mirror of
https://github.com/yuzu-emu/breakpad.git
synced 2025-04-17 06:13:02 +00:00
BUG=473 TEST=CrashGenerationServerTest.* Review URL: https://breakpad.appspot.com/379001 git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@952 4c0a9323-5329-0410-9bdc-e9ce6186880e
893 lines
29 KiB
C++
893 lines
29 KiB
C++
// Copyright (c) 2008, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "client/windows/crash_generation/crash_generation_server.h"
|
|
#include <windows.h>
|
|
#include <cassert>
|
|
#include <list>
|
|
#include "client/windows/common/auto_critical_section.h"
|
|
#include "processor/scoped_ptr.h"
|
|
|
|
#include "client/windows/crash_generation/client_info.h"
|
|
|
|
namespace google_breakpad {
|
|
|
|
// Output buffer size.
|
|
static const size_t kOutBufferSize = 64;
|
|
|
|
// Input buffer size.
|
|
static const size_t kInBufferSize = 64;
|
|
|
|
// Access flags for the client on the dump request event.
|
|
static const DWORD kDumpRequestEventAccess = EVENT_MODIFY_STATE;
|
|
|
|
// Access flags for the client on the dump generated event.
|
|
static const DWORD kDumpGeneratedEventAccess = EVENT_MODIFY_STATE |
|
|
SYNCHRONIZE;
|
|
|
|
// Access flags for the client on the mutex.
|
|
static const DWORD kMutexAccess = SYNCHRONIZE;
|
|
|
|
// Attribute flags for the pipe.
|
|
static const DWORD kPipeAttr = FILE_FLAG_FIRST_PIPE_INSTANCE |
|
|
PIPE_ACCESS_DUPLEX |
|
|
FILE_FLAG_OVERLAPPED;
|
|
|
|
// Mode for the pipe.
|
|
static const DWORD kPipeMode = PIPE_TYPE_MESSAGE |
|
|
PIPE_READMODE_MESSAGE |
|
|
PIPE_WAIT;
|
|
|
|
// For pipe I/O, execute the callback in the wait thread itself,
|
|
// since the callback does very little work. The callback executes
|
|
// the code for one of the states of the server state machine and
|
|
// the code for all of the states perform async I/O and hence
|
|
// finish very quickly.
|
|
static const ULONG kPipeIOThreadFlags = WT_EXECUTEINWAITTHREAD;
|
|
|
|
// Dump request threads will, most likely, generate dumps. That may
|
|
// take some time to finish, so specify WT_EXECUTELONGFUNCTION flag.
|
|
static const ULONG kDumpRequestThreadFlags = WT_EXECUTEINWAITTHREAD |
|
|
WT_EXECUTELONGFUNCTION;
|
|
|
|
// Maximum delay during server shutdown if some work items
|
|
// are still executing.
|
|
static const int kShutdownDelayMs = 10000;
|
|
|
|
// Interval for each sleep during server shutdown.
