
|
assert(h > 0);
|
|
assert(imgA.GetWidth() == imgB.GetWidth());
|
|
assert(imgA.GetHeight() == imgB.GetHeight());
|
|
|
|
std::vector<uint8> modValues;
|
|
modValues.reserve(w * h);
|
|
|
|
const uint32 blockWidth = 8;
|
|
const uint32 blockHeight = 4;
|
|
|
|
for(uint32 j = 0; j < h; j++) {
|
|
for(uint32 i = 0; i < w; i++) {
|
|
|
|
const uint32 blockIdx =
|
|
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
|
|
const Block &b = blocks[blockIdx];
|
|
|
|
const uint32 texelIndex =
|
|
(j % blockHeight) * blockWidth + (i % blockWidth);
|
|
|
|
uint8 lerpVal = 0;
|
|
if(b.GetModeBit()) {
|
|
uint32 texelX = texelIndex % blockWidth;
|
|
uint32 texelY = texelIndex / blockWidth;
|
|
|
|
const uint8 lerpVals[4] = { 8, 5, 3, 0 };
|
|
if(((texelX ^ texelY) & 0x1) == 0) {
|
|
uint32 lerpIdx = texelY * (blockWidth / 2) + (texelX / 2);
|
|
lerpVal = lerpVals[b.Get2BPPLerpValue(lerpIdx)];
|
|
}
|
|
} else {
|
|
lerpVal = b.Get2BPPLerpValue(texelIndex);
|
|
lerpVal = lerpVal? 0 : 8;
|
|
}
|
|
modValues.push_back(lerpVal);
|
|
}
|
|
}
|
|
|
|
assert(modValues.size() == w * h);
|
|
|
|
for(uint32 j = 0; j < h; j++) {
|
|
for(uint32 i = 0; i < w; i++) {
|
|
|
|
const uint32 blockIdx =
|
|
(j/blockHeight) * (w/blockWidth) + (i/blockWidth);
|
|
const Block &b = blocks[blockIdx];
|
|
|
|
uint8 lerpVal = 0;
|
|
#define GET_LERP_VAL(x, y) modValues[(y) * w + (x)]
|
|
if(b.GetModeBit() && ((i ^ j) & 0x1)) {
|
|
|
|
switch(b.Get2BPPSubMode()) {
|
|
case Block::e2BPPSubMode_Horizontal:
|
|
lerpVal += GET_LERP_VAL((i + w - 1) % w, j);
|
|
lerpVal += GET_LERP_VAL((i + w + 1) % w, j);
|
|
lerpVal /= 2;
|
|
break;
|
|
|
|
case Block::e2BPPSubMode_Vertical:
|
|
lerpVal += GET_LERP_VAL(i, (j + h - 1) % h);
|
|
lerpVal += GET_LERP_VAL(i, (j + h + 1) % h);
|
|
lerpVal /= 2;
|
|
break;
|
|
|
|
default:
|
|
case Block::e2BPPSubMode_All:
|
|
lerpVal += GET_LERP_VAL(i, (j + h - 1) % h);
|
|
lerpVal += GET_LERP_VAL(i, (j + h + 1) % h);
|
|
lerpVal += GET_LERP_VAL((i + w - 1) % w, j);
|
|
lerpVal += GET_LERP_VAL((i + w + 1) % w, j);
|
|
lerpVal = (lerpVal + 1) / 4;
|
|
break;
|
|
}
|
|
GET_LERP_VAL(i, j) = lerpVal;
|
|
} else {
|
|
lerpVal = GET_LERP_VAL(i, j);
|
|
}
|
|
#undef GET_LERP_VAL
|
|
|
|
const Pixel &pa = imgA(i, j);
|
|
const Pixel &pb = imgB(i, j);
|
|
|
|
Pixel result = (pa * (8 - lerpVal) + pb * lerpVal) / 8;
|
|
uint32 *outPixels = reinterpret_cast<uint32 *>(outBuf);
|
|
outPixels[(j * w) + i] = result.Pack();
|
|
}
|
|
}
|
|
|
|
if(bDebugImages) {
|
|
Image dbgMod(w, h);
|
|
for(uint32 i = 0; i < h*w; i++) {
|
|
float fb = static_cast<float>(modValues[i]);
|
|
uint8 val = static_cast<uint8>((fb / 8.0f) * 15.0f);
|
|
|
|
for(uint32 k = 1; k < 4; k++) {
|
|
dbgMod(i%w, i/w).Component(k) = val;
|
|
}
|
|
dbgMod(i%w, i/w).A() = 0xFF;
|
|
}
|
|
|
|
dbgMod.DebugOutput("Modulation");
|
|
}
|
|
}
|
|
|
|
void Decompress(const DecompressionJob &dcj,
|
|
const bool bTwoBitMode,
|
|
const EWrapMode wrapMode,
|
|
bool bDebugImages) {
|
|
const uint32 w = dcj.width;
|
|
const uint32 h = dcj.height;
|
|
|
|
assert(w > 0);
|
|
assert(h > 0);
|
|
assert(bTwoBitMode || w % 4 == 0);
|
|
assert(!bTwoBitMode || w % 8 == 0);
|
|
assert(h % 4 == 0);
|
|
|
|
// First, extract all of the block information...
