FasTC/PVRTCEncoder/src/PVRTCImage.cpp
2015-04-11 14:27:55 -07:00

541 lines
16 KiB
C++

/* FasTC
* Copyright (c) 2013 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
#if _MSC_VER
# define _CRT_SECURE_NO_WARNINGS
# define snprintf _snprintf
#endif
#include "PVRTCImage.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cmath>
#include "FasTC/Pixel.h"
using FasTC::Pixel;
#ifdef DEBUG_PVRTC_DECODER
# include "../../IO/include/ImageFile.h"
#endif
#include "Indexer.h"
template <typename T>
inline T Clamp(const T &v, const T &a, const T &b) {
return ::std::min(::std::max(a, v), b);
}
namespace PVRTCC {
Image::Image(uint32 width, uint32 height)
: FasTC::Image<FasTC::Pixel>(width, height)
, m_FractionalPixels(new FasTC::Pixel[width * height]) {
assert(width > 0);
assert(height > 0);
}
Image::Image(uint32 width, uint32 height, const FasTC::Pixel *pixels)
: FasTC::Image<FasTC::Pixel>(width, height, pixels)
, m_FractionalPixels(new FasTC::Pixel[width * height]) {
assert(width > 0);
assert(height > 0);
}
Image::Image(const Image &other)
: FasTC::Image<FasTC::Pixel>(other)
, m_FractionalPixels(new FasTC::Pixel[other.GetWidth() * other.GetHeight()]) {
memcpy(m_FractionalPixels, other.m_FractionalPixels, GetWidth() * GetHeight() * sizeof(FasTC::Pixel));
}
Image &Image::operator=(const Image &other) {
FasTC::Image<FasTC::Pixel>::operator=(other);
assert(m_FractionalPixels);
delete m_FractionalPixels;
m_FractionalPixels = new FasTC::Pixel[other.GetWidth() * other.GetHeight()];
memcpy(m_FractionalPixels, other.m_FractionalPixels,
GetWidth() * GetHeight() * sizeof(FasTC::Pixel));
return *this;
}
Image::~Image() {
assert(m_FractionalPixels);
delete [] m_FractionalPixels;
}
#ifndef NDEBUG
static bool CompareBitDepths(const uint8 (&depth1)[4],
const uint8 (&depth2)[4]) {
bool ok = true;
for(uint32 i = 0; i < 4; i++) {
ok = ok && depth1[i] == depth2[i];
}
return ok;
}
#endif
void Image::BilinearUpscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode) {
const uint32 newWidth = GetWidth() << xtimes;
const uint32 newHeight = GetHeight() << ytimes;
const uint32 xscale = 1 << xtimes;
const uint32 xoffset = xscale >> 1;
const uint32 yscale = 1 << ytimes;
const uint32 yoffset = yscale >> 1;
FasTC::Pixel *upscaledPixels = new FasTC::Pixel[newWidth * newHeight];
assert(m_FractionalPixels);
delete m_FractionalPixels;
m_FractionalPixels = new FasTC::Pixel[newWidth * newHeight];
Indexer idxr(newWidth, newHeight, wrapMode);
for(uint32 j = 0; j < newHeight; j++) {
for(uint32 i = 0; i < newWidth; i++) {
const uint32 pidx = idxr(i, j);
FasTC::Pixel &p = upscaledPixels[pidx];
FasTC::Pixel &fp = m_FractionalPixels[pidx];
const int32 highXIdx = (i + xoffset) / xscale;
const int32 lowXIdx = highXIdx - 1;
const int32 highYIdx = (j + yoffset) / yscale;
const int32 lowYIdx = highYIdx - 1;
const uint32 highXWeight = (i + xoffset) % xscale;
const uint32 lowXWeight = xscale - highXWeight;
const uint32 highYWeight = (j + yoffset) % yscale;
const uint32 lowYWeight = yscale - highYWeight;
const uint32 topLeftWeight = lowXWeight * lowYWeight;
const uint32 topRightWeight = highXWeight * lowYWeight;
const uint32 bottomLeftWeight = lowXWeight * highYWeight;
const uint32 bottomRightWeight = highXWeight * highYWeight;
const FasTC::Pixel &topLeft = GetPixel(lowXIdx, lowYIdx, wrapMode);
const FasTC::Pixel &topRight = GetPixel(highXIdx, lowYIdx, wrapMode);
const FasTC::Pixel &bottomLeft = GetPixel(lowXIdx, highYIdx, wrapMode);
const FasTC::Pixel &bottomRight = GetPixel(highXIdx, highYIdx, wrapMode);
// Make sure the bit depth matches the original...