|
|
static const int kShutdownSleepIntervalMs = 5;
|
|
|
|
static bool IsClientRequestValid(const ProtocolMessage& msg) {
|
|
return msg.tag == MESSAGE_TAG_UPLOAD_REQUEST ||
|
|
(msg.tag == MESSAGE_TAG_REGISTRATION_REQUEST &&
|
|
msg.id != 0 &&
|
|
msg.thread_id != NULL &&
|
|
msg.exception_pointers != NULL &&
|
|
msg.assert_info != NULL);
|
|
}
|
|
|
|
CrashGenerationServer::CrashGenerationServer(
|
|
const std::wstring& pipe_name,
|
|
SECURITY_ATTRIBUTES* pipe_sec_attrs,
|
|
OnClientConnectedCallback connect_callback,
|
|
void* connect_context,
|
|
OnClientDumpRequestCallback dump_callback,
|
|
void* dump_context,
|
|
OnClientExitedCallback exit_callback,
|
|
void* exit_context,
|
|
OnClientUploadRequestCallback upload_request_callback,
|
|
void* upload_context,
|
|
bool generate_dumps,
|
|
const std::wstring* dump_path)
|
|
: pipe_name_(pipe_name),
|
|
pipe_sec_attrs_(pipe_sec_attrs),
|
|
pipe_(NULL),
|
|
pipe_wait_handle_(NULL),
|
|
server_alive_handle_(NULL),
|
|
connect_callback_(connect_callback),
|
|
connect_context_(connect_context),
|
|
dump_callback_(dump_callback),
|
|
dump_context_(dump_context),
|
|
exit_callback_(exit_callback),
|
|
exit_context_(exit_context),
|
|
upload_request_callback_(upload_request_callback),
|
|
upload_context_(upload_context),
|
|
generate_dumps_(generate_dumps),
|
|
dump_generator_(NULL),
|
|
server_state_(IPC_SERVER_STATE_UNINITIALIZED),
|
|
shutting_down_(false),
|
|
overlapped_(),
|
|
client_info_(NULL),
|
|
cleanup_item_count_(0) {
|
|
InitializeCriticalSection(&clients_sync_);
|
|
|
|
if (dump_path) {
|
|
dump_generator_.reset(new MinidumpGenerator(*dump_path));
|
|
}
|
|
}
|
|
|
|
CrashGenerationServer::~CrashGenerationServer() {
|
|
// Indicate to existing threads that server is shutting down.
|
|
shutting_down_ = true;
|
|
|
|
// Even if there are no current worker threads running, it is possible that
|
|
// an I/O request is pending on the pipe right now but not yet done. In fact,
|
|
// it's very likely this is the case unless we are in an ERROR state. If we
|
|
// don't wait for the pending I/O to be done, then when the I/O completes,
|
|
// it may write to invalid memory. AppVerifier will flag this problem too.
|
|
// So we disconnect from the pipe and then wait for the server to get into
|
|
// error state so that the pending I/O will fail and get cleared.
|
|
DisconnectNamedPipe(pipe_);
|
|
int num_tries = 100;
|
|
while (num_tries-- && server_state_ != IPC_SERVER_STATE_ERROR) {
|
|
Sleep(10);
|
|
}
|
|
|
|
// Unregister wait on the pipe.
|
|
if (pipe_wait_handle_) {
|
|
// Wait for already executing callbacks to finish.
|
|
UnregisterWaitEx(pipe_wait_handle_, INVALID_HANDLE_VALUE);
|
|
}
|
|
|
|
// Close the pipe to avoid further client connections.
|
|
if (pipe_) {
|
|
CloseHandle(pipe_);
|
|
}
|
|
|
|
// Request all ClientInfo objects to unregister all waits.
|
|
// New scope to hold the lock for the shortest time.
|
|
{
|
|
AutoCriticalSection lock(&clients_sync_);
|
|
|
|
std::list<ClientInfo*>::iterator iter;
|
|
for (iter = clients_.begin(); iter != clients_.end(); ++iter) {
|
|
ClientInfo* client_info = *iter;
|
|
client_info->UnregisterWaits();
|
|
}
|
|
}
|
|
|
|
// Now that all waits have been unregistered, wait for some time
|
|
// for all pending work items to finish.
|
|
int total_wait = 0;
|
|
while (cleanup_item_count_ > 0) {
|
|
Sleep(kShutdownSleepIntervalMs);
|
|
|
|
total_wait += kShutdownSleepIntervalMs;
|
|
|
|
if (total_wait >= kShutdownDelayMs) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Clean up all the ClientInfo objects.
|
|
// New scope to hold the lock for the shortest time.
|
|
{
|
|
AutoCriticalSection lock(&clients_sync_);
|
|
|
|
std::list<ClientInfo*>::iterator iter;
|
|
for (iter = clients_.begin(); iter != clients_.end(); ++iter) {
|
|
ClientInfo* client_info = *iter;
|
|
delete client_info;
|
|
}
|
|
}
|
|
|
|
if (server_alive_handle_) {
|
|
// Release the mutex before closing the handle so that clients requesting
|
|
// dumps wait for a long time for the server to generate a dump.
