mirror of
https://github.com/yuzu-emu/breakpad.git
synced 2025-04-16 19:11:51 +00:00
Review URL: https://breakpad.appspot.com/597002 git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1187 4c0a9323-5329-0410-9bdc-e9ce6186880e
1770 lines
62 KiB
C++
1770 lines
62 KiB
C++
// Copyright (c) 2010, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// This code writes out minidump files:
|
|
// http://msdn.microsoft.com/en-us/library/ms680378(VS.85,loband).aspx
|
|
//
|
|
// Minidumps are a Microsoft format which Breakpad uses for recording crash
|
|
// dumps. This code has to run in a compromised environment (the address space
|
|
// may have received SIGSEGV), thus the following rules apply:
|
|
// * You may not enter the dynamic linker. This means that we cannot call
|
|
// any symbols in a shared library (inc libc). Because of this we replace
|
|
// libc functions in linux_libc_support.h.
|
|
// * You may not call syscalls via the libc wrappers. This rule is a subset
|
|
// of the first rule but it bears repeating. We have direct wrappers
|
|
// around the system calls in linux_syscall_support.h.
|
|
// * You may not malloc. There's an alternative allocator in memory.h and
|
|
// a canonical instance in the LinuxDumper object. We use the placement
|
|
// new form to allocate objects and we don't delete them.
|
|
|
|
#include "client/linux/handler/minidump_descriptor.h"
|
|
#include "client/linux/minidump_writer/minidump_writer.h"
|
|
#include "client/minidump_file_writer-inl.h"
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <link.h>
|
|
#include <stdio.h>
|
|
#if defined(__ANDROID__)
|
|
#include <sys/system_properties.h>
|
|
#endif
|
|
#include <sys/types.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/user.h>
|
|
#include <sys/utsname.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "client/linux/handler/exception_handler.h"
|
|
#include "client/linux/minidump_writer/cpu_set.h"
|
|
#include "client/linux/minidump_writer/line_reader.h"
|
|
#include "client/linux/minidump_writer/linux_dumper.h"
|
|
#include "client/linux/minidump_writer/linux_ptrace_dumper.h"
|
|
#include "client/linux/minidump_writer/proc_cpuinfo_reader.h"
|
|
#include "client/minidump_file_writer.h"
|
|
#include "common/linux/linux_libc_support.h"
|
|
#include "google_breakpad/common/minidump_format.h"
|
|
#include "third_party/lss/linux_syscall_support.h"
|
|
|
|
namespace {
|
|
|
|
using google_breakpad::AppMemoryList;
|
|
using google_breakpad::ExceptionHandler;
|
|
using google_breakpad::CpuSet;
|
|
using google_breakpad::LineReader;
|
|
using google_breakpad::LinuxDumper;
|
|
using google_breakpad::LinuxPtraceDumper;
|
|
using google_breakpad::MappingEntry;
|
|
using google_breakpad::MappingInfo;
|
|
using google_breakpad::MappingList;
|
|
using google_breakpad::MinidumpFileWriter;
|
|
using google_breakpad::PageAllocator;
|
|
using google_breakpad::ProcCpuInfoReader;
|
|
using google_breakpad::ThreadInfo;
|
|
using google_breakpad::TypedMDRVA;
|
|
using google_breakpad::UntypedMDRVA;
|
|
using google_breakpad::wasteful_vector;
|
|
|
|
// Minidump defines register structures which are different from the raw
|
|
// structures which we get from the kernel. These are platform specific
|
|
// functions to juggle the ucontext and user structures into minidump format.
|
|
#if defined(__i386__)
|
|
typedef MDRawContextX86 RawContextCPU;
|
|
|
|
// Write a uint16_t to memory
|
|
// out: memory location to write to
|
|
// v: value to write.
|
|
void U16(void* out, uint16_t v) {
|
|
my_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
// Write a uint32_t to memory
|
|
// out: memory location to write to
|
|
// v: value to write.
|
|
void U32(void* out, uint32_t v) {
|
|
my_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
// Juggle an x86 user_(fp|fpx|)regs_struct into minidump format
|
|
// out: the minidump structure
|
|
// info: the collection of register structures.
|
|
void CPUFillFromThreadInfo(MDRawContextX86 *out,
|
|
const google_breakpad::ThreadInfo &info) {
|
|
out->context_flags = MD_CONTEXT_X86_ALL;
|
|
|
|
out->dr0 = info.dregs[0];
|
|
out->dr1 = info.dregs[1];
|
|
out->dr2 = info.dregs[2];
|
|
out->dr3 = info.dregs[3];
|
|
// 4 and 5 deliberatly omitted because they aren't included in the minidump
|
|
// format.
|
|
out->dr6 = info.dregs[6];
|
|
out->dr7 = info.dregs[7];
|
|
|
|
out->gs = info.regs.xgs;
|
|
out->fs = info.regs.xfs;
|
|
out->es = info.regs.xes;
|
|
out->ds = info.regs.xds;
|
|
|
|
out->edi = info.regs.edi;
|
|
out->esi = info.regs.esi;
|
|
out->ebx = info.regs.ebx;
|
|
out->edx = info.regs.edx;
|
|
out->ecx = info.regs.ecx;
|
|
out->eax = info.regs.eax;
|
|
|
|
out->ebp = info.regs.ebp;
|
|
out->eip = info.regs.eip;
|
|
out->cs = info.regs.xcs;
|
|
out->eflags = info.regs.eflags;
|
|
out->esp = info.regs.esp;
|
|
out->ss = info.regs.xss;
|
|
|
|
out->float_save.control_word = info.fpregs.cwd;
|
|
out->float_save.status_word = info.fpregs.swd;
|
|
out->float_save.tag_word = info.fpregs.twd;
|
|
out->float_save.error_offset = info.fpregs.fip;
|
|
out->float_save.error_selector = info.fpregs.fcs;
|
|
out->float_save.data_offset = info.fpregs.foo;
|
|
out->float_save.data_selector = info.fpregs.fos;
|
|
|
|
// 8 registers * 10 bytes per register.
|
|
my_memcpy(out->float_save.register_area, info.fpregs.st_space, 10 * 8);
|
|
|
|
// This matches the Intel fpsave format.
|
|
U16(out->extended_registers + 0, info.fpregs.cwd);
|
|
U16(out->extended_registers + 2, info.fpregs.swd);
|
|
U16(out->extended_registers + 4, info.fpregs.twd);
|
|
U16(out->extended_registers + 6, info.fpxregs.fop);
|
|
U32(out->extended_registers + 8, info.fpxregs.fip);
|
|
U16(out->extended_registers + 12, info.fpxregs.fcs);
|
|
U32(out->extended_registers + 16, info.fpregs.foo);
|
|
U16(out->extended_registers + 20, info.fpregs.fos);
|
|
U32(out->extended_registers + 24, info.fpxregs.mxcsr);
|
|
|
|
my_memcpy(out->extended_registers + 32, &info.fpxregs.st_space, 128);
|
|
my_memcpy(out->extended_registers + 160, &info.fpxregs.xmm_space, 128);
|
|
}
|
|
|
|
// Juggle an x86 ucontext into minidump format
|
|
// out: the minidump structure
|
|
// info: the collection of register structures.
|
|
void CPUFillFromUContext(MDRawContextX86 *out, const ucontext *uc,
|
|
const struct _libc_fpstate* fp) {
|
|
const greg_t* regs = uc->uc_mcontext.gregs;
|
|
|
|
out->context_flags = MD_CONTEXT_X86_FULL |
|
|
MD_CONTEXT_X86_FLOATING_POINT;
|
|
|
|
out->gs = regs[REG_GS];
|
|
out->fs = regs[REG_FS];
|
|
out->es = regs[REG_ES];
|
|
out->ds = regs[REG_DS];
|
|
|
|
out->edi = regs[REG_EDI];
|
|
out->esi = regs[REG_ESI];
|
|
out->ebx = regs[REG_EBX];
|
|
out->edx = regs[REG_EDX];
|
|
out->ecx = regs[REG_ECX];
|
|
out->eax = regs[REG_EAX];
|
|
|
|
out->ebp = regs[REG_EBP];
|
|
out->eip = regs[REG_EIP];
|
|
out->cs = regs[REG_CS];
|
|
out->eflags = regs[REG_EFL];
|
|
out->esp = regs[REG_UESP];
|
|
out->ss = regs[REG_SS];
|
|
|
|
out->float_save.control_word = fp->cw;
|
|
out->float_save.status_word = fp->sw;
|
|
out->float_save.tag_word = fp->tag;
|
|
out->float_save.error_offset = fp->ipoff;
|
|
out->float_save.error_selector = fp->cssel;
|
|
out->float_save.data_offset = fp->dataoff;
|
|
out->float_save.data_selector = fp->datasel;
|
|
|
|
// 8 registers * 10 bytes per register.
|
|
my_memcpy(out->float_save.register_area, fp->_st, 10 * 8);
|
|
}
|
|
|
|
#elif defined(__x86_64)
|
|
typedef MDRawContextAMD64 RawContextCPU;
|
|
|
|
void CPUFillFromThreadInfo(MDRawContextAMD64 *out,
|
|
const google_breakpad::ThreadInfo &info) {
|
|
out->context_flags = MD_CONTEXT_AMD64_FULL |
|
|
MD_CONTEXT_AMD64_SEGMENTS;
|
|
|
|
out->cs = info.regs.cs;
|
|
|
|
out->ds = info.regs.ds;
|
|
out->es = info.regs.es;
|
|
out->fs = info.regs.fs;
|
|
out->gs = info.regs.gs;
|
|
|
|
out->ss = info.regs.ss;
|
|
out->eflags = info.regs.eflags;
|
|
|
|
out->dr0 = info.dregs[0];
|
|
out->dr1 = info.dregs[1];
|
|
out->dr2 = info.dregs[2];
|
|
out->dr3 = info.dregs[3];
|
|
// 4 and 5 deliberatly omitted because they aren't included in the minidump
|
|
// format.