uint8 bitDepth[4];
topLeft.GetBitDepth(bitDepth);
p.ChangeBitDepth(bitDepth);
#ifndef NDEBUG
uint8 debugDepth[4];
topRight.GetBitDepth(debugDepth);
assert(CompareBitDepths(bitDepth, debugDepth));
bottomLeft.GetBitDepth(debugDepth);
assert(CompareBitDepths(bitDepth, debugDepth));
bottomRight.GetBitDepth(debugDepth);
assert(CompareBitDepths(bitDepth, debugDepth));
#endif // NDEBUG
// bilerp each channel....
const uint16 scaleMask = (xscale * yscale) - 1;
uint8 fpDepths[4];
for(uint32 c = 0; c < 4; c++) fpDepths[c] = xtimes + ytimes;
fp.ChangeBitDepth(fpDepths);
const FasTC::Pixel tl = topLeft * topLeftWeight;
const FasTC::Pixel tr = topRight * topRightWeight;
const FasTC::Pixel bl = bottomLeft * bottomLeftWeight;
const FasTC::Pixel br = bottomRight * bottomRightWeight;
const FasTC::Pixel sum = tl + tr + bl + br;
for(uint32 c = 0; c < 4; c++) {
fp.Component(c) = sum.Component(c) & scaleMask;
}
p = sum / (xscale * yscale);
}
}
SetImageData(newWidth, newHeight, upscaledPixels);
}
static Pixel AveragePixels(const ::std::vector<Pixel> &pixels) {
if(pixels.size() == 0) {
return Pixel();
}
uint32 sum[4] = {0};
::std::vector<Pixel>::const_iterator it;
for(it = pixels.begin(); it != pixels.end(); it++) {
for(uint32 c = 0; c < 4; c++) {
sum[c] += (*it).Component(c);
}
}
Pixel result;
for(uint32 c = 0; c < 4; c++) {
result.Component(c) = static_cast<uint16>(sum[c] / pixels.size());
}
return result;
}
void Image::AverageDownscale(uint32 xtimes, uint32 ytimes) {
const uint32 w = GetWidth();
const uint32 h = GetHeight();
const uint32 newWidth = w >> xtimes;
const uint32 newHeight = h >> ytimes;
Pixel *downscaledPixels = new Pixel[newWidth * newHeight];
uint8 bitDepth[4];
GetPixel(0, 0).GetBitDepth(bitDepth);
uint32 pixelsX = 1 << xtimes;
uint32 pixelsY = 1 << ytimes;
::std::vector<Pixel> toAvg;
toAvg.reserve(pixelsX * pixelsY);
for(uint32 j = 0; j < newHeight; j++) {
for(uint32 i = 0; i < newWidth; i++) {
uint32 newIdx = j * newWidth + i;
toAvg.clear();
for(uint32 y = j * pixelsY; y < (j+1) * pixelsY; y++) {
for(uint32 x = i * pixelsX; x < (i+1) * pixelsX; x++) {
toAvg.push_back((*this)(x, y));
}
}
downscaledPixels[newIdx] = AveragePixels(toAvg);
}
}
SetImageData(newWidth, newHeight, downscaledPixels);
}
void Image::ContentAwareDownscale(uint32 xtimes, uint32 ytimes,
EWrapMode wrapMode, bool bOffsetNewPixels) {
const uint32 w = GetWidth();
const uint32 h = GetHeight();
const uint32 newWidth = w >> xtimes;
const uint32 newHeight = h >> ytimes;
FasTC::Pixel *downscaledPixels = new FasTC::Pixel[newWidth * newHeight];
const uint32 numDownscaledPixels = newWidth * newHeight;
uint8 bitDepth[4];
GetPixels()[0].GetBitDepth(bitDepth);
for(uint32 i = 0; i < numDownscaledPixels; i++) {
downscaledPixels[i].ChangeBitDepth(bitDepth);
}
// Allocate memory
float *imgData = new float[19 * w * h];
float *I = imgData;
float *Ix[5] = {
imgData + (w * h),
imgData + (2 * w * h),
imgData + (3 * w * h),
imgData + (4 * w * h),
imgData + (18 * w * h),
};
float *Iy = imgData + (5 * w * h);
float *Ixx[4] = {
imgData + (6 * w * h),
imgData + (7 * w * h),
imgData + (8 * w * h),
imgData + (9 * w * h)
};
float *Iyy[4] = {
imgData + (10 * w * h),
imgData + (11 * w * h),
imgData + (12 * w * h),
imgData + (13 * w * h)
};
float *Ixy[4] = {
imgData + (14 * w * h),
imgData + (15 * w * h),
imgData + (16 * w * h),
imgData + (17 * w * h)
};
// Then, compute the intensity of the image
for(uint32 i = 0; i < w * h; i++) {
I[i] = GetPixels()[i].ToIntensity();
}
// Use central differences to calculate Ix, Iy, Ixx, Iyy...
