mirror of
https://github.com/yuzu-emu/breakpad.git
synced 2025-11-13 23:24:59 +00:00
A=Jia Ji <jijia@google.com> Original review: https://breakpad.appspot.com/557002/ Review URL: https://breakpad.appspot.com/558002 git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1147 4c0a9323-5329-0410-9bdc-e9ce6186880e
276 lines
10 KiB
C++
276 lines
10 KiB
C++
// -*- mode: c++ -*-
|
|
|
|
// Copyright (c) 2010 Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// stack_frame_cpu.h: CPU-specific StackFrame extensions.
|
|
//
|
|
// These types extend the StackFrame structure to carry CPU-specific register
|
|
// state. They are defined in this header instead of stack_frame.h to
|
|
// avoid the need to include minidump_format.h when only the generic
|
|
// StackFrame type is needed.
|
|
//
|
|
// Author: Mark Mentovai
|
|
|
|
#ifndef GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__
|
|
#define GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__
|
|
|
|
#include "google_breakpad/common/minidump_format.h"
|
|
#include "google_breakpad/processor/stack_frame.h"
|
|
|
|
namespace google_breakpad {
|
|
|
|
struct WindowsFrameInfo;
|
|
class CFIFrameInfo;
|
|
|
|
struct StackFrameX86 : public StackFrame {
|
|
// ContextValidity has one entry for each relevant hardware pointer
|
|
// register (%eip and %esp) and one entry for each general-purpose
|
|
// register. It's worthwhile having validity flags for caller-saves
|
|
// registers: they are valid in the youngest frame, and such a frame
|
|
// might save a callee-saves register in a caller-saves register, but
|
|
// SimpleCFIWalker won't touch registers unless they're marked as valid.
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_EIP = 1 << 0,
|
|
CONTEXT_VALID_ESP = 1 << 1,
|
|
CONTEXT_VALID_EBP = 1 << 2,
|
|
CONTEXT_VALID_EAX = 1 << 3,
|
|
CONTEXT_VALID_EBX = 1 << 4,
|
|
CONTEXT_VALID_ECX = 1 << 5,
|
|
CONTEXT_VALID_EDX = 1 << 6,
|
|
CONTEXT_VALID_ESI = 1 << 7,
|
|
CONTEXT_VALID_EDI = 1 << 8,
|
|
CONTEXT_VALID_ALL = -1
|
|
};
|
|
|
|
StackFrameX86()
|
|
: context(),
|
|
context_validity(CONTEXT_VALID_NONE),
|
|
windows_frame_info(NULL),
|
|
cfi_frame_info(NULL) {}
|
|
~StackFrameX86();
|
|
|
|
// Overriden to return the return address as saved on the stack.
|
|
virtual uint64_t ReturnAddress() const;
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, the values of nonvolatile registers may be
|
|
// present, given sufficient debugging information. Refer to
|
|
// context_validity.
|
|
MDRawContextX86 context;
|
|
|
|
// context_validity is actually ContextValidity, but int is used because
|
|
// the OR operator doesn't work well with enumerated types. This indicates
|
|
// which fields in context are valid.
|
|
int context_validity;
|
|
|
|
// Any stack walking information we found describing this.instruction.
|
|
// These may be NULL if there is no such information for that address.
|
|
WindowsFrameInfo *windows_frame_info;
|
|
CFIFrameInfo *cfi_frame_info;
|
|
};
|
|
|
|
struct StackFramePPC : public StackFrame {
|
|
// ContextValidity should eventually contain entries for the validity of
|
|
// other nonvolatile (callee-save) registers as in
|
|
// StackFrameX86::ContextValidity, but the ppc stackwalker doesn't currently
|
|
// locate registers other than the ones listed here.
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_SRR0 = 1 << 0,
|
|
CONTEXT_VALID_GPR1 = 1 << 1,
|
|
CONTEXT_VALID_ALL = -1
|
|
};
|
|
|
|
StackFramePPC() : context(), context_validity(CONTEXT_VALID_NONE) {}
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, the values of nonvolatile registers may be
|
|
// present, given sufficient debugging information. Refer to
|
|
// context_validity.
|
|
MDRawContextPPC context;
|
|
|
|
// context_validity is actually ContextValidity, but int is used because
|
|
// the OR operator doesn't work well with enumerated types. This indicates
|
|
// which fields in context are valid.
|
|
int context_validity;
|
|
};
|
|
|
|
struct StackFramePPC64 : public StackFrame {
|
|
// ContextValidity should eventually contain entries for the validity of
|
|
// other nonvolatile (callee-save) registers as in
|
|
// StackFrameX86::ContextValidity, but the ppc stackwalker doesn't currently
|
|
// locate registers other than the ones listed here.
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_SRR0 = 1 << 0,
|
|
CONTEXT_VALID_GPR1 = 1 << 1,
|
|
CONTEXT_VALID_ALL = -1
|
|
};
|
|
|
|
StackFramePPC64() : context(), context_validity(CONTEXT_VALID_NONE) {}
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, the values of nonvolatile registers may be
|
|
// present, given sufficient debugging information. Refer to
|
|
// context_validity.
|
|
MDRawContextPPC64 context;
|
|
|
|
// context_validity is actually ContextValidity, but int is used because
|
|
// the OR operator doesn't work well with enumerated types. This indicates
|
|
// which fields in context are valid.
|
|
int context_validity;
|
|
};
|
|
|
|
struct StackFrameAMD64 : public StackFrame {
|
|
// ContextValidity has one entry for each register that we might be able
|
|
// to recover.