|
|
out->dr6 = info.dregs[6];
|
|
out->dr7 = info.dregs[7];
|
|
|
|
out->rax = info.regs.rax;
|
|
out->rcx = info.regs.rcx;
|
|
out->rdx = info.regs.rdx;
|
|
out->rbx = info.regs.rbx;
|
|
|
|
out->rsp = info.regs.rsp;
|
|
|
|
out->rbp = info.regs.rbp;
|
|
out->rsi = info.regs.rsi;
|
|
out->rdi = info.regs.rdi;
|
|
out->r8 = info.regs.r8;
|
|
out->r9 = info.regs.r9;
|
|
out->r10 = info.regs.r10;
|
|
out->r11 = info.regs.r11;
|
|
out->r12 = info.regs.r12;
|
|
out->r13 = info.regs.r13;
|
|
out->r14 = info.regs.r14;
|
|
out->r15 = info.regs.r15;
|
|
|
|
out->rip = info.regs.rip;
|
|
|
|
out->flt_save.control_word = info.fpregs.cwd;
|
|
out->flt_save.status_word = info.fpregs.swd;
|
|
out->flt_save.tag_word = info.fpregs.ftw;
|
|
out->flt_save.error_opcode = info.fpregs.fop;
|
|
out->flt_save.error_offset = info.fpregs.rip;
|
|
out->flt_save.error_selector = 0; // We don't have this.
|
|
out->flt_save.data_offset = info.fpregs.rdp;
|
|
out->flt_save.data_selector = 0; // We don't have this.
|
|
out->flt_save.mx_csr = info.fpregs.mxcsr;
|
|
out->flt_save.mx_csr_mask = info.fpregs.mxcr_mask;
|
|
my_memcpy(&out->flt_save.float_registers, &info.fpregs.st_space, 8 * 16);
|
|
my_memcpy(&out->flt_save.xmm_registers, &info.fpregs.xmm_space, 16 * 16);
|
|
}
|
|
|
|
void CPUFillFromUContext(MDRawContextAMD64 *out, const ucontext *uc,
|
|
const struct _libc_fpstate* fpregs) {
|
|
const greg_t* regs = uc->uc_mcontext.gregs;
|
|
|
|
out->context_flags = MD_CONTEXT_AMD64_FULL;
|
|
|
|
out->cs = regs[REG_CSGSFS] & 0xffff;
|
|
|
|
out->fs = (regs[REG_CSGSFS] >> 32) & 0xffff;
|
|
out->gs = (regs[REG_CSGSFS] >> 16) & 0xffff;
|
|
|
|
out->eflags = regs[REG_EFL];
|
|
|
|
out->rax = regs[REG_RAX];
|
|
out->rcx = regs[REG_RCX];
|
|
out->rdx = regs[REG_RDX];
|
|
out->rbx = regs[REG_RBX];
|
|
|
|
out->rsp = regs[REG_RSP];
|
|
out->rbp = regs[REG_RBP];
|
|
out->rsi = regs[REG_RSI];
|
|
out->rdi = regs[REG_RDI];
|
|
out->r8 = regs[REG_R8];
|
|
out->r9 = regs[REG_R9];
|
|
out->r10 = regs[REG_R10];
|
|
out->r11 = regs[REG_R11];
|
|
out->r12 = regs[REG_R12];
|
|
out->r13 = regs[REG_R13];
|
|
out->r14 = regs[REG_R14];
|
|
out->r15 = regs[REG_R15];
|
|
|
|
out->rip = regs[REG_RIP];
|
|
|
|
out->flt_save.control_word = fpregs->cwd;
|
|
out->flt_save.status_word = fpregs->swd;
|
|
out->flt_save.tag_word = fpregs->ftw;
|
|
out->flt_save.error_opcode = fpregs->fop;
|
|
out->flt_save.error_offset = fpregs->rip;
|
|
out->flt_save.data_offset = fpregs->rdp;
|
|
out->flt_save.error_selector = 0; // We don't have this.
|
|
out->flt_save.data_selector = 0; // We don't have this.
|
|
out->flt_save.mx_csr = fpregs->mxcsr;
|
|
out->flt_save.mx_csr_mask = fpregs->mxcr_mask;
|
|
my_memcpy(&out->flt_save.float_registers, &fpregs->_st, 8 * 16);
|
|
my_memcpy(&out->flt_save.xmm_registers, &fpregs->_xmm, 16 * 16);
|
|
}
|
|
|
|
#elif defined(__ARMEL__)
|
|
typedef MDRawContextARM RawContextCPU;
|
|
|
|
void CPUFillFromThreadInfo(MDRawContextARM* out,
|
|
const google_breakpad::ThreadInfo& info) {
|
|
out->context_flags = MD_CONTEXT_ARM_FULL;
|
|
|
|
for (int i = 0; i < MD_CONTEXT_ARM_GPR_COUNT; ++i)
|
|
out->iregs[i] = info.regs.uregs[i];
|
|
// No CPSR register in ThreadInfo(it's not accessible via ptrace)
|
|
out->cpsr = 0;
|
|
#if !defined(__ANDROID__)
|
|
out->float_save.fpscr = info.fpregs.fpsr |
|
|
(static_cast<uint64_t>(info.fpregs.fpcr) << 32);
|
|
// TODO: sort this out, actually collect floating point registers
|
|
my_memset(&out->float_save.regs, 0, sizeof(out->float_save.regs));
|
|
my_memset(&out->float_save.extra, 0, sizeof(out->float_save.extra));
|
|
#endif
|
|
}
|
|
|
|
void CPUFillFromUContext(MDRawContextARM* out, const ucontext* uc,
|
|
const struct _libc_fpstate* fpregs) {
|
|
out->context_flags = MD_CONTEXT_ARM_FULL;
|
|
|
|
out->iregs[0] = uc->uc_mcontext.arm_r0;
|
|
out->iregs[1] = uc->uc_mcontext.arm_r1;
|
|
out->iregs[2] = uc->uc_mcontext.arm_r2;
|
|
out->iregs[3] = uc->uc_mcontext.arm_r3;
|
|
out->iregs[4] = uc->uc_mcontext.arm_r4;
|
|
out->iregs[5] = uc->uc_mcontext.arm_r5;
|
|
out->iregs[6] = uc->uc_mcontext.arm_r6;
|
|
out->iregs[7] = uc->uc_mcontext.arm_r7;
|
|
out->iregs[8] = uc->uc_mcontext.arm_r8;
|
|
out->iregs[9] = uc->uc_mcontext.arm_r9;
|
|
out->iregs[10] = uc->uc_mcontext.arm_r10;
|
|
|
|
out->iregs[11] = uc->uc_mcontext.arm_fp;
|
|
out->iregs[12] = uc->uc_mcontext.arm_ip;
|
|
out->iregs[13] = uc->uc_mcontext.arm_sp;
|
|
out->iregs[14] = uc->uc_mcontext.arm_lr;
|
|
out->iregs[15] = uc->uc_mcontext.arm_pc;
|
|
|
|
out->cpsr = uc->uc_mcontext.arm_cpsr;
|
|
|
|
// TODO: fix this after fixing ExceptionHandler
|
|
out->float_save.fpscr = 0;
|
|
my_memset(&out->float_save.regs, 0, sizeof(out->float_save.regs));
|
|
my_memset(&out->float_save.extra, 0, sizeof(out->float_save.extra));
|
|
}
|
|
|
|
#else
|
|
#error "This code has not been ported to your platform yet."
|
|
#endif
|
|
|
|
class MinidumpWriter {
|
|
public:
|
|
// The following kLimit* constants are for when minidump_size_limit_ is set
|
|
// and the minidump size might exceed it.
|
|
//
|
|
// Estimate for how big each thread's stack will be (in bytes).
|
|
static const unsigned kLimitAverageThreadStackLength = 8 * 1024;
|
|
// Number of threads whose stack size we don't want to limit. These base
|
|
// threads will simply be the first N threads returned by the dumper (although
|
|
// the crashing thread will never be limited). Threads beyond this count are
|
|
// the extra threads.
|
|
static const unsigned kLimitBaseThreadCount = 20;
|
|
// Maximum stack size to dump for any extra thread (in bytes).
|
|
static const unsigned kLimitMaxExtraThreadStackLen = 2 * 1024;
|
|
// Make sure this number of additional bytes can fit in the minidump
|
|
// (exclude the stack data).
|
|
static const unsigned kLimitMinidumpFudgeFactor = 64 * 1024;
|
|
|
|
MinidumpWriter(const char* minidump_path,
|
|
int minidump_fd,
|
|
const ExceptionHandler::CrashContext* context,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem,
|
|
LinuxDumper* dumper)
|
|
: fd_(minidump_fd),
|
|
path_(minidump_path),
|
|
ucontext_(context ? &context->context : NULL),
|
|
#if !defined(__ARM_EABI__)
|
|
float_state_(context ? &context->float_state : NULL),
|
|
#else
|
|
// TODO: fix this after fixing ExceptionHandler
|
|
float_state_(NULL),
|
|
#endif
|
|
dumper_(dumper),
|
|
minidump_size_limit_(-1),
|
|
memory_blocks_(dumper_->allocator()),
|
|
mapping_list_(mappings),
|
|
app_memory_list_(appmem) {
|
|
// Assert there should be either a valid fd or a valid path, not both.
