breakpad/src/common/stabs_reader_unittest.cc
jimblandy d3e4bbb9c7 Breakpad STABS parser: Use a test fixture in StabsReader unit tests.
This patch factors out some of the common code in the StabsReader unit
tests into a fixture class. Pretty mechanical.

a=jimblandy, r=thestig


git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@586 4c0a9323-5329-0410-9bdc-e9ce6186880e
2010-05-05 17:25:47 +00:00

490 lines
17 KiB
C++

// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// stabs_reader_unittest.cc: Unit tests for google_breakpad::StabsReader.
#include <cassert>
#include <cerrno>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <sstream>
#include <stab.h>
#include "breakpad_googletest_includes.h"
#include "common/stabs_reader.h"
#include "common/test_assembler.h"
using ::testing::Eq;
using ::testing::InSequence;
using ::testing::Return;
using ::testing::StrEq;
using ::testing::Test;
using ::testing::_;
using google_breakpad::StabsHandler;
using google_breakpad::StabsReader;
using google_breakpad::TestAssembler::Label;
using google_breakpad::TestAssembler::Section;
using google_breakpad::TestAssembler::kBigEndian;
using google_breakpad::TestAssembler::kLittleEndian;
using std::map;
using std::string;
namespace {
// A StringAssembler is a class for generating .stabstr sections to present
// as input to the STABS parser.
class StringAssembler: public Section {
public:
StringAssembler() : in_cu_(false) { StartCU(); }
// Add the string S to this StringAssembler, and return the string's
// offset within this compilation unit's strings. If S has been added
// already, this returns the offset of its first instance.
size_t Add(const string &s) {
map<string, size_t>::iterator it = added_.find(s);
if (it != added_.end())
return it->second;
size_t offset = Size() - cu_start_;
AppendCString(s);
added_[s] = offset;
return offset;
}
// Start a fresh compilation unit string collection.
void StartCU() {
// Ignore duplicate calls to StartCU. Our test data don't always call
// StartCU at all, meaning that our constructor has to take care of it,
// meaning that tests that *do* call StartCU call it twice at the
// beginning. This is not worth smoothing out.
if (in_cu_) return;
added_.clear();
cu_start_ = Size();
// Each compilation unit's strings start with an empty string.
AppendCString("");
added_[""] = 0;
in_cu_ = true;
}
// Finish off the current CU's strings.
size_t EndCU() {
assert(in_cu_);
in_cu_ = false;
return Size() - cu_start_;
}
private:
// The offset of the start of this compilation unit's strings.
size_t cu_start_;
// True if we're in a CU.
bool in_cu_;
// A map from the strings that have been added to this section to
// their starting indices within their compilation unit.
map<string, size_t> added_;
};
// A StabsAssembler is a class for generating .stab sections to present as
// test input for the STABS parser.
class StabsAssembler: public Section {
public:
// Create a StabsAssembler that uses StringAssembler for its strings.
StabsAssembler(StringAssembler *string_assembler)
: Section(string_assembler->endianness()),
string_assembler_(string_assembler),
value_size_(0),
entry_count_(0),
cu_header_(NULL) { }
~StabsAssembler() { assert(!cu_header_); }
// Accessor and setter for value_size_.
size_t value_size() const { return value_size_; }
StabsAssembler &set_value_size(size_t value_size) {
value_size_ = value_size;
return *this;
}
// Append a STAB entry to the end of this section with the given
// characteristics. NAME is the offset of this entry's name string within
// its compilation unit's portion of the .stabstr section; this can be a
// value generated by a StringAssembler. Return a reference to this
// StabsAssembler.
StabsAssembler &Stab(uint8_t type, uint8_t other, Label descriptor,
Label value, Label name) {
D32(name);
D8(type);
D8(other);
D16(descriptor);
Append(endianness(), value_size_, value);
entry_count_++;
return *this;
}
// As above, but automatically add NAME to our StringAssembler.
StabsAssembler &Stab(uint8_t type, uint8_t other, Label descriptor,
Label value, const string &name) {
return Stab(type, other, descriptor, value, string_assembler_->Add(name));
}
// Start a compilation unit named NAME, with an N_UNDF symbol to start
// it, and its own portion of the string section. Return a reference to
// this StabsAssembler.
StabsAssembler &StartCU(const string &name) {
assert(!cu_header_);
cu_header_ = new CUHeader;
string_assembler_->StartCU();
entry_count_ = 0;
return Stab(N_UNDF, 0,
cu_header_->final_entry_count,
cu_header_->final_string_size,
string_assembler_->Add(name));
}
// Close off the current compilation unit. Return a reference to this
// StabsAssembler.