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_RAX = 1 << 0,
|
|
CONTEXT_VALID_RDX = 1 << 1,
|
|
CONTEXT_VALID_RCX = 1 << 2,
|
|
CONTEXT_VALID_RBX = 1 << 3,
|
|
CONTEXT_VALID_RSI = 1 << 4,
|
|
CONTEXT_VALID_RDI = 1 << 5,
|
|
CONTEXT_VALID_RBP = 1 << 6,
|
|
CONTEXT_VALID_RSP = 1 << 7,
|
|
CONTEXT_VALID_R8 = 1 << 8,
|
|
CONTEXT_VALID_R9 = 1 << 9,
|
|
CONTEXT_VALID_R10 = 1 << 10,
|
|
CONTEXT_VALID_R11 = 1 << 11,
|
|
CONTEXT_VALID_R12 = 1 << 12,
|
|
CONTEXT_VALID_R13 = 1 << 13,
|
|
CONTEXT_VALID_R14 = 1 << 14,
|
|
CONTEXT_VALID_R15 = 1 << 15,
|
|
CONTEXT_VALID_RIP = 1 << 16,
|
|
CONTEXT_VALID_ALL = -1
|
|
};
|
|
|
|
StackFrameAMD64() : context(), context_validity(CONTEXT_VALID_NONE) {}
|
|
|
|
// Overriden to return the return address as saved on the stack.
|
|
virtual uint64_t ReturnAddress() const;
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, which registers are present depends on what
|
|
// debugging information we had available. Refer to context_validity.
|
|
MDRawContextAMD64 context;
|
|
|
|
// For each register in context whose value has been recovered, we set
|
|
// the corresponding CONTEXT_VALID_ bit in context_validity.
|
|
//
|
|
// context_validity's type should actually be ContextValidity, but
|
|
// we use int instead because the bitwise inclusive or operator
|
|
// yields an int when applied to enum values, and C++ doesn't
|
|
// silently convert from ints to enums.
|
|
int context_validity;
|
|
};
|
|
|
|
struct StackFrameSPARC : public StackFrame {
|
|
// to be confirmed
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_PC = 1 << 0,
|
|
CONTEXT_VALID_SP = 1 << 1,
|
|
CONTEXT_VALID_FP = 1 << 2,
|
|
CONTEXT_VALID_ALL = -1
|
|
};
|
|
|
|
StackFrameSPARC() : context(), context_validity(CONTEXT_VALID_NONE) {}
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, the values of nonvolatile registers may be
|
|
// present, given sufficient debugging information. Refer to
|
|
// context_validity.
|
|
MDRawContextSPARC context;
|
|
|
|
// context_validity is actually ContextValidity, but int is used because
|
|
// the OR operator doesn't work well with enumerated types. This indicates
|
|
// which fields in context are valid.
|
|
int context_validity;
|
|
};
|
|
|
|
struct StackFrameARM : public StackFrame {
|
|
// A flag for each register we might know.
|
|
enum ContextValidity {
|
|
CONTEXT_VALID_NONE = 0,
|
|
CONTEXT_VALID_R0 = 1 << 0,
|
|
CONTEXT_VALID_R1 = 1 << 1,
|
|
CONTEXT_VALID_R2 = 1 << 2,
|
|
CONTEXT_VALID_R3 = 1 << 3,
|
|
CONTEXT_VALID_R4 = 1 << 4,
|
|
CONTEXT_VALID_R5 = 1 << 5,
|
|
CONTEXT_VALID_R6 = 1 << 6,
|
|
CONTEXT_VALID_R7 = 1 << 7,
|
|
CONTEXT_VALID_R8 = 1 << 8,
|
|
CONTEXT_VALID_R9 = 1 << 9,
|
|
CONTEXT_VALID_R10 = 1 << 10,
|
|
CONTEXT_VALID_R11 = 1 << 11,
|
|
CONTEXT_VALID_R12 = 1 << 12,
|
|
CONTEXT_VALID_R13 = 1 << 13,
|
|
CONTEXT_VALID_R14 = 1 << 14,
|
|
CONTEXT_VALID_R15 = 1 << 15,
|
|
CONTEXT_VALID_ALL = ~CONTEXT_VALID_NONE,
|
|
|
|
// Aliases for registers with dedicated or conventional roles.
|
|
CONTEXT_VALID_FP = CONTEXT_VALID_R11,
|
|
CONTEXT_VALID_SP = CONTEXT_VALID_R13,
|
|
CONTEXT_VALID_LR = CONTEXT_VALID_R14,
|
|
CONTEXT_VALID_PC = CONTEXT_VALID_R15
|
|
};
|
|
|
|
StackFrameARM() : context(), context_validity(CONTEXT_VALID_NONE) {}
|
|
|
|
// Return the ContextValidity flag for register rN.
|
|
static ContextValidity RegisterValidFlag(int n) {
|
|
return ContextValidity(1 << n);
|
|
}
|
|
|
|
// Register state. This is only fully valid for the topmost frame in a
|
|
// stack. In other frames, the values of nonvolatile registers may be
|
|
// present, given sufficient debugging information. Refer to
|
|
// context_validity.
|
|
MDRawContextARM context;
|
|
|
|
// For each register in context whose value has been recovered, we set
|
|
// the corresponding CONTEXT_VALID_ bit in context_validity.
|
|
//
|
|
// context_validity's type should actually be ContextValidity, but
|
|
// we use int instead because the bitwise inclusive or operator
|
|
// yields an int when applied to enum values, and C++ doesn't
|
|
// silently convert from ints to enums.
|
|
int context_validity;
|
|
};
|
|
|
|
} // namespace google_breakpad
|
|
|
|
#endif // GOOGLE_BREAKPAD_PROCESSOR_STACK_FRAME_CPU_H__
|