|
|
assert(fd_ != -1 || minidump_path);
|
|
assert(fd_ == -1 || !minidump_path);
|
|
}
|
|
|
|
bool Init() {
|
|
if (!dumper_->Init())
|
|
return false;
|
|
|
|
if (fd_ != -1)
|
|
minidump_writer_.SetFile(fd_);
|
|
else if (!minidump_writer_.Open(path_))
|
|
return false;
|
|
|
|
return dumper_->ThreadsSuspend();
|
|
}
|
|
|
|
~MinidumpWriter() {
|
|
// Don't close the file descriptor when it's been provided explicitly.
|
|
// Callers might still need to use it.
|
|
if (fd_ == -1)
|
|
minidump_writer_.Close();
|
|
dumper_->ThreadsResume();
|
|
}
|
|
|
|
bool Dump() {
|
|
// A minidump file contains a number of tagged streams. This is the number
|
|
// of stream which we write.
|
|
unsigned kNumWriters = 13;
|
|
|
|
TypedMDRVA<MDRawHeader> header(&minidump_writer_);
|
|
TypedMDRVA<MDRawDirectory> dir(&minidump_writer_);
|
|
if (!header.Allocate())
|
|
return false;
|
|
if (!dir.AllocateArray(kNumWriters))
|
|
return false;
|
|
my_memset(header.get(), 0, sizeof(MDRawHeader));
|
|
|
|
header.get()->signature = MD_HEADER_SIGNATURE;
|
|
header.get()->version = MD_HEADER_VERSION;
|
|
header.get()->time_date_stamp = time(NULL);
|
|
header.get()->stream_count = kNumWriters;
|
|
header.get()->stream_directory_rva = dir.position();
|
|
|
|
unsigned dir_index = 0;
|
|
MDRawDirectory dirent;
|
|
|
|
if (!WriteThreadListStream(&dirent))
|
|
return false;
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
if (!WriteMappings(&dirent))
|
|
return false;
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
if (!WriteAppMemory())
|
|
return false;
|
|
|
|
if (!WriteMemoryListStream(&dirent))
|
|
return false;
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
if (!WriteExceptionStream(&dirent))
|
|
return false;
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
if (!WriteSystemInfoStream(&dirent))
|
|
return false;
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_CPU_INFO;
|
|
if (!WriteFile(&dirent.location, "/proc/cpuinfo"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_PROC_STATUS;
|
|
if (!WriteProcFile(&dirent.location, GetCrashThread(), "status"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_LSB_RELEASE;
|
|
if (!WriteFile(&dirent.location, "/etc/lsb-release"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_CMD_LINE;
|
|
if (!WriteProcFile(&dirent.location, GetCrashThread(), "cmdline"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_ENVIRON;
|
|
if (!WriteProcFile(&dirent.location, GetCrashThread(), "environ"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_AUXV;
|
|
if (!WriteProcFile(&dirent.location, GetCrashThread(), "auxv"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_MAPS;
|
|
if (!WriteProcFile(&dirent.location, GetCrashThread(), "maps"))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
dirent.stream_type = MD_LINUX_DSO_DEBUG;
|
|
if (!WriteDSODebugStream(&dirent))
|
|
NullifyDirectoryEntry(&dirent);
|
|
dir.CopyIndex(dir_index++, &dirent);
|
|
|
|
// If you add more directory entries, don't forget to update kNumWriters,
|
|
// above.
|
|
|
|
dumper_->ThreadsResume();
|
|
return true;
|
|
}
|
|
|
|
// Check if the top of the stack is part of a system call that has been
|
|
// redirected by the seccomp sandbox. If so, try to pop the stack frames
|
|
// all the way back to the point where the interception happened.
|
|
void PopSeccompStackFrame(RawContextCPU* cpu, const MDRawThread& thread,
|
|
uint8_t* stack_copy) {
|
|
#if defined(__x86_64)
|
|
uint64_t bp = cpu->rbp;
|
|
uint64_t top = thread.stack.start_of_memory_range;
|
|
for (int i = 4; i--; ) {
|
|
if (bp < top ||
|
|
bp + sizeof(bp) > thread.stack.start_of_memory_range +
|
|
thread.stack.memory.data_size ||
|
|
bp & 1) {
|
|
break;
|
|
}
|
|
uint64_t old_top = top;
|
|
top = bp;
|
|
uint8_t* bp_addr = stack_copy + bp - thread.stack.start_of_memory_range;
|
|
my_memcpy(&bp, bp_addr, sizeof(bp));
|
|
if (bp == 0xDEADBEEFDEADBEEFull) {
|
|
struct {
|
|
uint64_t r15;
|
|
uint64_t r14;
|
|
uint64_t r13;
|
|
uint64_t r12;
|
|
uint64_t r11;
|
|
uint64_t r10;
|
|
uint64_t r9;
|
|
uint64_t r8;
|
|
uint64_t rdi;
|
|
uint64_t rsi;
|
|
uint64_t rdx;
|
|
uint64_t rcx;
|
|
uint64_t rbx;
|
|
uint64_t deadbeef;
|
|
uint64_t rbp;
|
|
uint64_t fakeret;
|
|
uint64_t ret;
|
|
/* char redzone[128]; */
|
|
} seccomp_stackframe;
|
|
if (top - offsetof(typeof(seccomp_stackframe), deadbeef) < old_top ||
|
|
top - offsetof(typeof(seccomp_stackframe), deadbeef) +
|
|
sizeof(seccomp_stackframe) >
|
|
thread.stack.start_of_memory_range+thread.stack.memory.data_size) {
|
|
break;
|
|
}
|
|
my_memcpy(&seccomp_stackframe,
|
|
bp_addr - offsetof(typeof(seccomp_stackframe), deadbeef),
|
|
sizeof(seccomp_stackframe));
|
|
cpu->rbx = seccomp_stackframe.rbx;
|
|
cpu->rcx = seccomp_stackframe.rcx;
|
|
cpu->rdx = seccomp_stackframe.rdx;
|
|
cpu->rsi = seccomp_stackframe.rsi;
|
|
cpu->rdi = seccomp_stackframe.rdi;
|
|
cpu->rbp = seccomp_stackframe.rbp;
|
|
cpu->rsp = top + 4*sizeof(uint64_t) + 128;
|
|
cpu->r8 = seccomp_stackframe.r8;
|
|
cpu->r9 = seccomp_stackframe.r9;
|
|
cpu->r10 = seccomp_stackframe.r10;
|
|
cpu->r11 = seccomp_stackframe.r11;
|
|
cpu->r12 = seccomp_stackframe.r12;
|
|
cpu->r13 = seccomp_stackframe.r13;
|
|
cpu->r14 = seccomp_stackframe.r14;
|
|
cpu->r15 = seccomp_stackframe.r15;
|
|
cpu->rip = seccomp_stackframe.fakeret;
|
|
return;
|
|
}
|
|
}
|
|
#elif defined(__i386__)
|
|
uint32_t bp = cpu->ebp;
|
|
uint32_t top = thread.stack.start_of_memory_range;
|
|
for (int i = 4; i--; ) {
|
|
if (bp < top ||
|
|
bp + sizeof(bp) > thread.stack.start_of_memory_range +
|
|
thread.stack.memory.data_size ||
|
|
bp & 1) {
|
|
break;
|
|
}
|
|
uint32_t old_top = top;
|
|
top = bp;
|
|
uint8_t* bp_addr = stack_copy + bp - thread.stack.start_of_memory_range;
|
|
my_memcpy(&bp, bp_addr, sizeof(bp));
|
|
if (bp == 0xDEADBEEFu) {
|
|
struct {
|
|
uint32_t edi;
|
|
uint32_t esi;
|
|
uint32_t edx;
|
|
uint32_t ecx;
|
|
uint32_t ebx;
|
|
uint32_t deadbeef;
|
|
uint32_t ebp;
|
|
uint32_t fakeret;
|
|
uint32_t ret;
|
|
} seccomp_stackframe;
|
|
if (top - offsetof(typeof(seccomp_stackframe), deadbeef) < old_top ||
|
|
top - offsetof(typeof(seccomp_stackframe), deadbeef) +
|
|
sizeof(seccomp_stackframe) >
|
|
thread.stack.start_of_memory_range+thread.stack.memory.data_size) {
|
|
break;
|
|
}
|
|
my_memcpy(&seccomp_stackframe,
|
|
bp_addr - offsetof(typeof(seccomp_stackframe), deadbeef),
|
|
sizeof(seccomp_stackframe));
|
|
cpu->ebx = seccomp_stackframe.ebx;
|
|
cpu->ecx = seccomp_stackframe.ecx;
|
|
cpu->edx = seccomp_stackframe.edx;
|
|
cpu->esi = seccomp_stackframe.esi;
|
|
cpu->edi = seccomp_stackframe.edi;
|
|
cpu->ebp = seccomp_stackframe.ebp;
|
|
cpu->esp = top + 4*sizeof(void*);
|
|
cpu->eip = seccomp_stackframe.fakeret;
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool FillThreadStack(MDRawThread* thread, uintptr_t stack_pointer,
|
|
int max_stack_len, uint8_t** stack_copy) {
|
|
*stack_copy = NULL;
|
|
const void* stack;
|
|
size_t stack_len;
|
|
if (dumper_->GetStackInfo(&stack, &stack_len, stack_pointer)) {
|
|
UntypedMDRVA memory(&minidump_writer_);
|
|
if (max_stack_len >= 0 &&
|
|
stack_len > static_cast<unsigned int>(max_stack_len)) {
|
|
stack_len = max_stack_len;
|
|
}
|
|
if (!memory.Allocate(stack_len))
|
|
return false;
|
|
*stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len));
|
|
dumper_->CopyFromProcess(*stack_copy, thread->thread_id, stack,
|
|
stack_len);
|
|
memory.Copy(*stack_copy, stack_len);
|
|
thread->stack.start_of_memory_range =
|
|
reinterpret_cast<uintptr_t>(stack);
|
|
thread->stack.memory = memory.location();
|
|
memory_blocks_.push_back(thread->stack);
|
|
} else {
|
|
thread->stack.start_of_memory_range = stack_pointer;
|
|
thread->stack.memory.data_size = 0;
|
|
thread->stack.memory.rva = minidump_writer_.position();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Write information about the threads.