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
uint32 xmhidx = GetPixelIndex(i-1, j);
uint32 xphidx = GetPixelIndex(i+1, j);
uint32 ymhidx = GetPixelIndex(i, j-1);
uint32 yphidx = GetPixelIndex(i, j+1);
uint32 idx = GetPixelIndex(i, j);
uint32 upidx = GetPixelIndex(i + 1, j + 1);
uint32 downidx = GetPixelIndex(i - 1, j - 1);
Ix[4][idx] = (I[xphidx] - I[xmhidx]) / 2.0f;
Iy[idx] = (I[yphidx] - I[ymhidx]) / 2.0f;
for(uint32 c = 0; c <= 3; c++) {
#define CPNT(dx) Pixel::ConvertChannelToFloat(static_cast<uint8>(GetPixels()[dx].Component(c)), bitDepth[c])
Ix[c][idx] = (CPNT(xphidx) - CPNT(xmhidx)) / 2.0f;
Ixx[c][idx] = (CPNT(xphidx) - 2.0f*CPNT(idx) + CPNT(xmhidx)) / 2.0f;
Iyy[c][idx] = (CPNT(yphidx) - 2.0f*CPNT(idx) + CPNT(ymhidx)) / 2.0f;
Ixy[c][idx] = (CPNT(upidx) - CPNT(xphidx) - CPNT(yphidx) + 2.0f*CPNT(idx) -
CPNT(xmhidx) - CPNT(ymhidx) + CPNT(downidx)) / 2.0f;
#undef CPNT
}
}
}
// Now, for each pixel that we take into consideration, use
// a smoothing step that is taken from the anisotropic diffusion
// equation:
// I_t = (I_x^2I_yy - 2I_xyI_xI_y + I_y^2I_xx)(I_x^2 + I_y^2)
for(uint32 j = 0; j < newHeight; j++) {
for(uint32 i = 0; i < newWidth; i++) {
// Map this new pixel back into the original space...
uint32 scalex = 1 << xtimes;
uint32 scaley = 1 << ytimes;
uint32 x = scalex * i;
uint32 y = scaley * j;
if(bOffsetNewPixels) {
x += scalex >> 1;
y += scaley >> 1;
}
uint32 idx = GetPixelIndex(x, y);
FasTC::Pixel current = GetPixels()[idx];
FasTC::Pixel result;
result.ChangeBitDepth(bitDepth);
float Ixsq = Ix[4][idx] * Ix[4][idx];
float Iysq = Iy[idx] * Iy[idx];
float denom = Ixsq + Iysq;
for(uint32 c = 0; c < 4; c++) {
float I0 = Pixel::ConvertChannelToFloat(static_cast<uint8>(current.Component(c)), bitDepth[c]);
float It = Ixx[c][idx] + Iyy[c][idx];
if(fabs(denom) > 1e-6) {
It -= (Ixsq * Ixx[c][idx] +
2 * Ix[4][idx] * Iy[idx] * Ixy[c][idx] +
Iysq * Iyy[c][idx]) / denom;
}
float scale = static_cast<float>((1 << bitDepth[c]) - 1);
result.Component(c) = static_cast<uint8>(Clamp(I0 + 0.25f*It, 0.0f, 1.0f) * scale + 0.5f);
}
downscaledPixels[j * newWidth + i] = result;
}
}
SetImageData(newWidth, newHeight, downscaledPixels);
delete [] imgData;
}
void Image::ComputeHessianEigenvalues(::std::vector<float> &eigOne,
::std::vector<float> &eigTwo,
EWrapMode wrapMode) {
const uint32 w = GetWidth();
const uint32 h = GetHeight();
assert(eigOne.size() == w * h);
assert(eigTwo.size() == w * h);
::std::vector<float> intensities(w * h);
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
intensities[j*w + i] = GetPixel(i, j).ToIntensity();
}
}
for(uint32 j = 0; j < h; j++) {
for(uint32 i = 0; i < w; i++) {
float I0 = intensities[GetPixelIndex(i, j, wrapMode)];
float upright = intensities[GetPixelIndex(i+1, j+1, wrapMode)];
float upleft = intensities[GetPixelIndex(i-1, j+1, wrapMode)];
float downright = intensities[GetPixelIndex(i+1, j-1, wrapMode)];