|
|
ReleaseMutex(server_alive_handle_);
|
|
CloseHandle(server_alive_handle_);
|
|
}
|
|
|
|
if (overlapped_.hEvent) {
|
|
CloseHandle(overlapped_.hEvent);
|
|
}
|
|
|
|
DeleteCriticalSection(&clients_sync_);
|
|
}
|
|
|
|
bool CrashGenerationServer::Start() {
|
|
if (server_state_ != IPC_SERVER_STATE_UNINITIALIZED) {
|
|
return false;
|
|
}
|
|
|
|
server_state_ = IPC_SERVER_STATE_INITIAL;
|
|
|
|
server_alive_handle_ = CreateMutex(NULL, TRUE, NULL);
|
|
if (!server_alive_handle_) {
|
|
return false;
|
|
}
|
|
|
|
// Event to signal the client connection and pipe reads and writes.
|
|
overlapped_.hEvent = CreateEvent(NULL, // Security descriptor.
|
|
TRUE, // Manual reset.
|
|
FALSE, // Initially signaled.
|
|
NULL); // Name.
|
|
if (!overlapped_.hEvent) {
|
|
return false;
|
|
}
|
|
|
|
// Register a callback with the thread pool for the client connection.
|
|
if (!RegisterWaitForSingleObject(&pipe_wait_handle_,
|
|
overlapped_.hEvent,
|
|
OnPipeConnected,
|
|
this,
|
|
INFINITE,
|
|
kPipeIOThreadFlags)) {
|
|
return false;
|
|
}
|
|
|
|
pipe_ = CreateNamedPipe(pipe_name_.c_str(),
|
|
kPipeAttr,
|
|
kPipeMode,
|
|
1,
|
|
kOutBufferSize,
|
|
kInBufferSize,
|
|
0,
|
|
pipe_sec_attrs_);
|
|
if (pipe_ == INVALID_HANDLE_VALUE) {
|
|
return false;
|
|
}
|
|
|
|
// Kick-start the state machine. This will initiate an asynchronous wait
|
|
// for client connections.
|
|
HandleInitialState();
|
|
|
|
// If we are in error state, it's because we failed to start listening.
|
|
return server_state_ != IPC_SERVER_STATE_ERROR;
|
|
}
|
|
|
|
// If the server thread serving clients ever gets into the
|
|
// ERROR state, reset the event, close the pipe and remain
|
|
// in the error state forever. Error state means something
|
|
// that we didn't account for has happened, and it's dangerous
|
|
// to do anything unknowingly.
|
|
void CrashGenerationServer::HandleErrorState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_ERROR);
|
|
|
|
// If the server is shutting down anyway, don't clean up
|
|
// here since shut down process will clean up.
|
|
if (shutting_down_) {
|
|
return;
|
|
}
|
|
|
|
if (pipe_wait_handle_) {
|
|
UnregisterWait(pipe_wait_handle_);
|
|
pipe_wait_handle_ = NULL;
|
|
}
|
|
|
|
if (pipe_) {
|
|
CloseHandle(pipe_);
|
|
pipe_ = NULL;
|
|
}
|
|
|
|
if (overlapped_.hEvent) {
|
|
CloseHandle(overlapped_.hEvent);
|
|
overlapped_.hEvent = NULL;
|
|
}
|
|
}
|
|
|
|
// When the server thread serving clients is in the INITIAL state,
|
|
// try to connect to the pipe asynchronously. If the connection
|
|
// finishes synchronously, directly go into the CONNECTED state;
|
|
// otherwise go into the CONNECTING state. For any problems, go
|
|
// into the ERROR state.