|
|
bool WriteThreadListStream(MDRawDirectory* dirent) {
|
|
const unsigned num_threads = dumper_->threads().size();
|
|
|
|
TypedMDRVA<uint32_t> list(&minidump_writer_);
|
|
if (!list.AllocateObjectAndArray(num_threads, sizeof(MDRawThread)))
|
|
return false;
|
|
|
|
dirent->stream_type = MD_THREAD_LIST_STREAM;
|
|
dirent->location = list.location();
|
|
|
|
*list.get() = num_threads;
|
|
|
|
// If there's a minidump size limit, check if it might be exceeded. Since
|
|
// most of the space is filled with stack data, just check against that.
|
|
// If this expects to exceed the limit, set extra_thread_stack_len such
|
|
// that any thread beyond the first kLimitBaseThreadCount threads will
|
|
// have only kLimitMaxExtraThreadStackLen bytes dumped.
|
|
int extra_thread_stack_len = -1; // default to no maximum
|
|
if (minidump_size_limit_ >= 0) {
|
|
const unsigned estimated_total_stack_size = num_threads *
|
|
kLimitAverageThreadStackLength;
|
|
const off_t estimated_minidump_size = minidump_writer_.position() +
|
|
estimated_total_stack_size + kLimitMinidumpFudgeFactor;
|
|
if (estimated_minidump_size > minidump_size_limit_)
|
|
extra_thread_stack_len = kLimitMaxExtraThreadStackLen;
|
|
}
|
|
|
|
for (unsigned i = 0; i < num_threads; ++i) {
|
|
MDRawThread thread;
|
|
my_memset(&thread, 0, sizeof(thread));
|
|
thread.thread_id = dumper_->threads()[i];
|
|
|
|
// We have a different source of information for the crashing thread. If
|
|
// we used the actual state of the thread we would find it running in the
|
|
// signal handler with the alternative stack, which would be deeply
|
|
// unhelpful.
|
|
if (static_cast<pid_t>(thread.thread_id) == GetCrashThread() &&
|
|
ucontext_ &&
|
|
!dumper_->IsPostMortem()) {
|
|
uint8_t* stack_copy;
|
|
if (!FillThreadStack(&thread, GetStackPointer(), -1, &stack_copy))
|
|
return false;
|
|
|
|
// Copy 256 bytes around crashing instruction pointer to minidump.
|
|
const size_t kIPMemorySize = 256;
|
|
uint64_t ip = GetInstructionPointer();
|
|
// Bound it to the upper and lower bounds of the memory map
|
|
// it's contained within. If it's not in mapped memory,
|
|
// don't bother trying to write it.
|
|
bool ip_is_mapped = false;
|
|
MDMemoryDescriptor ip_memory_d;
|
|
for (unsigned j = 0; j < dumper_->mappings().size(); ++j) {
|
|
const MappingInfo& mapping = *dumper_->mappings()[j];
|
|
if (ip >= mapping.start_addr &&
|
|
ip < mapping.start_addr + mapping.size) {
|
|
ip_is_mapped = true;
|
|
// Try to get 128 bytes before and after the IP, but
|
|
// settle for whatever's available.
|
|
ip_memory_d.start_of_memory_range =
|
|
std::max(mapping.start_addr,
|
|
uintptr_t(ip - (kIPMemorySize / 2)));
|
|
uintptr_t end_of_range =
|
|
std::min(uintptr_t(ip + (kIPMemorySize / 2)),
|
|
uintptr_t(mapping.start_addr + mapping.size));
|
|
ip_memory_d.memory.data_size =
|
|
end_of_range - ip_memory_d.start_of_memory_range;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ip_is_mapped) {
|
|
UntypedMDRVA ip_memory(&minidump_writer_);
|
|
if (!ip_memory.Allocate(ip_memory_d.memory.data_size))
|
|
return false;
|
|
uint8_t* memory_copy =
|
|
reinterpret_cast<uint8_t*>(Alloc(ip_memory_d.memory.data_size));
|
|
dumper_->CopyFromProcess(
|
|
memory_copy,
|
|
thread.thread_id,
|
|
reinterpret_cast<void*>(ip_memory_d.start_of_memory_range),
|
|
ip_memory_d.memory.data_size);
|
|
ip_memory.Copy(memory_copy, ip_memory_d.memory.data_size);
|
|
ip_memory_d.memory = ip_memory.location();
|
|
memory_blocks_.push_back(ip_memory_d);
|
|
}
|
|
|
|
TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
|
|
if (!cpu.Allocate())
|
|
return false;
|
|
my_memset(cpu.get(), 0, sizeof(RawContextCPU));
|
|
CPUFillFromUContext(cpu.get(), ucontext_, float_state_);
|
|
if (stack_copy)
|
|
PopSeccompStackFrame(cpu.get(), thread, stack_copy);
|
|
thread.thread_context = cpu.location();
|
|
crashing_thread_context_ = cpu.location();
|
|
} else {
|
|
ThreadInfo info;
|
|
if (!dumper_->GetThreadInfoByIndex(i, &info))
|
|
return false;
|
|
|
|
uint8_t* stack_copy;
|
|
int max_stack_len = -1; // default to no maximum for this thread
|
|
if (minidump_size_limit_ >= 0 && i >= kLimitBaseThreadCount)
|
|
max_stack_len = extra_thread_stack_len;
|
|
if (!FillThreadStack(&thread, info.stack_pointer, max_stack_len,
|
|
&stack_copy))
|
|
return false;
|
|
|
|
TypedMDRVA<RawContextCPU> cpu(&minidump_writer_);
|
|
if (!cpu.Allocate())
|
|
return false;
|
|
my_memset(cpu.get(), 0, sizeof(RawContextCPU));
|
|
CPUFillFromThreadInfo(cpu.get(), info);
|
|
if (stack_copy)
|
|
PopSeccompStackFrame(cpu.get(), thread, stack_copy);
|
|
thread.thread_context = cpu.location();
|
|
if (dumper_->threads()[i] == GetCrashThread()) {
|
|
crashing_thread_context_ = cpu.location();
|
|
if (!dumper_->IsPostMortem()) {
|
|
// This is the crashing thread of a live process, but
|
|
// no context was provided, so set the crash address
|
|
// while the instruction pointer is already here.
|
|
dumper_->set_crash_address(GetInstructionPointer(info));
|
|
}
|
|
}
|
|
}
|
|
|
|
list.CopyIndexAfterObject(i, &thread, sizeof(thread));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Write application-provided memory regions.
|
|
bool WriteAppMemory() {
|
|
for (AppMemoryList::const_iterator iter = app_memory_list_.begin();
|
|
iter != app_memory_list_.end();
|
|
++iter) {
|
|
uint8_t* data_copy =
|
|
reinterpret_cast<uint8_t*>(dumper_->allocator()->Alloc(iter->length));
|
|
dumper_->CopyFromProcess(data_copy, GetCrashThread(), iter->ptr,
|
|
iter->length);
|
|
|
|
UntypedMDRVA memory(&minidump_writer_);
|
|
if (!memory.Allocate(iter->length)) {
|
|
return false;
|
|
}
|
|
memory.Copy(data_copy, iter->length);
|
|
MDMemoryDescriptor desc;
|
|
desc.start_of_memory_range = reinterpret_cast<uintptr_t>(iter->ptr);
|
|
desc.memory = memory.location();
|
|
memory_blocks_.push_back(desc);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ShouldIncludeMapping(const MappingInfo& mapping) {
|
|
if (mapping.name[0] == 0 || // only want modules with filenames.
|
|
mapping.offset || // only want to include one mapping per shared lib.
|
|
mapping.size < 4096) { // too small to get a signature for.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If there is caller-provided information about this mapping
|
|
// in the mapping_list_ list, return true. Otherwise, return false.
|
|
bool HaveMappingInfo(const MappingInfo& mapping) {
|
|
for (MappingList::const_iterator iter = mapping_list_.begin();
|
|
iter != mapping_list_.end();
|
|
++iter) {
|
|
// Ignore any mappings that are wholly contained within
|
|
// mappings in the mapping_info_ list.
|
|
if (mapping.start_addr >= iter->first.start_addr &&
|
|
(mapping.start_addr + mapping.size) <=
|
|
(iter->first.start_addr + iter->first.size)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Write information about the mappings in effect. Because we are using the
|
|
// minidump format, the information about the mappings is pretty limited.
|
|
// Because of this, we also include the full, unparsed, /proc/$x/maps file in
|
|
// another stream in the file.
