mirror of
https://github.com/yuzu-emu/breakpad.git
synced 2025-07-04 07:28:21 +00:00
The main motivation for this change is to handle very large stack traces, normally the result of infinite recursion. This part is actually fairly simple, relaxing a few self-imposed limits on how many frames we can unwind and the max size for stack memory. Relaxing these limits requires stricter and more consistent checks for stack unwinding. There are a number of unwinding invariants that apply to all the platforms: 1. stack pointer (and frame pointer) must be within the stack memory (frame pointer, if preset, must point to the right frame too) 2. unwinding must monotonically increase SP (except for the first frame unwind, this must be a strict increase) 3. Instruction pointer (return address) must point to a valid location 4. stack pointer (and frame pointer) must be appropriately aligned This change is focused on 2), which is enough to guarantee that the unwinding doesn't get stuck in an infinite loop. 1) is implicitly validated part of accessing the stack memory (explicit checks might be nice though). 4) is ABI specific and while it may be valuable in catching suspicious frames is not in the scope of this change. 3) is also an interesting check but thanks to just-in-time compilation it's more complex than just calling StackWalker::InstructionAddressSeemsValid() and we don't want to drop parts of the callstack due to an overly conservative check. Bug: chromium:735989 Change-Id: I9aaba77c7fd028942d77c87d51b5e6f94e136ddd Reviewed-on: https://chromium-review.googlesource.com/563771 Reviewed-by: Mark Mentovai <mark@chromium.org> Reviewed-by: Ivan Penkov <ivanpe@chromium.org>
258 lines
11 KiB
C++
258 lines
11 KiB
C++
// Copyright (c) 2010 Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// stackwalker.h: Generic stackwalker.
|
|
//
|
|
// The Stackwalker class is an abstract base class providing common generic
|
|
// methods that apply to stacks from all systems. Specific implementations
|
|
// will extend this class by providing GetContextFrame and GetCallerFrame
|
|
// methods to fill in system-specific data in a StackFrame structure.
|
|
// Stackwalker assembles these StackFrame strucutres into a CallStack.
|
|
//
|
|
// Author: Mark Mentovai
|
|
|
|
|
|
#ifndef GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__
|
|
#define GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__
|
|
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "common/using_std_string.h"
|
|
#include "google_breakpad/common/breakpad_types.h"
|
|
#include "google_breakpad/processor/code_modules.h"
|
|
#include "google_breakpad/processor/memory_region.h"
|
|
#include "google_breakpad/processor/stack_frame_symbolizer.h"
|
|
|
|
namespace google_breakpad {
|
|
|
|
class CallStack;
|
|
class DumpContext;
|
|
class StackFrameSymbolizer;
|
|
|
|
using std::set;
|
|
using std::vector;
|
|
|
|
class Stackwalker {
|
|
public:
|
|
virtual ~Stackwalker() {}
|
|
|
|
// Populates the given CallStack by calling GetContextFrame and
|
|
// GetCallerFrame. The frames are further processed to fill all available
|
|
// data. Returns true if the stackwalk completed, or false if it was
|
|
// interrupted by SymbolSupplier::GetSymbolFile().
|
|
// Upon return, |modules_without_symbols| will be populated with pointers to
|
|
// the code modules (CodeModule*) that DON'T have symbols.
|
|
// |modules_with_corrupt_symbols| will be populated with pointers to the
|
|
// modules which have corrupt symbols. |modules_without_symbols| and
|
|
// |modules_with_corrupt_symbols| DO NOT take ownership of the code modules.
|
|
// The lifetime of these code modules is the same as the lifetime of the
|
|
// CodeModules passed to the StackWalker constructor (which currently
|
|
// happens to be the lifetime of the Breakpad's ProcessingState object).
|
|
// There is a check for duplicate modules so no duplicates are expected.