|
|
void CrashGenerationServer::HandleInitialState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_INITIAL);
|
|
|
|
if (!ResetEvent(overlapped_.hEvent)) {
|
|
EnterErrorState();
|
|
return;
|
|
}
|
|
|
|
bool success = ConnectNamedPipe(pipe_, &overlapped_) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
// From MSDN, it is not clear that when ConnectNamedPipe is used
|
|
// in an overlapped mode, will it ever return non-zero value, and
|
|
// if so, in what cases.
|
|
assert(!success);
|
|
|
|
switch (error_code) {
|
|
case ERROR_IO_PENDING:
|
|
EnterStateWhenSignaled(IPC_SERVER_STATE_CONNECTING);
|
|
break;
|
|
|
|
case ERROR_PIPE_CONNECTED:
|
|
EnterStateImmediately(IPC_SERVER_STATE_CONNECTED);
|
|
break;
|
|
|
|
default:
|
|
EnterErrorState();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// When the server thread serving the clients is in the CONNECTING state,
|
|
// try to get the result of the asynchronous connection request using
|
|
// the OVERLAPPED object. If the result indicates the connection is done,
|
|
// go into the CONNECTED state. If the result indicates I/O is still
|
|
// INCOMPLETE, remain in the CONNECTING state. For any problems,
|
|
// go into the DISCONNECTING state.
|
|
void CrashGenerationServer::HandleConnectingState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_CONNECTING);
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = GetOverlappedResult(pipe_,
|
|
&overlapped_,
|
|
&bytes_count,
|
|
FALSE) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (success) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_CONNECTED);
|
|
} else if (error_code != ERROR_IO_INCOMPLETE) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
} else {
|
|
// remain in CONNECTING state
|
|
}
|
|
}
|
|
|
|
// When the server thread serving the clients is in the CONNECTED state,
|
|
// try to issue an asynchronous read from the pipe. If read completes
|
|
// synchronously or if I/O is pending then go into the READING state.
|
|
// For any problems, go into the DISCONNECTING state.
|
|
void CrashGenerationServer::HandleConnectedState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_CONNECTED);
|
|
|
|
DWORD bytes_count = 0;
|
|
memset(&msg_, 0, sizeof(msg_));
|
|
bool success = ReadFile(pipe_,
|
|
&msg_,
|
|
sizeof(msg_),
|
|
&bytes_count,
|
|
&overlapped_) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
// Note that the asynchronous read issued above can finish before the
|
|
// code below executes. But, it is okay to change state after issuing
|
|
// the asynchronous read. This is because even if the asynchronous read
|
|
// is done, the callback for it would not be executed until the current
|
|
// thread finishes its execution.
|
|
if (success || error_code == ERROR_IO_PENDING) {
|
|
EnterStateWhenSignaled(IPC_SERVER_STATE_READING);
|
|
} else {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
}
|
|
}
|
|
|
|
// When the server thread serving the clients is in the READING state,
|
|
// try to get the result of the async read. If async read is done,
|
|
// go into the READ_DONE state. For any problems, go into the
|
|
// DISCONNECTING state.
|
|
void CrashGenerationServer::HandleReadingState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_READING);
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = GetOverlappedResult(pipe_,
|
|
&overlapped_,
|
|
&bytes_count,
|
|
FALSE) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (success && bytes_count == sizeof(ProtocolMessage)) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_READ_DONE);
|
|
} else {
|
|
// We should never get an I/O incomplete since we should not execute this
|
|
// unless the Read has finished and the overlapped event is signaled. If
|
|
// we do get INCOMPLETE, we have a bug in our code.
|
|
assert(error_code != ERROR_IO_INCOMPLETE);
|
|
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
}
|
|
}
|
|
|
|
// When the server thread serving the client is in the READ_DONE state,
|
|
// validate the client's request message, register the client by
|
|
// creating appropriate objects and prepare the response. Then try to
|
|
// write the response to the pipe asynchronously. If that succeeds,
|
|
// go into the WRITING state. For any problems, go into the DISCONNECTING
|
|
// state.