|
|
bool WriteMappings(MDRawDirectory* dirent) {
|
|
const unsigned num_mappings = dumper_->mappings().size();
|
|
unsigned num_output_mappings = mapping_list_.size();
|
|
|
|
for (unsigned i = 0; i < dumper_->mappings().size(); ++i) {
|
|
const MappingInfo& mapping = *dumper_->mappings()[i];
|
|
if (ShouldIncludeMapping(mapping) && !HaveMappingInfo(mapping))
|
|
num_output_mappings++;
|
|
}
|
|
|
|
TypedMDRVA<uint32_t> list(&minidump_writer_);
|
|
if (num_output_mappings) {
|
|
if (!list.AllocateObjectAndArray(num_output_mappings, MD_MODULE_SIZE))
|
|
return false;
|
|
} else {
|
|
// Still create the module list stream, although it will have zero
|
|
// modules.
|
|
if (!list.Allocate())
|
|
return false;
|
|
}
|
|
|
|
dirent->stream_type = MD_MODULE_LIST_STREAM;
|
|
dirent->location = list.location();
|
|
*list.get() = num_output_mappings;
|
|
|
|
// First write all the mappings from the dumper
|
|
unsigned int j = 0;
|
|
for (unsigned i = 0; i < num_mappings; ++i) {
|
|
const MappingInfo& mapping = *dumper_->mappings()[i];
|
|
if (!ShouldIncludeMapping(mapping) || HaveMappingInfo(mapping))
|
|
continue;
|
|
|
|
MDRawModule mod;
|
|
if (!FillRawModule(mapping, true, i, mod, NULL))
|
|
return false;
|
|
list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE);
|
|
}
|
|
// Next write all the mappings provided by the caller
|
|
for (MappingList::const_iterator iter = mapping_list_.begin();
|
|
iter != mapping_list_.end();
|
|
++iter) {
|
|
MDRawModule mod;
|
|
if (!FillRawModule(iter->first, false, 0, mod, iter->second))
|
|
return false;
|
|
list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Fill the MDRawModule |mod| with information about the provided
|
|
// |mapping|. If |identifier| is non-NULL, use it instead of calculating
|
|
// a file ID from the mapping.
|
|
bool FillRawModule(const MappingInfo& mapping,
|
|
bool member,
|
|
unsigned int mapping_id,
|
|
MDRawModule& mod,
|
|
const uint8_t* identifier) {
|
|
my_memset(&mod, 0, MD_MODULE_SIZE);
|
|
|
|
mod.base_of_image = mapping.start_addr;
|
|
mod.size_of_image = mapping.size;
|
|
const size_t filepath_len = my_strlen(mapping.name);
|
|
|
|
// Figure out file name from path
|
|
const char* filename_ptr = mapping.name + filepath_len - 1;
|
|
while (filename_ptr >= mapping.name) {
|
|
if (*filename_ptr == '/')
|
|
break;
|
|
filename_ptr--;
|
|
}
|
|
filename_ptr++;
|
|
|
|
const size_t filename_len = mapping.name + filepath_len - filename_ptr;
|
|
|
|
uint8_t cv_buf[MDCVInfoPDB70_minsize + NAME_MAX];
|
|
uint8_t* cv_ptr = cv_buf;
|
|
UntypedMDRVA cv(&minidump_writer_);
|
|
if (!cv.Allocate(MDCVInfoPDB70_minsize + filename_len + 1))
|
|
return false;
|
|
|
|
const uint32_t cv_signature = MD_CVINFOPDB70_SIGNATURE;
|
|
my_memcpy(cv_ptr, &cv_signature, sizeof(cv_signature));
|
|
cv_ptr += sizeof(cv_signature);
|
|
uint8_t* signature = cv_ptr;
|
|
cv_ptr += sizeof(MDGUID);
|
|
if (identifier) {
|
|
// GUID was provided by caller.
|
|
my_memcpy(signature, identifier, sizeof(MDGUID));
|
|
} else {
|
|
dumper_->ElfFileIdentifierForMapping(mapping, member,
|
|
mapping_id, signature);
|
|
}
|
|
my_memset(cv_ptr, 0, sizeof(uint32_t)); // Set age to 0 on Linux.
|
|
cv_ptr += sizeof(uint32_t);
|
|
|
|
// Write pdb_file_name
|
|
my_memcpy(cv_ptr, filename_ptr, filename_len + 1);
|
|
cv.Copy(cv_buf, MDCVInfoPDB70_minsize + filename_len + 1);
|
|
|
|
mod.cv_record = cv.location();
|
|
|
|
MDLocationDescriptor ld;
|
|
if (!minidump_writer_.WriteString(mapping.name, filepath_len, &ld))
|
|
return false;
|
|
mod.module_name_rva = ld.rva;
|
|
return true;
|
|
}
|
|
|
|
bool WriteMemoryListStream(MDRawDirectory* dirent) {
|
|
TypedMDRVA<uint32_t> list(&minidump_writer_);
|
|
if (memory_blocks_.size()) {
|
|
if (!list.AllocateObjectAndArray(memory_blocks_.size(),
|
|
sizeof(MDMemoryDescriptor)))
|
|
return false;
|
|
} else {
|
|
// Still create the memory list stream, although it will have zero
|
|
// memory blocks.
|
|
if (!list.Allocate())
|
|
return false;
|
|
}
|
|
|
|
dirent->stream_type = MD_MEMORY_LIST_STREAM;
|
|
dirent->location = list.location();
|
|
|
|
*list.get() = memory_blocks_.size();
|
|
|
|
for (size_t i = 0; i < memory_blocks_.size(); ++i) {
|
|
list.CopyIndexAfterObject(i, &memory_blocks_[i],
|
|
sizeof(MDMemoryDescriptor));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool WriteExceptionStream(MDRawDirectory* dirent) {
|
|
TypedMDRVA<MDRawExceptionStream> exc(&minidump_writer_);
|
|
if (!exc.Allocate())
|
|
return false;
|
|
my_memset(exc.get(), 0, sizeof(MDRawExceptionStream));
|
|
|
|
dirent->stream_type = MD_EXCEPTION_STREAM;
|
|
dirent->location = exc.location();
|
|
|
|
exc.get()->thread_id = GetCrashThread();
|
|
exc.get()->exception_record.exception_code = dumper_->crash_signal();
|
|
exc.get()->exception_record.exception_address = dumper_->crash_address();
|
|
exc.get()->thread_context = crashing_thread_context_;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WriteSystemInfoStream(MDRawDirectory* dirent) {
|
|
TypedMDRVA<MDRawSystemInfo> si(&minidump_writer_);
|
|
if (!si.Allocate())
|
|
return false;
|
|
my_memset(si.get(), 0, sizeof(MDRawSystemInfo));
|
|
|
|
dirent->stream_type = MD_SYSTEM_INFO_STREAM;
|
|
dirent->location = si.location();
|
|
|
|
WriteCPUInformation(si.get());
|
|
WriteOSInformation(si.get());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WriteDSODebugStream(MDRawDirectory* dirent) {
|
|
ElfW(Phdr)* phdr = reinterpret_cast<ElfW(Phdr) *>(dumper_->auxv()[AT_PHDR]);
|
|
char* base;
|
|
int phnum = dumper_->auxv()[AT_PHNUM];
|
|
if (!phnum || !phdr)
|
|
return false;
|
|
|
|
// Assume the program base is at the beginning of the same page as the PHDR
|
|
base = reinterpret_cast<char *>(reinterpret_cast<uintptr_t>(phdr) & ~0xfff);
|
|
|
|
// Search for the program PT_DYNAMIC segment
|
|
ElfW(Addr) dyn_addr = 0;
|
|
for (; phnum >= 0; phnum--, phdr++) {
|
|
ElfW(Phdr) ph;
|
|
dumper_->CopyFromProcess(&ph, GetCrashThread(), phdr, sizeof(ph));
|
|
// Adjust base address with the virtual address of the PT_LOAD segment
|
|
// corresponding to offset 0
|
|
if (ph.p_type == PT_LOAD && ph.p_offset == 0) {
|
|
base -= ph.p_vaddr;
|
|
}
|
|
if (ph.p_type == PT_DYNAMIC) {
|
|
dyn_addr = ph.p_vaddr;
|
|
}
|
|
}
|
|
if (!dyn_addr)
|
|
return false;
|
|
|
|
ElfW(Dyn) *dynamic = reinterpret_cast<ElfW(Dyn) *>(dyn_addr + base);
|
|
|
|
// The dynamic linker makes information available that helps gdb find all
|
|
// DSOs loaded into the program. If this information is indeed available,
|
|
// dump it to a MD_LINUX_DSO_DEBUG stream.
|
|
struct r_debug* r_debug = NULL;
|
|
uint32_t dynamic_length = 0;
|
|
|
|
for (int i = 0;;) {
|
|
ElfW(Dyn) dyn;
|
|
dynamic_length += sizeof(dyn);
|
|
dumper_->CopyFromProcess(&dyn, GetCrashThread(), dynamic+i++,
|
|
sizeof(dyn));
|
|
if (dyn.d_tag == DT_DEBUG) {
|
|
r_debug = reinterpret_cast<struct r_debug*>(dyn.d_un.d_ptr);
|
|
continue;
|
|
} else if (dyn.d_tag == DT_NULL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The "r_map" field of that r_debug struct contains a linked list of all
|
|
// loaded DSOs.
|
|
// Our list of DSOs potentially is different from the ones in the crashing
|
|
// process. So, we have to be careful to never dereference pointers
|
|
// directly. Instead, we use CopyFromProcess() everywhere.