|
|
std::vector<Block> blocks;
|
|
|
|
const uint32 blocksW = bTwoBitMode? (w / 8) : (w / 4);
|
|
const uint32 blocksH = h / 4;
|
|
blocks.reserve(blocksW * blocksH);
|
|
|
|
for(uint32 j = 0; j < blocksH; j++) {
|
|
for(uint32 i = 0; i < blocksW; i++) {
|
|
|
|
// The blocks are initially arranged in morton order. Let's
|
|
// linearize them...
|
|
uint32 idx = Interleave(j, i);
|
|
|
|
uint32 offset = idx * kBlockSize;
|
|
blocks.push_back( Block(dcj.inBuf + offset) );
|
|
}
|
|
}
|
|
|
|
assert(blocks.size() > 0);
|
|
|
|
// Extract the endpoints into A and B images
|
|
Image imgA(blocksW, blocksH);
|
|
Image imgB(blocksW, blocksH);
|
|
|
|
for(uint32 j = 0; j < blocksH; j++) {
|
|
for(uint32 i = 0; i < blocksW; i++) {
|
|
|
|
uint32 idx = j * blocksW + i;
|
|
assert(idx < static_cast<uint32>(blocks.size()));
|
|
|
|
Block &b = blocks[idx];
|
|
imgA(i, j) = b.GetColorA();
|
|
imgB(i, j) = b.GetColorB();
|
|
}
|
|
}
|
|
|
|
// Change the pixel mode so that all of the pixels are at the same
|
|
// bit depth.
|
|
const uint8 scaleDepths[4] = { 4, 5, 5, 5 };
|
|
imgA.ChangeBitDepth(scaleDepths);
|
|
if(bDebugImages)
|
|
imgA.DebugOutput("UnscaledImgA");
|
|
imgB.ChangeBitDepth(scaleDepths);
|
|
if(bDebugImages)
|
|
imgB.DebugOutput("UnscaledImgB");
|
|
|
|
// Go through and change the alpha value of any pixel that came from
|
|
// a transparent block. For some reason, alpha is not treated the same
|
|
// as the other channels (to minimize hardware costs?) and the channels
|
|
// do not their MSBs replicated.
|
|
for(uint32 j = 0; j < blocksH; j++) {
|
|
for(uint32 i = 0; i < blocksW; i++) {
|
|
const uint32 blockIdx = j * blocksW + i;
|
|
Block &b = blocks[blockIdx];
|
|
|
|
uint8 bitDepths[4];
|
|
b.GetColorA().GetBitDepth(bitDepths);
|
|
if(bitDepths[0] > 0) {
|
|
Pixel &p = imgA(i, j);
|
|
p.A() = p.A() & 0xFE;
|
|
}
|
|
|
|
b.GetColorB().GetBitDepth(bitDepths);
|
|
if(bitDepths[0] > 0) {
|
|
Pixel &p = imgB(i, j);
|
|
p.A() = p.A() & 0xFE;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bilinearly upscale the images.
|
|
if(bTwoBitMode) {
|
|
imgA.BilinearUpscale(3, 2, wrapMode);
|
|
imgB.BilinearUpscale(3, 2, wrapMode);
|
|
} else {
|
|
imgA.BilinearUpscale(2, 2, wrapMode);
|
|
imgB.BilinearUpscale(2, 2, wrapMode);
|
|
}
|
|
|
|
if(bDebugImages) {
|
|
imgA.DebugOutput("RawScaledImgA");
|
|
imgB.DebugOutput("RawScaledImgB");
|
|
}
|
|
|
|
// Change the bitdepth to full resolution
|
|
imgA.ExpandTo8888();
|
|
imgB.ExpandTo8888();
|
|
|
|
if(bDebugImages) {
|
|
imgA.DebugOutput("ScaledImgA");
|
|
imgB.DebugOutput("ScaledImgB");
|
|
}
|
|
|
|
if(bTwoBitMode) {
|
|
Decompress2BPP(imgA, imgB, blocks, dcj.outBuf, bDebugImages);
|
|
} else {
|
|
Decompress4BPP(imgA, imgB, blocks, dcj.outBuf, bDebugImages);
|
|
}
|
|
}
|
|
|
|
} // namespace PVRTCC
|