breakpad/src/processor/exploitability_linux.cc
Liu.andrew.x@gmail.com f073540795 Add check for Linux minidump ending on bad write for exploitability rating.
If a crash occurred as a result to a write to unwritable memory, it is reason
to suggest exploitability. The processor checks for a bad write by
disassembling the command that caused the crash by piping the raw bytes near
the instruction pointer through objdump. This allows the processor to see if
the instruction that caused the crash is a write to memory and where the
target of the address is located.

R=ivanpe@chromium.org

Review URL: https://codereview.chromium.org/1273823004

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1497 4c0a9323-5329-0410-9bdc-e9ce6186880e
2015-08-21 16:22:19 +00:00

605 lines
22 KiB
C++

// Copyright (c) 2013 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// exploitability_linux.cc: Linux specific exploitability engine.
//
// Provides a guess at the exploitability of the crash for the Linux
// platform given a minidump and process_state.
//
// Author: Matthew Riley
#include "processor/exploitability_linux.h"
#ifndef _WIN32
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sstream>
#include <iterator>
#endif // _WIN32
#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame.h"
#include "processor/logging.h"
namespace {
// This function in libc is called if the program was compiled with
// -fstack-protector and a function's stack canary changes.
const char kStackCheckFailureFunction[] = "__stack_chk_fail";
// This function in libc is called if the program was compiled with
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
// can determine that the call would overflow the target buffer.
const char kBoundsCheckFailureFunction[] = "__chk_fail";
#ifndef _WIN32
const unsigned int MAX_INSTRUCTION_LEN = 15;
const unsigned int MAX_OBJDUMP_BUFFER_LEN = 4096;
#endif // _WIN32
} // namespace
namespace google_breakpad {
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
ProcessState *process_state)
: Exploitability(dump, process_state),
enable_objdump_(false) { }
ExploitabilityLinux::ExploitabilityLinux(Minidump *dump,
ProcessState *process_state,
bool enable_objdump)
: Exploitability(dump, process_state),
enable_objdump_(enable_objdump) { }
ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
// Check the crashing thread for functions suggesting a buffer overflow or
// stack smash.
if (process_state_->requesting_thread() != -1) {
CallStack* crashing_thread =
process_state_->threads()->at(process_state_->requesting_thread());
const vector<StackFrame*>& crashing_thread_frames =
*crashing_thread->frames();
for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
if (crashing_thread_frames[i]->function_name ==
kStackCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
if (crashing_thread_frames[i]->function_name ==
kBoundsCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
}
}
// Getting exception data. (It should exist for all minidumps.)
MinidumpException *exception = dump_->GetException();
if (exception == NULL) {
BPLOG(INFO) << "No exception record.";
return EXPLOITABILITY_ERR_PROCESSING;
}
const MDRawExceptionStream *raw_exception_stream = exception->exception();
if (raw_exception_stream == NULL) {
BPLOG(INFO) << "No raw exception stream.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for benign exceptions that caused the crash.
if (this->BenignCrashTrigger(raw_exception_stream)) {
return EXPLOITABILITY_NONE;
}
// Check if the instruction pointer is in a valid instruction region
// by finding if it maps to an executable part of memory.
uint64_t instruction_ptr = 0;
uint64_t stack_ptr = 0;
const MinidumpContext *context = exception->GetContext();
if (context == NULL) {
BPLOG(INFO) << "No exception context.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the instruction pointer.
if (!context->GetInstructionPointer(&instruction_ptr)) {
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the stack pointer.
if (!context->GetStackPointer(&stack_ptr)) {
BPLOG(INFO) << "Failed to retrieve stack pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for the instruction pointer in a valid instruction region,
// a misplaced stack pointer, and an executable stack or heap.
if (!this->InstructionPointerInCode(instruction_ptr) ||
this->StackPointerOffStack(stack_ptr) ||
this->ExecutableStackOrHeap()) {
return EXPLOITABILITY_HIGH;
}
// Check for write to read only memory or invalid memory, shelling out
// to objdump is enabled.
if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) {
return EXPLOITABILITY_HIGH;
}
// There was no strong evidence suggesting exploitability, but the minidump
// does not appear totally benign either.
return EXPLOITABILITY_INTERESTING;
}
bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) {
#ifdef _WIN32
BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method.";
#else
// Get memory region containing instruction pointer.