|
|
// See <link.h> for a more detailed discussion of the how the dynamic
|
|
// loader communicates with debuggers.
|
|
|
|
// Count the number of loaded DSOs
|
|
int dso_count = 0;
|
|
struct r_debug debug_entry;
|
|
dumper_->CopyFromProcess(&debug_entry, GetCrashThread(), r_debug,
|
|
sizeof(debug_entry));
|
|
for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
|
|
struct link_map map;
|
|
dumper_->CopyFromProcess(&map, GetCrashThread(), ptr, sizeof(map));
|
|
ptr = map.l_next;
|
|
dso_count++;
|
|
}
|
|
|
|
MDRVA linkmap_rva = minidump_writer_.kInvalidMDRVA;
|
|
if (dso_count > 0) {
|
|
// If we have at least one DSO, create an array of MDRawLinkMap
|
|
// entries in the minidump file.
|
|
TypedMDRVA<MDRawLinkMap> linkmap(&minidump_writer_);
|
|
if (!linkmap.AllocateArray(dso_count))
|
|
return false;
|
|
linkmap_rva = linkmap.location().rva;
|
|
int idx = 0;
|
|
|
|
// Iterate over DSOs and write their information to mini dump
|
|
for (struct link_map* ptr = debug_entry.r_map; ptr; ) {
|
|
struct link_map map;
|
|
dumper_->CopyFromProcess(&map, GetCrashThread(), ptr, sizeof(map));
|
|
ptr = map.l_next;
|
|
char filename[257] = { 0 };
|
|
if (map.l_name) {
|
|
dumper_->CopyFromProcess(filename, GetCrashThread(), map.l_name,
|
|
sizeof(filename) - 1);
|
|
}
|
|
MDLocationDescriptor location;
|
|
if (!minidump_writer_.WriteString(filename, 0, &location))
|
|
return false;
|
|
MDRawLinkMap entry;
|
|
entry.name = location.rva;
|
|
entry.addr = reinterpret_cast<void*>(map.l_addr);
|
|
entry.ld = reinterpret_cast<void*>(map.l_ld);
|
|
linkmap.CopyIndex(idx++, &entry);
|
|
}
|
|
}
|
|
|
|
// Write MD_LINUX_DSO_DEBUG record
|
|
TypedMDRVA<MDRawDebug> debug(&minidump_writer_);
|
|
if (!debug.AllocateObjectAndArray(1, dynamic_length))
|
|
return false;
|
|
my_memset(debug.get(), 0, sizeof(MDRawDebug));
|
|
dirent->stream_type = MD_LINUX_DSO_DEBUG;
|
|
dirent->location = debug.location();
|
|
|
|
debug.get()->version = debug_entry.r_version;
|
|
debug.get()->map = linkmap_rva;
|
|
debug.get()->dso_count = dso_count;
|
|
debug.get()->brk = reinterpret_cast<void*>(debug_entry.r_brk);
|
|
debug.get()->ldbase = reinterpret_cast<void*>(debug_entry.r_ldbase);
|
|
debug.get()->dynamic = dynamic;
|
|
|
|
wasteful_vector<char> dso_debug_data(dumper_->allocator(), dynamic_length);
|
|
// The passed-in size to the constructor (above) is only a hint.
|
|
// Must call .resize() to do actual initialization of the elements.
|
|
dso_debug_data.resize(dynamic_length);
|
|
dumper_->CopyFromProcess(&dso_debug_data[0], GetCrashThread(), dynamic,
|
|
dynamic_length);
|
|
debug.CopyIndexAfterObject(0, &dso_debug_data[0], dynamic_length);
|
|
|
|
return true;
|
|
}
|
|
|
|
void set_minidump_size_limit(off_t limit) { minidump_size_limit_ = limit; }
|
|
|
|
private:
|
|
void* Alloc(unsigned bytes) {
|
|
return dumper_->allocator()->Alloc(bytes);
|
|
}
|
|
|
|
pid_t GetCrashThread() const {
|
|
return dumper_->crash_thread();
|
|
}
|
|
|
|
#if defined(__i386__)
|
|
uintptr_t GetStackPointer() {
|
|
return ucontext_->uc_mcontext.gregs[REG_ESP];
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer() {
|
|
return ucontext_->uc_mcontext.gregs[REG_EIP];
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer(const ThreadInfo& info) {
|
|
return info.regs.eip;
|
|
}
|
|
#elif defined(__x86_64)
|
|
uintptr_t GetStackPointer() {
|
|
return ucontext_->uc_mcontext.gregs[REG_RSP];
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer() {
|
|
return ucontext_->uc_mcontext.gregs[REG_RIP];
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer(const ThreadInfo& info) {
|
|
return info.regs.rip;
|
|
}
|
|
#elif defined(__ARM_EABI__)
|
|
uintptr_t GetStackPointer() {
|
|
return ucontext_->uc_mcontext.arm_sp;
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer() {
|
|
return ucontext_->uc_mcontext.arm_pc;
|
|
}
|
|
|
|
uintptr_t GetInstructionPointer(const ThreadInfo& info) {
|
|
return info.regs.uregs[15];
|
|
}
|
|
#else
|
|
#error "This code has not been ported to your platform yet."
|
|
#endif
|
|
|
|
void NullifyDirectoryEntry(MDRawDirectory* dirent) {
|
|
dirent->stream_type = 0;
|
|
dirent->location.data_size = 0;
|
|
dirent->location.rva = 0;
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
bool WriteCPUInformation(MDRawSystemInfo* sys_info) {
|
|
char vendor_id[sizeof(sys_info->cpu.x86_cpu_info.vendor_id) + 1] = {0};
|
|
static const char vendor_id_name[] = "vendor_id";
|
|
|
|
struct CpuInfoEntry {
|
|
const char* info_name;
|
|
int value;
|
|
bool found;
|
|
} cpu_info_table[] = {
|
|
{ "processor", -1, false },
|
|
{ "model", 0, false },
|
|
{ "stepping", 0, false },
|
|
{ "cpu family", 0, false },
|
|
};
|
|
|
|
// processor_architecture should always be set, do this first
|
|
sys_info->processor_architecture =
|
|
#if defined(__i386__)
|
|
MD_CPU_ARCHITECTURE_X86;
|
|
#else
|
|
MD_CPU_ARCHITECTURE_AMD64;
|
|
#endif
|
|
|
|
const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0);
|
|
if (fd < 0)
|
|
return false;
|
|
|
|
{
|
|
PageAllocator allocator;
|
|
ProcCpuInfoReader* const reader = new(allocator) ProcCpuInfoReader(fd);
|
|
const char* field;
|
|
while (reader->GetNextField(&field)) {
|
|
for (size_t i = 0;
|
|
i < sizeof(cpu_info_table) / sizeof(cpu_info_table[0]);
|
|
i++) {
|
|
CpuInfoEntry* entry = &cpu_info_table[i];
|
|
if (i > 0 && entry->found) {
|
|
// except for the 'processor' field, ignore repeated values.
|
|
continue;
|
|
}
|
|
if (!my_strcmp(field, entry->info_name)) {
|
|
size_t value_len;
|
|
const char* value = reader->GetValueAndLen(&value_len);
|
|
if (value_len == 0)
|
|
continue;
|
|
|
|
uintptr_t val;
|
|
if (my_read_decimal_ptr(&val, value) == value)
|
|
continue;
|
|
|
|
entry->value = static_cast<int>(val);
|
|
entry->found = true;
|
|
}
|
|
}
|
|
|
|
// special case for vendor_id
|
|
if (!my_strcmp(field, vendor_id_name)) {
|
|
size_t value_len;
|
|
const char* value = reader->GetValueAndLen(&value_len);
|
|
if (value_len > 0)
|
|
my_strlcpy(vendor_id, value, sizeof(vendor_id));
|
|
}
|
|
}
|
|
sys_close(fd);
|
|
}
|
|
|
|
// make sure we got everything we wanted
|
|
for (size_t i = 0;
|
|
i < sizeof(cpu_info_table) / sizeof(cpu_info_table[0]);
|
|
i++) {
|
|
if (!cpu_info_table[i].found) {
|
|
return false;
|
|
}
|
|
}
|
|
// cpu_info_table[0] holds the last cpu id listed in /proc/cpuinfo,
|
|
// assuming this is the highest id, change it to the number of CPUs
|
|
// by adding one.
|
|
cpu_info_table[0].value++;
|
|
|
|
sys_info->number_of_processors = cpu_info_table[0].value;
|
|
sys_info->processor_level = cpu_info_table[3].value;
|
|
sys_info->processor_revision = cpu_info_table[1].value << 8 |
|
|
cpu_info_table[2].value;
|
|
|
|
if (vendor_id[0] != '\0') {
|
|
my_memcpy(sys_info->cpu.x86_cpu_info.vendor_id, vendor_id,
|
|
sizeof(sys_info->cpu.x86_cpu_info.vendor_id));
|
|
}
|
|
return true;
|
|
}
|
|
#elif defined(__arm__)
|
|
bool WriteCPUInformation(MDRawSystemInfo* sys_info) {
|
|
// The CPUID value is broken up in several entries in /proc/cpuinfo.
|
|
// This table is used to rebuild it from the entries.
|
|
const struct CpuIdEntry {
|
|
const char* field;
|
|
char format;
|
|
char bit_lshift;
|
|
char bit_length;
|
|
} cpu_id_entries[] = {
|
|
{ "CPU implementer", 'x', 24, 8 },
|
|
{ "CPU variant", 'x', 20, 4 },
|
|
{ "CPU part", 'x', 4, 12 },
|
|
{ "CPU revision", 'd', 0, 4 },
|
|
};
|
|
|
|
// The ELF hwcaps are listed in the "Features" entry as textual tags.