|
|
void CrashGenerationServer::HandleReadDoneState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_READ_DONE);
|
|
|
|
if (!IsClientRequestValid(msg_)) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
return;
|
|
}
|
|
|
|
if (msg_.tag == MESSAGE_TAG_UPLOAD_REQUEST) {
|
|
if (upload_request_callback_)
|
|
upload_request_callback_(upload_context_, msg_.id);
|
|
return;
|
|
}
|
|
|
|
scoped_ptr<ClientInfo> client_info(
|
|
new ClientInfo(this,
|
|
msg_.id,
|
|
msg_.dump_type,
|
|
msg_.thread_id,
|
|
msg_.exception_pointers,
|
|
msg_.assert_info,
|
|
msg_.custom_client_info));
|
|
|
|
if (!client_info->Initialize()) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
return;
|
|
}
|
|
|
|
// Issues an asynchronous WriteFile call if successful.
|
|
// Iff successful, assigns ownership of the client_info pointer to the server
|
|
// instance, in which case we must be sure not to free it in this function.
|
|
if (!RespondToClient(client_info.get())) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
return;
|
|
}
|
|
|
|
client_info_ = client_info.release();
|
|
|
|
// Note that the asynchronous write issued by RespondToClient function
|
|
// can finish before the code below executes. But it is okay to change
|
|
// state after issuing the asynchronous write. This is because even if
|
|
// the asynchronous write is done, the callback for it would not be
|
|
// executed until the current thread finishes its execution.
|
|
EnterStateWhenSignaled(IPC_SERVER_STATE_WRITING);
|
|
}
|
|
|
|
// When the server thread serving the clients is in the WRITING state,
|
|
// try to get the result of the async write. If the async write is done,
|
|
// go into the WRITE_DONE state. For any problems, go into the
|
|
// DISONNECTING state.
|
|
void CrashGenerationServer::HandleWritingState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_WRITING);
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = GetOverlappedResult(pipe_,
|
|
&overlapped_,
|
|
&bytes_count,
|
|
FALSE) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (success) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_WRITE_DONE);
|
|
return;
|
|
}
|
|
|
|
// We should never get an I/O incomplete since we should not execute this
|
|
// unless the Write has finished and the overlapped event is signaled. If
|
|
// we do get INCOMPLETE, we have a bug in our code.
|
|
assert(error_code != ERROR_IO_INCOMPLETE);
|
|
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
}
|
|
|
|
// When the server thread serving the clients is in the WRITE_DONE state,
|
|
// try to issue an async read on the pipe. If the read completes synchronously
|
|
// or if I/O is still pending then go into the READING_ACK state. For any
|
|
// issues, go into the DISCONNECTING state.
|
|
void CrashGenerationServer::HandleWriteDoneState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_WRITE_DONE);
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = ReadFile(pipe_,
|
|
&msg_,
|
|
sizeof(msg_),
|
|
&bytes_count,
|
|
&overlapped_) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (success) {
|
|
EnterStateImmediately(IPC_SERVER_STATE_READING_ACK);
|
|
} else if (error_code == ERROR_IO_PENDING) {
|
|
EnterStateWhenSignaled(IPC_SERVER_STATE_READING_ACK);
|
|
} else {
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
}
|
|
}
|
|
|
|
// When the server thread serving the clients is in the READING_ACK state,
|
|
// try to get result of async read. Go into the DISCONNECTING state.
|
|
void CrashGenerationServer::HandleReadingAckState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_READING_ACK);
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = GetOverlappedResult(pipe_,
|
|
&overlapped_,
|
|
&bytes_count,
|
|
FALSE) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (success) {
|
|
// The connection handshake with the client is now complete; perform
|
|
// the callback.
|
|
if (connect_callback_) {
|
|
connect_callback_(connect_context_, client_info_);
|
|
}
|
|
} else {
|
|
// We should never get an I/O incomplete since we should not execute this
|
|
// unless the Read has finished and the overlapped event is signaled. If
|
|
// we do get INCOMPLETE, we have a bug in our code.