float downleft = intensities[GetPixelIndex(i-1, j-1, wrapMode)];
float right = intensities[GetPixelIndex(i+1, j, wrapMode)];
float left = intensities[GetPixelIndex(i-1, j, wrapMode)];
float up = intensities[GetPixelIndex(i, j-1, wrapMode)];
float down = intensities[GetPixelIndex(i, j+1, wrapMode)];
float Ixx = (left + right - 2*I0)*0.5f;
float Iyy = (up + down - 2*I0)*0.5f;
float Ixy = (upright + downleft - upleft - downright) * 0.25f;
// Eigenvalues are the solution of the following quadratic equation
// that corresponds to the characteristic polynomial of the hessian:
// A^2 - A * (Ixx + Iyy) - (Ixy ^ 2)
float c = Ixy * Ixy;
float b = Ixx + Iyy;
float a = 1;
float inner = b*b - 4*a*c;
// Both of the eigenvalues are imaginary... treat them as
// zeros.
uint32 idx = j*w+i;
if(inner < 0) {
eigOne[idx] = 0.0f;
eigTwo[idx] = 0.0f;
continue;
}
float sqr = sqrt(inner);
eigOne[idx] = (-b + sqr) * 0.5f;
eigTwo[idx] = (-b - sqr) * 0.5f;
}
}
}
void Image::ChangeBitDepth(const uint8 (&depths)[4]) {
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
(*this)(i, j).ChangeBitDepth(depths);
}
}
}
void Image::ExpandTo8888() {
uint8 currentDepth[4];
GetPixels()[0].GetBitDepth(currentDepth);
uint8 fractionDepth[4];
const uint8 fullDepth[4] = { 8, 8, 8, 8 };
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
FasTC::Pixel &p = (*this)(i, j);
p.ChangeBitDepth(fullDepth);
uint32 pidx = j * GetWidth() + i;
m_FractionalPixels[pidx].GetBitDepth(fractionDepth);
for(uint32 c = 0; c < 4; c++) {
uint32 denominator = (1 << currentDepth[c]);
uint32 numerator = denominator + 1;
uint32 shift = fractionDepth[c] - (fullDepth[c] - currentDepth[c]);
uint32 fractionBits = m_FractionalPixels[pidx].Component(c) >> shift;
uint32 component = p.Component(c);
component += ((fractionBits * numerator) / denominator);
p.Component(c) = component;
}
}
}
}
const FasTC::Pixel &Image::GetPixel(int32 i, int32 j, EWrapMode wrapMode) const {
return GetPixels()[GetPixelIndex(i, j, wrapMode)];
}
uint32 Image::GetPixelIndex(int32 i, int32 j, EWrapMode wrapMode) const {
Indexer idxr(GetWidth(), GetHeight(), wrapMode);
return idxr(i, j);
}
#ifdef DEBUG_PVRTC_DECODER
void Image::DebugOutput(const char *filename) const {
uint32 *outPixels = new uint32[GetWidth() * GetHeight()];
const uint8 fullDepth[4] = { 8, 8, 8, 8 };
for(uint32 j = 0; j < GetHeight(); j++) {
for(uint32 i = 0; i < GetWidth(); i++) {
FasTC::Pixel p = (*this)(i, j);
p.ChangeBitDepth(fullDepth);
p.A() = 255;
outPixels[j*GetWidth() + i] = p.Pack();
}
}
FasTC::Image<> img(GetWidth(), GetHeight(), outPixels);
char debugFilename[256];
snprintf(debugFilename, sizeof(debugFilename), "%s.png", filename);
::ImageFile imgFile(debugFilename, eFileFormat_PNG, img);
imgFile.Write();
}
#else
void Image::DebugOutput(const char *filename) const { }
#endif // DEBUG_PVRTC_DECODER
} // namespace PVRTCC