|
|
// This table is used to rebuild them.
|
|
const struct CpuFeaturesEntry {
|
|
const char* tag;
|
|
uint32_t hwcaps;
|
|
} cpu_features_entries[] = {
|
|
{ "swp", MD_CPU_ARM_ELF_HWCAP_SWP },
|
|
{ "half", MD_CPU_ARM_ELF_HWCAP_HALF },
|
|
{ "thumb", MD_CPU_ARM_ELF_HWCAP_THUMB },
|
|
{ "26bit", MD_CPU_ARM_ELF_HWCAP_26BIT },
|
|
{ "fastmult", MD_CPU_ARM_ELF_HWCAP_FAST_MULT },
|
|
{ "fpa", MD_CPU_ARM_ELF_HWCAP_FPA },
|
|
{ "vfp", MD_CPU_ARM_ELF_HWCAP_VFP },
|
|
{ "edsp", MD_CPU_ARM_ELF_HWCAP_EDSP },
|
|
{ "java", MD_CPU_ARM_ELF_HWCAP_JAVA },
|
|
{ "iwmmxt", MD_CPU_ARM_ELF_HWCAP_IWMMXT },
|
|
{ "crunch", MD_CPU_ARM_ELF_HWCAP_CRUNCH },
|
|
{ "thumbee", MD_CPU_ARM_ELF_HWCAP_THUMBEE },
|
|
{ "neon", MD_CPU_ARM_ELF_HWCAP_NEON },
|
|
{ "vfpv3", MD_CPU_ARM_ELF_HWCAP_VFPv3 },
|
|
{ "vfpv3d16", MD_CPU_ARM_ELF_HWCAP_VFPv3D16 },
|
|
{ "tls", MD_CPU_ARM_ELF_HWCAP_TLS },
|
|
{ "vfpv4", MD_CPU_ARM_ELF_HWCAP_VFPv4 },
|
|
{ "idiva", MD_CPU_ARM_ELF_HWCAP_IDIVA },
|
|
{ "idivt", MD_CPU_ARM_ELF_HWCAP_IDIVT },
|
|
{ "idiv", MD_CPU_ARM_ELF_HWCAP_IDIVA | MD_CPU_ARM_ELF_HWCAP_IDIVT },
|
|
};
|
|
|
|
// processor_architecture should always be set, do this first
|
|
sys_info->processor_architecture = MD_CPU_ARCHITECTURE_ARM;
|
|
|
|
// /proc/cpuinfo is not readable under various sandboxed environments
|
|
// (e.g. Android services with the android:isolatedProcess attribute)
|
|
// prepare for this by setting default values now, which will be
|
|
// returned when this happens.
|
|
//
|
|
// Note: Bogus values are used to distinguish between failures (to
|
|
// read /sys and /proc files) and really badly configured kernels.
|
|
sys_info->number_of_processors = 0;
|
|
sys_info->processor_level = 1U; // There is no ARMv1
|
|
sys_info->processor_revision = 42;
|
|
sys_info->cpu.arm_cpu_info.cpuid = 0;
|
|
sys_info->cpu.arm_cpu_info.elf_hwcaps = 0;
|
|
|
|
// Counting the number of CPUs involves parsing two sysfs files,
|
|
// because the content of /proc/cpuinfo will only mirror the number
|
|
// of 'online' cores, and thus will vary with time.
|
|
// See http://www.kernel.org/doc/Documentation/cputopology.txt
|
|
{
|
|
CpuSet cpus_present;
|
|
CpuSet cpus_possible;
|
|
|
|
int fd = sys_open("/sys/devices/system/cpu/present", O_RDONLY, 0);
|
|
if (fd >= 0) {
|
|
cpus_present.ParseSysFile(fd);
|
|
sys_close(fd);
|
|
|
|
fd = sys_open("/sys/devices/system/cpu/possible", O_RDONLY, 0);
|
|
if (fd >= 0) {
|
|
cpus_possible.ParseSysFile(fd);
|
|
sys_close(fd);
|
|
|
|
cpus_present.IntersectWith(cpus_possible);
|
|
int cpu_count = cpus_present.GetCount();
|
|
if (cpu_count > 255)
|
|
cpu_count = 255;
|
|
sys_info->number_of_processors = static_cast<uint8_t>(cpu_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse /proc/cpuinfo to reconstruct the CPUID value, as well
|
|
// as the ELF hwcaps field. For the latter, it would be easier to
|
|
// read /proc/self/auxv but unfortunately, this file is not always
|
|
// readable from regular Android applications on later versions
|
|
// (>= 4.1) of the Android platform.
|
|
const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0);
|
|
if (fd < 0) {
|
|
// Do not return false here to allow the minidump generation
|
|
// to happen properly.
|
|
return true;
|
|
}
|
|
|
|
{
|
|
PageAllocator allocator;
|
|
ProcCpuInfoReader* const reader =
|
|
new(allocator) ProcCpuInfoReader(fd);
|
|
const char* field;
|
|
while (reader->GetNextField(&field)) {
|
|
for (size_t i = 0;
|
|
i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
|
|
++i) {
|
|
const CpuIdEntry* entry = &cpu_id_entries[i];
|
|
if (my_strcmp(entry->field, field) != 0)
|
|
continue;
|
|
uintptr_t result = 0;
|
|
const char* value = reader->GetValue();
|
|
const char* p = value;
|
|
if (value[0] == '0' && value[1] == 'x') {
|
|
p = my_read_hex_ptr(&result, value+2);
|
|
} else if (entry->format == 'x') {
|
|
p = my_read_hex_ptr(&result, value);
|
|
} else {
|
|
p = my_read_decimal_ptr(&result, value);
|
|
}
|
|
if (p == value)
|
|
continue;
|
|
|
|
result &= (1U << entry->bit_length)-1;
|
|
result <<= entry->bit_lshift;
|
|
sys_info->cpu.arm_cpu_info.cpuid |=
|
|
static_cast<uint32_t>(result);
|
|
}
|
|
// Get the architecture version from the "Processor" field.
|
|
// Note that it is also available in the "CPU architecture" field,
|
|
// however, some existing kernels are misconfigured and will report
|
|
// invalid values here (e.g. 6, while the CPU is ARMv7-A based).
|
|
// The "Processor" field doesn't have this issue.
|
|
if (!my_strcmp(field, "Processor")) {
|
|
unsigned value_len;
|
|
const char* value = reader->GetValueAndLen(&value_len);
|
|
// Expected format: <text> (v<level><endian>)
|
|
// Where <text> is some text like "ARMv7 Processor rev 2"
|
|
// and <level> is a decimal corresponding to the ARM
|
|
// architecture number. <endian> is either 'l' or 'b'
|
|
// and corresponds to the endianess, it is ignored here.
|
|
while (value_len > 0 && my_isspace(value[value_len-1]))
|
|
value_len--;
|
|
|
|
size_t nn = value_len;
|
|
while (nn > 0 && value[nn-1] != '(')
|
|
nn--;
|
|
if (nn > 0 && value[nn] == 'v') {
|
|
uintptr_t arch_level = 5;
|
|
my_read_decimal_ptr(&arch_level, value + nn + 1);
|
|
sys_info->processor_level = static_cast<uint16_t>(arch_level);
|
|
}
|
|
}
|
|
// Rebuild the ELF hwcaps from the 'Features' field.
|
|
if (!my_strcmp(field, "Features")) {
|
|
unsigned value_len;
|
|
const char* value = reader->GetValueAndLen(&value_len);
|
|
|
|
// Parse each space-separated tag.
|
|
while (value_len > 0) {
|
|
const char* tag = value;
|
|
size_t tag_len = value_len;
|
|
const char* p = my_strchr(tag, ' ');
|
|
if (p != NULL) {
|
|
tag_len = static_cast<size_t>(p - tag);
|
|
value += tag_len + 1;
|
|
value_len -= tag_len + 1;
|
|
} else {
|
|
tag_len = strlen(tag);
|
|
value_len = 0;
|
|
}
|
|
for (size_t i = 0;
|
|
i < sizeof(cpu_features_entries)/
|
|
sizeof(cpu_features_entries[0]);
|
|
++i) {
|
|
const CpuFeaturesEntry* entry = &cpu_features_entries[i];
|
|
if (tag_len == strlen(entry->tag) &&
|
|
!memcmp(tag, entry->tag, tag_len)) {
|
|
sys_info->cpu.arm_cpu_info.elf_hwcaps |= entry->hwcaps;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sys_close(fd);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
# error "Unsupported CPU"
|
|
#endif
|
|
|
|
bool WriteFile(MDLocationDescriptor* result, const char* filename) {
|
|
const int fd = sys_open(filename, O_RDONLY, 0);
|
|
if (fd < 0)
|
|
return false;
|
|
|
|
// We can't stat the files because several of the files that we want to
|
|
// read are kernel seqfiles, which always have a length of zero. So we have
|
|
// to read as much as we can into a buffer.