|
|
assert(error_code != ERROR_IO_INCOMPLETE);
|
|
}
|
|
|
|
EnterStateImmediately(IPC_SERVER_STATE_DISCONNECTING);
|
|
}
|
|
|
|
// When the server thread serving the client is in the DISCONNECTING state,
|
|
// disconnect from the pipe and reset the event. If anything fails, go into
|
|
// the ERROR state. If it goes well, go into the INITIAL state and set the
|
|
// event to start all over again.
|
|
void CrashGenerationServer::HandleDisconnectingState() {
|
|
assert(server_state_ == IPC_SERVER_STATE_DISCONNECTING);
|
|
|
|
// Done serving the client.
|
|
client_info_ = NULL;
|
|
|
|
overlapped_.Internal = NULL;
|
|
overlapped_.InternalHigh = NULL;
|
|
overlapped_.Offset = 0;
|
|
overlapped_.OffsetHigh = 0;
|
|
overlapped_.Pointer = NULL;
|
|
|
|
if (!ResetEvent(overlapped_.hEvent)) {
|
|
EnterErrorState();
|
|
return;
|
|
}
|
|
|
|
if (!DisconnectNamedPipe(pipe_)) {
|
|
EnterErrorState();
|
|
return;
|
|
}
|
|
|
|
// If the server is shutting down do not connect to the
|
|
// next client.
|
|
if (shutting_down_) {
|
|
return;
|
|
}
|
|
|
|
EnterStateImmediately(IPC_SERVER_STATE_INITIAL);
|
|
}
|
|
|
|
void CrashGenerationServer::EnterErrorState() {
|
|
SetEvent(overlapped_.hEvent);
|
|
server_state_ = IPC_SERVER_STATE_ERROR;
|
|
}
|
|
|
|
void CrashGenerationServer::EnterStateWhenSignaled(IPCServerState state) {
|
|
server_state_ = state;
|
|
}
|
|
|
|
void CrashGenerationServer::EnterStateImmediately(IPCServerState state) {
|
|
server_state_ = state;
|
|
|
|
if (!SetEvent(overlapped_.hEvent)) {
|
|
server_state_ = IPC_SERVER_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
bool CrashGenerationServer::PrepareReply(const ClientInfo& client_info,
|
|
ProtocolMessage* reply) const {
|
|
reply->tag = MESSAGE_TAG_REGISTRATION_RESPONSE;
|
|
reply->id = GetCurrentProcessId();
|
|
|
|
if (CreateClientHandles(client_info, reply)) {
|
|
return true;
|
|
}
|
|
|
|
if (reply->dump_request_handle) {
|
|
CloseHandle(reply->dump_request_handle);
|
|
}
|
|
|
|
if (reply->dump_generated_handle) {
|
|
CloseHandle(reply->dump_generated_handle);
|
|
}
|
|
|
|
if (reply->server_alive_handle) {
|
|
CloseHandle(reply->server_alive_handle);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CrashGenerationServer::CreateClientHandles(const ClientInfo& client_info,
|
|
ProtocolMessage* reply) const {
|
|
HANDLE current_process = GetCurrentProcess();
|
|
if (!DuplicateHandle(current_process,
|
|
client_info.dump_requested_handle(),
|
|
client_info.process_handle(),
|
|
&reply->dump_request_handle,
|
|
kDumpRequestEventAccess,
|
|
FALSE,
|
|
0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!DuplicateHandle(current_process,
|
|
client_info.dump_generated_handle(),
|
|
client_info.process_handle(),
|
|
&reply->dump_generated_handle,
|
|
kDumpGeneratedEventAccess,
|
|
FALSE,
|
|
0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!DuplicateHandle(current_process,
|
|
server_alive_handle_,
|
|
client_info.process_handle(),
|
|
&reply->server_alive_handle,
|
|
kMutexAccess,
|
|
FALSE,
|
|
0)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CrashGenerationServer::RespondToClient(ClientInfo* client_info) {
|
|
ProtocolMessage reply;
|
|
if (!PrepareReply(*client_info, &reply)) {
|
|
return false;
|
|
}
|
|
|
|
DWORD bytes_count = 0;
|
|
bool success = WriteFile(pipe_,
|
|
&reply,
|
|
sizeof(reply),
|
|
&bytes_count,
|
|
&overlapped_) != FALSE;
|
|
DWORD error_code = success ? ERROR_SUCCESS : GetLastError();
|
|
|
|
if (!success && error_code != ERROR_IO_PENDING) {
|
|
return false;
|
|
}
|
|
|
|
// Takes over ownership of client_info. We MUST return true if AddClient
|
|
// succeeds.