|
|
bool Walk(CallStack* stack,
|
|
vector<const CodeModule*>* modules_without_symbols,
|
|
vector<const CodeModule*>* modules_with_corrupt_symbols);
|
|
|
|
// Returns a new concrete subclass suitable for the CPU that a stack was
|
|
// generated on, according to the CPU type indicated by the context
|
|
// argument. If no suitable concrete subclass exists, returns NULL.
|
|
static Stackwalker* StackwalkerForCPU(
|
|
const SystemInfo* system_info,
|
|
DumpContext* context,
|
|
MemoryRegion* memory,
|
|
const CodeModules* modules,
|
|
const CodeModules* unloaded_modules,
|
|
StackFrameSymbolizer* resolver_helper);
|
|
|
|
|
|
static void set_max_frames(uint32_t max_frames) {
|
|
max_frames_ = max_frames;
|
|
max_frames_set_ = true;
|
|
}
|
|
static uint32_t max_frames() { return max_frames_; }
|
|
|
|
static void set_max_frames_scanned(uint32_t max_frames_scanned) {
|
|
max_frames_scanned_ = max_frames_scanned;
|
|
}
|
|
|
|
protected:
|
|
// system_info identifies the operating system, NULL or empty if unknown.
|
|
// memory identifies a MemoryRegion that provides the stack memory
|
|
// for the stack to walk. modules, if non-NULL, is a CodeModules
|
|
// object that is used to look up which code module each stack frame is
|
|
// associated with. frame_symbolizer is a StackFrameSymbolizer object that
|
|
// encapsulates the logic of how source line resolver interacts with symbol
|
|
// supplier to symbolize stack frame and look up caller frame information
|
|
// (see stack_frame_symbolizer.h).
|
|
// frame_symbolizer MUST NOT be NULL (asserted).
|
|
Stackwalker(const SystemInfo* system_info,
|
|
MemoryRegion* memory,
|
|
const CodeModules* modules,
|
|
StackFrameSymbolizer* frame_symbolizer);
|
|
|
|
// This can be used to filter out potential return addresses when
|
|
// the stack walker resorts to stack scanning.
|
|
// Returns true if any of:
|
|
// * This address is within a loaded module, but we don't have symbols
|
|
// for that module.
|
|
// * This address is within a loaded module for which we have symbols,
|
|
// and falls inside a function in that module.
|
|
// Returns false otherwise.
|
|
bool InstructionAddressSeemsValid(uint64_t address) const;
|
|
|
|
// Checks whether we should stop the stack trace.
|
|
// (either we reached the end-of-stack or we detected a
|
|
// broken callstack invariant)
|
|
bool TerminateWalk(uint64_t caller_ip,
|
|
uint64_t caller_sp,
|
|
uint64_t callee_sp,
|
|
bool first_unwind) const;
|
|
|
|
// The default number of words to search through on the stack
|
|
// for a return address.
|
|
static const int kRASearchWords;
|
|
|
|
template<typename InstructionType>
|
|
bool ScanForReturnAddress(InstructionType location_start,
|
|
InstructionType* location_found,
|
|
InstructionType* ip_found,
|
|
bool is_context_frame) {
|
|
// When searching for the caller of the context frame,
|
|
// allow the scanner to look farther down the stack.
|
|
const int search_words = is_context_frame ?
|
|
kRASearchWords * 4 :
|
|
kRASearchWords;
|
|
|
|
return ScanForReturnAddress(location_start, location_found, ip_found,
|
|
search_words);
|
|
}
|
|
|
|
// Scan the stack starting at location_start, looking for an address
|
|
// that looks like a valid instruction pointer. Addresses must
|
|
// 1) be contained in the current stack memory
|
|
// 2) pass the checks in InstructionAddressSeemsValid
|
|
//
|
|
// Returns true if a valid-looking instruction pointer was found.
|
|
// When returning true, sets location_found to the address at which
|
|
// the value was found, and ip_found to the value contained at that
|
|
// location in memory.