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
MinidumpMemoryRegion *memory_region =
memory_list ?
memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL;
if (!memory_region) {
BPLOG(INFO) << "No memory region around instruction pointer.";
return false;
}
// Get exception data to find architecture.
string architecture = "";
MinidumpException *exception = dump_->GetException();
// This should never evaluate to true, since this should not be reachable
// without checking for exception data earlier.
if (!exception) {
BPLOG(INFO) << "No exception data.";
return false;
}
const MDRawExceptionStream *raw_exception_stream = exception->exception();
const MinidumpContext *context = exception->GetContext();
// This should not evaluate to true, for the same reason mentioned above.
if (!raw_exception_stream || !context) {
BPLOG(INFO) << "No exception or architecture data.";
return false;
}
// Check architecture and set architecture variable to corresponding flag
// in objdump.
switch (context->GetContextCPU()) {
case MD_CONTEXT_X86:
architecture = "i386";
break;
case MD_CONTEXT_AMD64:
architecture = "i386:x86-64";
break;
default:
// Unsupported architecture. Note that ARM architectures are not
// supported because objdump does not support ARM.
return false;
break;
}
// Get memory region around instruction pointer and the number of bytes
// before and after the instruction pointer in the memory region.
const uint8_t *raw_memory = memory_region->GetMemory();
const uint64_t base = memory_region->GetBase();
if (base > instruction_ptr) {
BPLOG(ERROR) << "Memory region base value exceeds instruction pointer.";
return false;
}
const uint64_t offset = instruction_ptr - base;
if (memory_region->GetSize() < MAX_INSTRUCTION_LEN + offset) {
BPLOG(INFO) << "Not enough bytes left to guarantee complete instruction.";
return false;
}
// Convert bytes into objdump output.
char objdump_output_buffer[MAX_OBJDUMP_BUFFER_LEN] = {0};
DisassembleBytes(architecture,
raw_memory + offset,
MAX_OBJDUMP_BUFFER_LEN,
objdump_output_buffer);
// Put buffer data into stream to output line-by-line.
std::stringstream objdump_stream;
objdump_stream.str(string(objdump_output_buffer));
string line;
// Pipe each output line into the string until the string contains
// the first instruction from objdump.
// Loop until the line shows the first instruction or there are no lines left.
do {
if (!getline(objdump_stream, line)) {
BPLOG(INFO) << "Objdump instructions not found";
return false;
}
} while (line.find("0:") == string::npos);
// This first instruction contains the above substring.
// Convert objdump instruction line into the operation and operands.
string instruction = "";
string dest = "";
string src = "";
TokenizeObjdumpInstruction(line, &instruction, &dest, &src);
// Check if the operation is a write to memory. First, the instruction
// must one that can write to memory. Second, the write destination
// must be a spot in memory rather than a register. Since there are no
// symbols from objdump, the destination will be enclosed by brackets.
if (dest.size() > 2 && dest.at(0) == '[' && dest.at(dest.size() - 1) == ']' &&
(!instruction.compare("mov") || !instruction.compare("inc") ||
!instruction.compare("dec") || !instruction.compare("and") ||
!instruction.compare("or") || !instruction.compare("xor") ||
!instruction.compare("not") || !instruction.compare("neg") ||
!instruction.compare("add") || !instruction.compare("sub") ||
!instruction.compare("shl") || !instruction.compare("shr"))) {
// Strip away enclosing brackets from the destination address.
dest = dest.substr(1, dest.size() - 2);
uint64_t write_address = 0;
CalculateAddress(dest, *context, &write_address);
// If the program crashed as a result of a write, the destination of
// the write must have been an address that did not permit writing.