|
|
if (!AddClient(client_info)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// The server thread servicing the clients runs this method. The method
|
|
// implements the state machine described in ReadMe.txt along with the
|
|
// helper methods HandleXXXState.
|
|
void CrashGenerationServer::HandleConnectionRequest() {
|
|
// If we are shutting doen then get into ERROR state, reset the event so more
|
|
// workers don't run and return immediately.
|
|
if (shutting_down_) {
|
|
server_state_ = IPC_SERVER_STATE_ERROR;
|
|
ResetEvent(overlapped_.hEvent);
|
|
return;
|
|
}
|
|
|
|
switch (server_state_) {
|
|
case IPC_SERVER_STATE_ERROR:
|
|
HandleErrorState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_INITIAL:
|
|
HandleInitialState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_CONNECTING:
|
|
HandleConnectingState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_CONNECTED:
|
|
HandleConnectedState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_READING:
|
|
HandleReadingState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_READ_DONE:
|
|
HandleReadDoneState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_WRITING:
|
|
HandleWritingState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_WRITE_DONE:
|
|
HandleWriteDoneState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_READING_ACK:
|
|
HandleReadingAckState();
|
|
break;
|
|
|
|
case IPC_SERVER_STATE_DISCONNECTING:
|
|
HandleDisconnectingState();
|
|
break;
|
|
|
|
default:
|
|
assert(false);
|
|
// This indicates that we added one more state without
|
|
// adding handling code.
|
|
server_state_ = IPC_SERVER_STATE_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool CrashGenerationServer::AddClient(ClientInfo* client_info) {
|
|
HANDLE request_wait_handle = NULL;
|
|
if (!RegisterWaitForSingleObject(&request_wait_handle,
|
|
client_info->dump_requested_handle(),
|
|
OnDumpRequest,
|
|
client_info,
|
|
INFINITE,
|
|
kDumpRequestThreadFlags)) {
|
|
return false;
|
|
}
|
|
|
|
client_info->set_dump_request_wait_handle(request_wait_handle);
|
|
|
|
// OnClientEnd will be called when the client process terminates.
|
|
HANDLE process_wait_handle = NULL;
|
|
if (!RegisterWaitForSingleObject(&process_wait_handle,
|
|
client_info->process_handle(),
|
|
OnClientEnd,
|
|
client_info,
|
|
INFINITE,
|
|
WT_EXECUTEONLYONCE)) {
|
|
return false;
|
|
}
|
|
|
|
client_info->set_process_exit_wait_handle(process_wait_handle);
|
|
|
|
// New scope to hold the lock for the shortest time.