StabsAssembler &EndCU() {
assert(cu_header_);
cu_header_->final_entry_count = entry_count_;
cu_header_->final_string_size = string_assembler_->EndCU();
delete cu_header_;
cu_header_ = NULL;
return *this;
}
private:
// Data used in a compilation unit header STAB that we won't know until
// we've finished the compilation unit.
struct CUHeader {
// The final number of entries this compilation unit will hold.
Label final_entry_count;
// The final size of this compilation unit's strings.
Label final_string_size;
};
// The strings for our STABS entries.
StringAssembler *string_assembler_;
// The size of the 'value' field of stabs entries in this section.
size_t value_size_;
// The number of entries in this compilation unit so far.
size_t entry_count_;
// Header labels for this compilation unit, if we've started one but not
// finished it.
CUHeader *cu_header_;
};
class MockStabsReaderHandler: public StabsHandler {
public:
MOCK_METHOD3(StartCompilationUnit,
bool(const char *, uint64_t, const char *));
MOCK_METHOD1(EndCompilationUnit, bool(uint64_t));
MOCK_METHOD2(StartFunction, bool(const std::string &, uint64_t));
MOCK_METHOD1(EndFunction, bool(uint64_t));
MOCK_METHOD3(Line, bool(uint64_t, const char *, int));
void Warning(const char *format, ...) { MockWarning(format); }
MOCK_METHOD1(MockWarning, void(const char *));
};
struct StabsFixture {
StabsFixture() : stabs(&strings) { }
// Create a StabsReader to parse the mock stabs data in stabs and
// strings, and pass the parsed information to mock_handler. Use the
// endianness and value size of stabs to parse the data. If all goes
// well, return the result of calling the reader's Process member
// function. Otherwise, return false.
bool ApplyHandlerToMockStabsData() {
string stabs_contents, stabstr_contents;
if (!stabs.GetContents(&stabs_contents) ||
!strings.GetContents(&stabstr_contents))
return false;
// Run the parser on the test input, passing whatever we find to HANDLER.
StabsReader reader(
reinterpret_cast<const uint8_t *>(stabs_contents.data()),
stabs_contents.size(),
reinterpret_cast<const uint8_t *>(stabstr_contents.data()),
stabstr_contents.size(),
stabs.endianness() == kBigEndian, stabs.value_size(), &mock_handler);
return reader.Process();
}
StringAssembler strings;
StabsAssembler stabs;
MockStabsReaderHandler mock_handler;
};
class Stabs: public StabsFixture, public Test { };
TEST_F(Stabs, MockStabsInput) {
stabs.set_endianness(kLittleEndian);
stabs.set_value_size(4);
stabs
.Stab(N_SO, 149, 40232, 0x18a2a72bU, "builddir/")
.Stab(N_FUN, 83, 50010, 0x91a5353fU,
"not the SO with source file name we expected ")
.Stab(N_SO, 165, 24791, 0xfe69d23cU, "")
.Stab(N_SO, 184, 34178, 0xca4d883aU, "builddir1/")
.Stab(N_SO, 83, 40859, 0xd2fe5df3U, "file1.c")
.Stab(N_LSYM, 147, 39565, 0x60d4bb8aU, "not the FUN we're looking for")
.Stab(N_FUN, 120, 50271, 0xa049f4b1U, "fun1")
.Stab(N_BINCL, 150, 15694, 0xef65c659U,
"something to ignore in a FUN body")
.Stab(N_SLINE, 147, 4967, 0xd904b3f, "")
.Stab(N_SOL, 177, 56135, 0xbd97b1dcU, "header.h")
.Stab(N_SLINE, 130, 24610, 0x90f145b, "")
.Stab(N_FUN, 45, 32441, 0xbf27cf93U,
"fun2:some stabs type info here:to trim from the name")
.Stab(N_SLINE, 138, 39002, 0x8148b87, "")
.Stab(N_SOL, 60, 49318, 0x1d06e025U, "file1.c")
.Stab(N_SLINE, 29, 52163, 0x6eebbb7, "")
.Stab(N_SO, 167, 4647, 0xd04b7448U, "")
.Stab(N_LSYM, 58, 37837, 0xe6b14d37U, "")
.Stab(N_SO, 152, 7810, 0x11759f10U, "file3.c")
.Stab(N_SO, 218, 12447, 0x11cfe4b5U, "");
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("file1.c"), 0xd2fe5df3U,
StrEq("builddir1/")))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartFunction(StrEq("fun1"), 0xa049f4b1U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
Line(0xa049f4b1U + 0xd904b3f, StrEq("file1.c"), 4967))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
Line(0xa049f4b1U + 0x90f145b, StrEq("header.h"), 24610))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xbf27cf93U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartFunction(StrEq("fun2"), 0xbf27cf93U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
Line(0xbf27cf93U + 0x8148b87, StrEq("header.h"), 39002))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
Line(0xbf27cf93U + 0x6eebbb7, StrEq("file1.c"), 52163))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xd04b7448U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(0xd04b7448U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartCompilationUnit(StrEq("file3.c"),