// However, if the address is under 4k, due to program protections,
// the crash does not suggest exploitability for writes with such a
// low target address.
return write_address > 4096;
}
#endif // _WIN32
return false;
}
#ifndef _WIN32
bool ExploitabilityLinux::CalculateAddress(const string &address_expression,
const DumpContext &context,
uint64_t *write_address) {
// The destination should be the format reg+a or reg-a, where reg
// is a register and a is a hexadecimal constant. Although more complex
// expressions can make valid instructions, objdump's disassembly outputs
// it in this simpler format.
// TODO(liuandrew): Handle more complex formats, should they arise.
if (!write_address) {
BPLOG(ERROR) << "Null parameter.";
return false;
}
// Clone parameter into a non-const string.
string expression = address_expression;
// Parse out the constant that is added to the address (if it exists).
size_t delim = expression.find('+');
bool positive_add_constant = true;
// Check if constant is subtracted instead of added.
if (delim == string::npos) {
positive_add_constant = false;
delim = expression.find('-');
}
uint32_t add_constant = 0;
// Save constant and remove it from the expression.
if (delim != string::npos) {
if (!sscanf(expression.substr(delim + 1).c_str(), "%x", &add_constant)) {
BPLOG(ERROR) << "Failed to scan constant.";
return false;
}
expression = expression.substr(0, delim);
}
// Set the the write address to the corresponding register.
// TODO(liuandrew): Add support for partial registers, such as
// the rax/eax/ax/ah/al chain.
switch (context.GetContextCPU()) {
case MD_CONTEXT_X86:
if (!expression.compare("eax")) {
*write_address = context.GetContextX86()->eax;
} else if (!expression.compare("ebx")) {
*write_address = context.GetContextX86()->ebx;
} else if (!expression.compare("ecx")) {
*write_address = context.GetContextX86()->ecx;
} else if (!expression.compare("edx")) {
*write_address = context.GetContextX86()->edx;
} else if (!expression.compare("edi")) {
*write_address = context.GetContextX86()->edi;
} else if (!expression.compare("esi")) {
*write_address = context.GetContextX86()->esi;
} else if (!expression.compare("ebp")) {
*write_address = context.GetContextX86()->ebp;
} else if (!expression.compare("esp")) {
*write_address = context.GetContextX86()->esp;
} else if (!expression.compare("eip")) {
*write_address = context.GetContextX86()->eip;
} else {
BPLOG(ERROR) << "Unsupported register";
return false;
}
break;
case MD_CONTEXT_AMD64:
if (!expression.compare("rax")) {
*write_address = context.GetContextAMD64()->rax;
} else if (!expression.compare("rbx")) {
*write_address = context.GetContextAMD64()->rbx;
} else if (!expression.compare("rcx")) {
*write_address = context.GetContextAMD64()->rcx;
} else if (!expression.compare("rdx")) {
*write_address = context.GetContextAMD64()->rdx;
} else if (!expression.compare("rdi")) {
*write_address = context.GetContextAMD64()->rdi;
} else if (!expression.compare("rsi")) {
*write_address = context.GetContextAMD64()->rsi;
} else if (!expression.compare("rbp")) {
*write_address = context.GetContextAMD64()->rbp;
} else if (!expression.compare("rsp")) {
*write_address = context.GetContextAMD64()->rsp;
} else if (!expression.compare("rip")) {
*write_address = context.GetContextAMD64()->rip;
} else if (!expression.compare("r8")) {
*write_address = context.GetContextAMD64()->r8;
} else if (!expression.compare("r9")) {
*write_address = context.GetContextAMD64()->r9;
} else if (!expression.compare("r10")) {
*write_address = context.GetContextAMD64()->r10;
} else if (!expression.compare("r11")) {
*write_address = context.GetContextAMD64()->r11;
} else if (!expression.compare("r12")) {
*write_address = context.GetContextAMD64()->r12;
} else if (!expression.compare("r13")) {
*write_address = context.GetContextAMD64()->r13;
} else if (!expression.compare("r14")) {
*write_address = context.GetContextAMD64()->r14;
} else if (!expression.compare("r15")) {
*write_address = context.GetContextAMD64()->r15;
} else {
BPLOG(ERROR) << "Unsupported register";
return false;
}
break;
default:
// This should not occur since the same switch condition
// should have terminated this method.