|
|
{
|
|
AutoCriticalSection lock(&clients_sync_);
|
|
clients_.push_back(client_info);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// static
|
|
void CALLBACK CrashGenerationServer::OnPipeConnected(void* context, BOOLEAN) {
|
|
assert(context);
|
|
|
|
CrashGenerationServer* obj =
|
|
reinterpret_cast<CrashGenerationServer*>(context);
|
|
obj->HandleConnectionRequest();
|
|
}
|
|
|
|
// static
|
|
void CALLBACK CrashGenerationServer::OnDumpRequest(void* context, BOOLEAN) {
|
|
assert(context);
|
|
ClientInfo* client_info = reinterpret_cast<ClientInfo*>(context);
|
|
client_info->PopulateCustomInfo();
|
|
|
|
CrashGenerationServer* crash_server = client_info->crash_server();
|
|
assert(crash_server);
|
|
crash_server->HandleDumpRequest(*client_info);
|
|
|
|
ResetEvent(client_info->dump_requested_handle());
|
|
}
|
|
|
|
// static
|
|
void CALLBACK CrashGenerationServer::OnClientEnd(void* context, BOOLEAN) {
|
|
assert(context);
|
|
ClientInfo* client_info = reinterpret_cast<ClientInfo*>(context);
|
|
|
|
CrashGenerationServer* crash_server = client_info->crash_server();
|
|
assert(crash_server);
|
|
|
|
client_info->UnregisterWaits();
|
|
InterlockedIncrement(&crash_server->cleanup_item_count_);
|
|
|
|
if (!QueueUserWorkItem(CleanupClient, context, WT_EXECUTEDEFAULT)) {
|
|
InterlockedDecrement(&crash_server->cleanup_item_count_);
|
|
}
|
|
}
|
|
|
|
// static
|
|
DWORD WINAPI CrashGenerationServer::CleanupClient(void* context) {
|
|
assert(context);
|
|
ClientInfo* client_info = reinterpret_cast<ClientInfo*>(context);
|
|
|
|
CrashGenerationServer* crash_server = client_info->crash_server();
|
|
assert(crash_server);
|
|
|
|
if (crash_server->exit_callback_) {
|
|
crash_server->exit_callback_(crash_server->exit_context_, client_info);
|
|
}
|
|
|
|
crash_server->DoCleanup(client_info);
|
|
|
|
InterlockedDecrement(&crash_server->cleanup_item_count_);
|
|
return 0;
|
|
}
|
|
|
|
void CrashGenerationServer::DoCleanup(ClientInfo* client_info) {
|
|
assert(client_info);
|
|
|
|
// Start a new scope to release lock automatically.
|
|
{
|
|
AutoCriticalSection lock(&clients_sync_);
|
|
clients_.remove(client_info);
|
|
}
|
|
|
|
delete client_info;
|
|
}
|
|
|
|
void CrashGenerationServer::HandleDumpRequest(const ClientInfo& client_info) {
|
|
// Generate the dump only if it's explicitly requested by the
|
|
// server application; otherwise the server might want to generate
|
|
// dump in the callback.
|
|
std::wstring dump_path;
|
|
if (generate_dumps_) {
|
|
if (!GenerateDump(client_info, &dump_path)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (dump_callback_) {
|
|
std::wstring* ptr_dump_path = (dump_path == L"") ? NULL : &dump_path;
|
|
dump_callback_(dump_context_, &client_info, ptr_dump_path);
|
|
}
|
|
|
|
SetEvent(client_info.dump_generated_handle());
|
|
}
|
|
|
|
bool CrashGenerationServer::GenerateDump(const ClientInfo& client,
|
|
std::wstring* dump_path) {
|
|
assert(client.pid() != 0);
|
|
assert(client.process_handle());
|
|
|
|
// We have to get the address of EXCEPTION_INFORMATION from
|
|
// the client process address space.
|
|
EXCEPTION_POINTERS* client_ex_info = NULL;
|
|
if (!client.GetClientExceptionInfo(&client_ex_info)) {
|
|
return false;
|
|
}
|
|
|
|
DWORD client_thread_id = 0;
|
|
if (!client.GetClientThreadId(&client_thread_id)) {
|
|
return false;
|
|
}
|
|
|
|
return dump_generator_->WriteMinidump(client.process_handle(),
|
|
client.pid(),
|
|
client_thread_id,
|
|
GetCurrentThreadId(),
|
|
client_ex_info,
|
|
client.assert_info(),
|
|
client.dump_type(),
|
|
true,
|
|
dump_path);
|
|
}
|
|
|
|
} // namespace google_breakpad
|