|
|
template<typename InstructionType>
|
|
bool ScanForReturnAddress(InstructionType location_start,
|
|
InstructionType* location_found,
|
|
InstructionType* ip_found,
|
|
int searchwords) {
|
|
for (InstructionType location = location_start;
|
|
location <= location_start + searchwords * sizeof(InstructionType);
|
|
location += sizeof(InstructionType)) {
|
|
InstructionType ip;
|
|
if (!memory_->GetMemoryAtAddress(location, &ip))
|
|
break;
|
|
|
|
if (modules_ && modules_->GetModuleForAddress(ip) &&
|
|
InstructionAddressSeemsValid(ip)) {
|
|
*ip_found = ip;
|
|
*location_found = location;
|
|
return true;
|
|
}
|
|
}
|
|
// nothing found
|
|
return false;
|
|
}
|
|
|
|
// Information about the system that produced the minidump. Subclasses
|
|
// and the SymbolSupplier may find this information useful.
|
|
const SystemInfo* system_info_;
|
|
|
|
// The stack memory to walk. Subclasses will require this region to
|
|
// get information from the stack.
|
|
MemoryRegion* memory_;
|
|
|
|
// A list of modules, for populating each StackFrame's module information.
|
|
// This field is optional and may be NULL.
|
|
const CodeModules* modules_;
|
|
|
|
// A list of unloaded modules, for populating frames which aren't matched
|
|
// to any loaded modules.
|
|
// This field is optional and may be NULL.
|
|
const CodeModules* unloaded_modules_;
|
|
|
|
protected:
|
|
// The StackFrameSymbolizer implementation.
|
|
StackFrameSymbolizer* frame_symbolizer_;
|
|
|
|
private:
|
|
// Obtains the context frame, the innermost called procedure in a stack
|
|
// trace. Returns NULL on failure. GetContextFrame allocates a new
|
|
// StackFrame (or StackFrame subclass), ownership of which is taken by
|
|
// the caller.
|
|
virtual StackFrame* GetContextFrame() = 0;
|
|
|
|
// Obtains a caller frame. Each call to GetCallerFrame should return the
|
|
// frame that called the last frame returned by GetContextFrame or
|
|
// GetCallerFrame. To aid this purpose, stack contains the CallStack
|
|
// made of frames that have already been walked. GetCallerFrame should
|
|
// return NULL on failure or when there are no more caller frames (when
|
|
// the end of the stack has been reached). GetCallerFrame allocates a new
|
|
// StackFrame (or StackFrame subclass), ownership of which is taken by
|
|
// the caller. |stack_scan_allowed| controls whether stack scanning is
|
|
// an allowable frame-recovery method, since it is desirable to be able to
|
|
// disable stack scanning in performance-critical use cases.
|
|
//
|
|
// CONSIDER: a way to differentiate between:
|
|
// - full stack traces
|
|
// - explicitly truncated traces (max_frames_)
|
|
// - stopping after max scanned frames
|
|
// - failed stack walk (breaking one of the stack walk invariants)
|
|
//
|
|
virtual StackFrame* GetCallerFrame(const CallStack* stack,
|
|
bool stack_scan_allowed) = 0;
|
|
|
|
// The maximum number of frames Stackwalker will walk through.
|
|
// This defaults to 1024 to prevent infinite loops.
|
|
static uint32_t max_frames_;
|
|
|
|
// Keep track of whether max_frames_ has been set by the user, since
|
|
// it affects whether or not an error message is printed in the case
|
|
// where an unwind got stopped by the limit.
|
|
static bool max_frames_set_;
|
|
|
|
// The maximum number of stack-scanned and otherwise untrustworthy
|
|
// frames allowed. Stack-scanning can be expensive, so the option to
|
|
// disable or limit it is helpful in cases where unwind performance is
|
|
// important. This defaults to 1024, the same as max_frames_.
|
|
static uint32_t max_frames_scanned_;
|
|
};
|
|
|
|
} // namespace google_breakpad
|
|
|
|
|
|
#endif // GOOGLE_BREAKPAD_PROCESSOR_STACKWALKER_H__
|