return false;
break;
}
// Add or subtract constant from write address (if applicable).
*write_address =
positive_add_constant ?
*write_address + add_constant : *write_address - add_constant;
return true;
}
bool ExploitabilityLinux::TokenizeObjdumpInstruction(const string &line,
string *operation,
string *dest,
string *src) {
if (!operation || !dest || !src) {
BPLOG(ERROR) << "Null parameters passed.";
return false;
}
// Set all pointer values to empty strings.
*operation = "";
*dest = "";
*src = "";
// Tokenize the objdump line.
vector<string> tokens;
std::istringstream line_stream(line);
copy(std::istream_iterator<string>(line_stream),
std::istream_iterator<string>(),
std::back_inserter(tokens));
// Regex for the data in hex form. Each byte is two hex digits.
regex_t regex;
regcomp(&regex, "^[[:xdigit:]]{2}$", REG_EXTENDED | REG_NOSUB);
// Find and set the location of the operator. The operator appears
// directly after the chain of bytes that define the instruction. The
// operands will be the last token, given that the instruction has operands.
// If not, the operator is the last token. The loop skips the first token
// because the first token is the instruction number (namely "0:").
string operands = "";
for (size_t i = 1; i < tokens.size(); i++) {
// Check if current token no longer is in byte format.
if (regexec(&regex, tokens[i].c_str(), 0, NULL, 0)) {
// instruction = tokens[i];
*operation = tokens[i];
// If the operator is the last token, there are no operands.
if (i != tokens.size() - 1) {
operands = tokens[tokens.size() - 1];
}
break;
}
}
regfree(&regex);
if (operation->empty()) {
BPLOG(ERROR) << "Failed to parse out operation from objdump instruction.";
return false;
}
// Split operands into source and destination (if applicable).
if (!operands.empty()) {
size_t delim = operands.find(',');
if (delim == string::npos) {
*dest = operands;
} else {
*dest = operands.substr(0, delim);
*src = operands.substr(delim + 1);
}
}
return true;
}
bool ExploitabilityLinux::DisassembleBytes(const string &architecture,
const uint8_t *raw_bytes,
const unsigned int buffer_len,
char *objdump_output_buffer) {
if (!raw_bytes || !objdump_output_buffer) {
BPLOG(ERROR) << "Bad input parameters.";
return false;
}
// Write raw bytes around instruction pointer to a temporary file to
// pass as an argument to objdump.
char raw_bytes_tmpfile[] = "/tmp/breakpad_mem_region-raw_bytes-XXXXXX";
int raw_bytes_fd = mkstemp(raw_bytes_tmpfile);
if (raw_bytes_fd < 0) {
BPLOG(ERROR) << "Failed to create tempfile.";
unlink(raw_bytes_tmpfile);
return false;
}
if (write(raw_bytes_fd, raw_bytes, MAX_INSTRUCTION_LEN)
!= MAX_INSTRUCTION_LEN) {
BPLOG(ERROR) << "Writing of raw bytes failed.";
unlink(raw_bytes_tmpfile);
return false;
}
char cmd[1024] = {0};
snprintf(cmd,
1024,
"objdump -D -b binary -M intel -m %s %s",
architecture.c_str(),
raw_bytes_tmpfile);
FILE *objdump_fp = popen(cmd, "r");
if (!objdump_fp) {
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
BPLOG(ERROR) << "Failed to call objdump.";
return false;
}
if (fread(objdump_output_buffer, 1, buffer_len, objdump_fp) <= 0) {
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
BPLOG(ERROR) << "Failed to read objdump output.";
return false;
}
fclose(objdump_fp);
unlink(raw_bytes_tmpfile);
return true;
}
#endif // _WIN32
bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) {
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
// Inconclusive if there are no mappings available.