|
|
static const unsigned kBufSize = 1024 - 2*sizeof(void*);
|
|
struct Buffers {
|
|
Buffers* next;
|
|
size_t len;
|
|
uint8_t data[kBufSize];
|
|
} *buffers = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers)));
|
|
buffers->next = NULL;
|
|
buffers->len = 0;
|
|
|
|
size_t total = 0;
|
|
for (Buffers* bufptr = buffers;;) {
|
|
ssize_t r;
|
|
do {
|
|
r = sys_read(fd, &bufptr->data[bufptr->len], kBufSize - bufptr->len);
|
|
} while (r == -1 && errno == EINTR);
|
|
|
|
if (r < 1)
|
|
break;
|
|
|
|
total += r;
|
|
bufptr->len += r;
|
|
if (bufptr->len == kBufSize) {
|
|
bufptr->next = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers)));
|
|
bufptr = bufptr->next;
|
|
bufptr->next = NULL;
|
|
bufptr->len = 0;
|
|
}
|
|
}
|
|
sys_close(fd);
|
|
|
|
if (!total)
|
|
return false;
|
|
|
|
UntypedMDRVA memory(&minidump_writer_);
|
|
if (!memory.Allocate(total))
|
|
return false;
|
|
for (MDRVA pos = memory.position(); buffers; buffers = buffers->next) {
|
|
// Check for special case of a zero-length buffer. This should only
|
|
// occur if a file's size happens to be a multiple of the buffer's
|
|
// size, in which case the final sys_read() will have resulted in
|
|
// zero bytes being read after the final buffer was just allocated.
|
|
if (buffers->len == 0) {
|
|
// This can only occur with final buffer.
|
|
assert(buffers->next == NULL);
|
|
continue;
|
|
}
|
|
memory.Copy(pos, &buffers->data, buffers->len);
|
|
pos += buffers->len;
|
|
}
|
|
*result = memory.location();
|
|
return true;
|
|
}
|
|
|
|
bool WriteOSInformation(MDRawSystemInfo* sys_info) {
|
|
#if defined(__ANDROID__)
|
|
sys_info->platform_id = MD_OS_ANDROID;
|
|
#else
|
|
sys_info->platform_id = MD_OS_LINUX;
|
|
#endif
|
|
|
|
struct utsname uts;
|
|
if (uname(&uts))
|
|
return false;
|
|
|
|
static const size_t buf_len = 512;
|
|
char buf[buf_len] = {0};
|
|
size_t space_left = buf_len - 1;
|
|
const char* info_table[] = {
|
|
uts.sysname,
|
|
uts.release,
|
|
uts.version,
|
|
uts.machine,
|
|
NULL
|
|
};
|
|
bool first_item = true;
|
|
for (const char** cur_info = info_table; *cur_info; cur_info++) {
|
|
static const char separator[] = " ";
|
|
size_t separator_len = sizeof(separator) - 1;
|
|
size_t info_len = my_strlen(*cur_info);
|
|
if (info_len == 0)
|
|
continue;
|
|
|
|
if (space_left < info_len + (first_item ? 0 : separator_len))
|
|
break;
|
|
|
|
if (!first_item) {
|
|
my_strlcat(buf, separator, sizeof(buf));
|
|
space_left -= separator_len;
|
|
}
|
|
|
|
first_item = false;
|
|
my_strlcat(buf, *cur_info, sizeof(buf));
|
|
space_left -= info_len;
|
|
}
|
|
|
|
#ifdef __ANDROID__
|
|
// On Android, try to get the build fingerprint and append it.
|
|
// Fail gracefully because there is no guarantee that the system
|
|
// property will always be available or accessible.
|
|
char fingerprint[PROP_VALUE_MAX];
|
|
int fingerprint_len = __system_property_get("ro.build.fingerprint",
|
|
fingerprint);
|
|
// System property values shall always be zero-terminated.
|
|
// Be paranoid and don't trust the system.
|
|
if (fingerprint_len > 0 && fingerprint_len < PROP_VALUE_MAX) {
|
|
const char* separator = " ";
|
|
if (!first_item)
|
|
my_strlcat(buf, separator, sizeof(buf));
|
|
my_strlcat(buf, fingerprint, sizeof(buf));
|
|
}
|
|
#endif
|
|
|
|
MDLocationDescriptor location;
|
|
if (!minidump_writer_.WriteString(buf, 0, &location))
|
|
return false;
|
|
sys_info->csd_version_rva = location.rva;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WriteProcFile(MDLocationDescriptor* result, pid_t pid,
|
|
const char* filename) {
|
|
char buf[NAME_MAX];
|
|
if (!dumper_->BuildProcPath(buf, pid, filename))
|
|
return false;
|
|
return WriteFile(result, buf);
|
|
}
|
|
|
|
// Only one of the 2 member variables below should be set to a valid value.
|
|
const int fd_; // File descriptor where the minidum should be written.
|
|
const char* path_; // Path to the file where the minidum should be written.
|
|
|
|
const struct ucontext* const ucontext_; // also from the signal handler
|
|
const struct _libc_fpstate* const float_state_; // ditto
|
|
LinuxDumper* dumper_;
|
|
MinidumpFileWriter minidump_writer_;
|
|
off_t minidump_size_limit_;
|
|
MDLocationDescriptor crashing_thread_context_;
|
|
// Blocks of memory written to the dump. These are all currently
|
|
// written while writing the thread list stream, but saved here
|
|
// so a memory list stream can be written afterwards.
|
|
wasteful_vector<MDMemoryDescriptor> memory_blocks_;
|
|
// Additional information about some mappings provided by the caller.
|
|
const MappingList& mapping_list_;
|
|
// Additional memory regions to be included in the dump,
|
|
// provided by the caller.
|
|
const AppMemoryList& app_memory_list_;
|
|
};
|
|
|
|
|
|
bool WriteMinidumpImpl(const char* minidump_path,
|
|
int minidump_fd,
|
|
off_t minidump_size_limit,
|
|
pid_t crashing_process,
|
|
const void* blob, size_t blob_size,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem) {
|
|
LinuxPtraceDumper dumper(crashing_process);
|
|
const ExceptionHandler::CrashContext* context = NULL;
|
|
if (blob) {
|
|
if (blob_size != sizeof(ExceptionHandler::CrashContext))
|
|
return false;
|
|
context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
|
|
dumper.set_crash_address(
|
|
reinterpret_cast<uintptr_t>(context->siginfo.si_addr));
|
|
dumper.set_crash_signal(context->siginfo.si_signo);
|
|
dumper.set_crash_thread(context->tid);
|
|
}
|
|
MinidumpWriter writer(minidump_path, minidump_fd, context, mappings,
|
|
appmem, &dumper);
|
|
// Set desired limit for file size of minidump (-1 means no limit).
|
|
writer.set_minidump_size_limit(minidump_size_limit);
|
|
if (!writer.Init())
|
|
return false;
|
|
return writer.Dump();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace google_breakpad {
|
|
|
|
bool WriteMinidump(const char* minidump_path, pid_t crashing_process,
|
|
const void* blob, size_t blob_size) {
|
|
return WriteMinidumpImpl(minidump_path, -1, -1,
|
|
crashing_process, blob, blob_size,
|
|
MappingList(), AppMemoryList());
|
|
}
|
|
|
|
bool WriteMinidump(int minidump_fd, pid_t crashing_process,
|
|
const void* blob, size_t blob_size) {
|
|
return WriteMinidumpImpl(NULL, minidump_fd, -1,
|
|
crashing_process, blob, blob_size,
|
|
MappingList(), AppMemoryList());
|
|
}
|
|
|
|
bool WriteMinidump(const char* minidump_path, pid_t process,
|
|
pid_t process_blamed_thread) {
|
|
LinuxPtraceDumper dumper(process);
|
|
// MinidumpWriter will set crash address
|
|
dumper.set_crash_signal(MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED);
|
|
dumper.set_crash_thread(process_blamed_thread);
|
|
MinidumpWriter writer(minidump_path, -1, NULL, MappingList(),
|
|
AppMemoryList(), &dumper);
|
|
if (!writer.Init())
|
|
return false;
|
|
return writer.Dump();
|
|
}
|
|
|
|
bool WriteMinidump(const char* minidump_path, pid_t crashing_process,
|
|
const void* blob, size_t blob_size,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem) {
|
|
return WriteMinidumpImpl(minidump_path, -1, -1, crashing_process,
|
|
blob, blob_size,
|
|
mappings, appmem);
|
|
}
|
|
|
|
bool WriteMinidump(int minidump_fd, pid_t crashing_process,
|
|
const void* blob, size_t blob_size,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem) {
|
|
return WriteMinidumpImpl(NULL, minidump_fd, -1, crashing_process,
|
|
blob, blob_size,
|
|
mappings, appmem);
|
|
}
|
|
|
|
bool WriteMinidump(const char* minidump_path, off_t minidump_size_limit,
|
|
pid_t crashing_process,
|
|
const void* blob, size_t blob_size,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem) {
|
|
return WriteMinidumpImpl(minidump_path, -1, minidump_size_limit,
|
|
crashing_process, blob, blob_size,
|
|
mappings, appmem);
|
|
}
|
|
|
|
bool WriteMinidump(int minidump_fd, off_t minidump_size_limit,
|
|
pid_t crashing_process,
|
|
const void* blob, size_t blob_size,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem) {
|
|
return WriteMinidumpImpl(NULL, minidump_fd, minidump_size_limit,
|
|
crashing_process, blob, blob_size,
|
|
mappings, appmem);
|
|
}
|
|
|
|
bool WriteMinidump(const char* filename,
|
|
const MappingList& mappings,
|
|
const AppMemoryList& appmem,
|
|
LinuxDumper* dumper) {
|
|
MinidumpWriter writer(filename, -1, NULL, mappings, appmem, dumper);
|
|
if (!writer.Init())
|
|
return false;
|
|
return writer.Dump();
|
|
}
|
|
|
|
} // namespace google_breakpad
|