0x11759f10U, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(0x11cfe4b5U))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, AbruptCU) {
stabs.set_endianness(kBigEndian);
stabs.set_value_size(4);
stabs.Stab(N_SO, 177, 23446, 0xbf10d5e4, "file2-1.c");
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("file2-1.c"), 0xbf10d5e4, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(NULL))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, AbruptFunction) {
stabs.set_endianness(kLittleEndian);
stabs.set_value_size(8);
stabs
.Stab(N_SO, 218, 26631, 0xb83ddf10U, "file3-1.c")
.Stab(N_FUN, 113, 24765, 0xbbd4a145U, "fun3_1");
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("file3-1.c"), 0xb83ddf10U, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartFunction(StrEq("fun3_1"), 0xbbd4a145U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(NULL))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, NoCU) {
stabs.set_endianness(kBigEndian);
stabs.set_value_size(8);
stabs.Stab(N_SO, 161, 25673, 0x8f676e7bU, "build-directory/");
EXPECT_CALL(mock_handler, StartCompilationUnit(_, _, _))
.Times(0);
EXPECT_CALL(mock_handler, StartFunction(_, _))
.Times(0);
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, NoCUEnd) {
stabs.set_endianness(kBigEndian);
stabs.set_value_size(8);
stabs
.Stab(N_SO, 116, 58280, 0x2f7493c9U, "file5-1.c")
.Stab(N_SO, 224, 23057, 0xf9f1d50fU, "file5-2.c");
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("file5-1.c"), 0x2f7493c9U, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("file5-2.c"), 0xf9f1d50fU, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(NULL))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, MultipleCUs) {
stabs.set_endianness(kBigEndian);
stabs.set_value_size(4);
stabs
.StartCU("antimony")
.Stab(N_SO, 49, 26043, 0x7e259f1aU, "antimony")
.Stab(N_FUN, 101, 63253, 0x7fbcccaeU, "arsenic")
.Stab(N_SO, 124, 37175, 0x80b0014cU, "")
.EndCU()
.StartCU("aluminum")
.Stab(N_SO, 72, 23084, 0x86756839U, "aluminum")
.Stab(N_FUN, 59, 3305, 0xa8e120b0U, "selenium")
.Stab(N_SO, 178, 56949, 0xbffff983U, "")
.EndCU();
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("antimony"), 0x7e259f1aU, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartFunction(Eq("arsenic"), 0x7fbcccaeU))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0x80b0014cU))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(0x80b0014cU))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("aluminum"), 0x86756839U, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, StartFunction(Eq("selenium"), 0xa8e120b0U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xbffff983U))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(0xbffff983U))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
TEST_F(Stabs, FunctionEnd) {
stabs.set_endianness(kLittleEndian);
stabs.set_value_size(8);
stabs
.Stab(N_SO, 102, 62362, 0x52a830d644cd6942ULL, "compilation unit")
// This function is terminated by the start of the next function.
.Stab(N_FUN, 216, 38405, 0xbb5ab70ecdd23bfeULL, "function 1")
// This function is terminated by an explicit end-of-function stab,
// whose value is a size in bytes.
.Stab(N_FUN, 240, 10973, 0xc954de9b8fb3e5e2ULL, "function 2")
.Stab(N_FUN, 14, 36749, 0xc1ab, "")
// This function is terminated by the end of the compilation unit.
.Stab(N_FUN, 143, 64514, 0xdff98c9a35386e1fULL, "function 3")
.Stab(N_SO, 164, 60142, 0xfdacb856e78bbf57ULL, "");
{
InSequence s;
EXPECT_CALL(mock_handler,
StartCompilationUnit(StrEq("compilation unit"),
0x52a830d644cd6942ULL, NULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
StartFunction(Eq("function 1"), 0xbb5ab70ecdd23bfeULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xc954de9b8fb3e5e2ULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
StartFunction(Eq("function 2"), 0xc954de9b8fb3e5e2ULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xc954de9b8fb3e5e2ULL + 0xc1ab))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler,
StartFunction(Eq("function 3"), 0xdff98c9a35386e1fULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndFunction(0xfdacb856e78bbf57ULL))
.WillOnce(Return(true));
EXPECT_CALL(mock_handler, EndCompilationUnit(0xfdacb856e78bbf57ULL))
.WillOnce(Return(true));
}
ASSERT_TRUE(ApplyHandlerToMockStabsData());
}
// name duplication
} // anonymous namespace