if (!linux_maps_list) {
return false;
}
const MinidumpLinuxMaps *linux_maps =
linux_maps_list->GetLinuxMapsForAddress(stack_ptr);
// Checks if the stack pointer maps to a valid mapping and if the mapping
// is not the stack. If the mapping has no name, it is inconclusive whether
// it is off the stack.
return !linux_maps ||
(linux_maps->GetPathname().compare("") &&
linux_maps->GetPathname().compare("[stack]"));
}
bool ExploitabilityLinux::ExecutableStackOrHeap() {
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
if (linux_maps_list) {
for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) {
const MinidumpLinuxMaps *linux_maps =
linux_maps_list->GetLinuxMapsAtIndex(i);
// Check for executable stack or heap for each mapping.
if (linux_maps &&
(!linux_maps->GetPathname().compare("[stack]") ||
!linux_maps->GetPathname().compare("[heap]")) &&
linux_maps->IsExecutable()) {
return true;
}
}
}
return false;
}
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
// Get Linux memory mapping from /proc/self/maps. Checking whether the
// region the instruction pointer is in has executable permission can tell
// whether it is in a valid code region. If there is no mapping for the
// instruction pointer, it is indicative that the instruction pointer is
// not within a module, which implies that it is outside a valid area.
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
const MinidumpLinuxMaps *linux_maps =
linux_maps_list ?
linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
return linux_maps ? linux_maps->IsExecutable() : false;
}
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream
*raw_exception_stream) {
// Check the cause of crash.
// If the exception of the crash is a benign exception,
// it is probably not exploitable.
switch (raw_exception_stream->exception_record.exception_code) {
case MD_EXCEPTION_CODE_LIN_SIGHUP:
case MD_EXCEPTION_CODE_LIN_SIGINT:
case MD_EXCEPTION_CODE_LIN_SIGQUIT:
case MD_EXCEPTION_CODE_LIN_SIGTRAP:
case MD_EXCEPTION_CODE_LIN_SIGABRT:
case MD_EXCEPTION_CODE_LIN_SIGFPE:
case MD_EXCEPTION_CODE_LIN_SIGKILL:
case MD_EXCEPTION_CODE_LIN_SIGUSR1:
case MD_EXCEPTION_CODE_LIN_SIGUSR2:
case MD_EXCEPTION_CODE_LIN_SIGPIPE:
case MD_EXCEPTION_CODE_LIN_SIGALRM:
case MD_EXCEPTION_CODE_LIN_SIGTERM:
case MD_EXCEPTION_CODE_LIN_SIGCHLD:
case MD_EXCEPTION_CODE_LIN_SIGCONT:
case MD_EXCEPTION_CODE_LIN_SIGSTOP:
case MD_EXCEPTION_CODE_LIN_SIGTSTP:
case MD_EXCEPTION_CODE_LIN_SIGTTIN:
case MD_EXCEPTION_CODE_LIN_SIGTTOU:
case MD_EXCEPTION_CODE_LIN_SIGURG:
case MD_EXCEPTION_CODE_LIN_SIGXCPU:
case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
case MD_EXCEPTION_CODE_LIN_SIGPROF:
case MD_EXCEPTION_CODE_LIN_SIGWINCH:
case MD_EXCEPTION_CODE_LIN_SIGIO:
case MD_EXCEPTION_CODE_LIN_SIGPWR:
case MD_EXCEPTION_CODE_LIN_SIGSYS:
case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
return true;
break;
default:
return false;
break;
}
}
} // namespace google_breakpad